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Improved estimation of macroevolutionary rates from fossil data
using a Bayesian framework

Daniele Silvestro , Nicolas Salamin, Alexandre Antonelli, and Xavier Meyer

Abstract.—The estimation of origination and extinction rates and their temporal variation is central to
understanding diversity patterns and the evolutionary history of clades. The fossil record provides the
only direct evidence of extinction and biodiversity changes through time and has long been used to infer
the dynamics of diversity changes in deep time. The software PyRate implements a Bayesian framework
to analyze fossil occurrence data to estimate the rates of preservation, origination, and extinction while
incorporating several sources of uncertainty. Building upon this framework, we present a suite of methodo-
logical advances includingmore complex and realistic models of preservation and the first likelihood-based
test to compare the fit across different models. Further, we develop a new reversible jump Markov chain
Monte Carlo algorithm to estimate origination and extinction rates and their temporal variation, which pro-
videsmore reliable results and includes an explicit estimation of the number and temporal placement of stat-
istically significant rate changes. Finally, we implement a new C++ library that speeds up the analyses by
orders ofmagnitude, therefore facilitating the application of the PyRatemethods to large data sets.We dem-
onstrate the new functionalities through extensive simulations and with the analysis of a large data set of
Cenozoic marine mammals. We compare our analytical framework against two widely used alternative
methods to infer origination and extinction rates, revealing that PyRate decisively outperforms them across
a range of simulated data sets. Our analyses indicate that explicit statistical model testing, which is often
neglected in fossil-based macroevolutionary analyses, is crucial to obtain accurate and robust results.
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Introduction

The evolution of biological diversity is deter-
mined by the interplay between origination
and extinction processes. Estimating the pace
at which lineages appear and disappear is
therefore a central question in macroevolution
and paleobiology research. Inferring the pro-
cesses underlying biodiversity patterns helps
us understand what drives the wax and wane
of taxa (Ezard et al. 2011; Quental andMarshall

2013), the effects of competition and other
biotic interactions on diversity changes (Liow
et al. 2015; Pires et al. 2017), and the dynamics
and selectivity of mass extinctions (Peters
2008). The process of taxonomic diversification
is often modeled using birth–death stochastic
models, in which the appearance of new
lineages (e.g., species or genera) and their
demise are characterized by origination and
extinction rates (Kendall 1948; Keiding 1975;
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Nee 2006). These parameters quantify the
expected number of origination or extinction
events per lineage per time unit (typically
1 Myr) (Foote 2000; Marshall 2017).
In recent years, there have been considerable

methodological developments in the estimation
of diversificationdynamics fromphylogenies of
extant taxa, in which the distribution of branch-
ing times calibrated to absolute ages are used to
infer the parameters of a “reconstructed birth–
death process” (e.g., Nee et al. 1994; Gernhard
2008; Stadler 2009, 2013; Heath et al. 2014).
These methods are appealing, because large
phylogenies of extant taxa are becoming
increasingly available (e.g., Jetz et al. 2012;
Zanne et al. 2014; Rolland et al. 2018; Chang
et al. 2019) and extend to taxawith limited fossil
records, including hyperdiverse plant clades
(e.g., Perez-Escobar et al. 2017). Despite this
methodological progress, estimating diversifi-
cation dynamics from extant data remains chal-
lenging, particularly in terms of estimating
realistic extinction rates (Liow et al. 2010a;
Quental and Marshall 2010; Marshall 2017;
Burin et al. 2019), although recent advances in
integrating phylogenetic and paleontological
data have clarified part of these apparent limita-
tions (Silvestro et al. 2018). Major limiting fac-
tors of phylogenetic approaches to infer
originationandextinction rates are their depend-
ence on accurate phylogenetic tree estimation
(Warnocket al. 2015) and the fact that extant spe-
cies represent, formost clades, a small fraction of
the total diversity that has existed since their ori-
gination (Raup and Sepkoski 1984; Raup 1986).
The fossil record provides the only direct evi-

dence of past biodiversity and extinction and
has therefore long been used to investigate
diversification processes (Kurtén 1954; Van
Valen and Sloan 1966; Alroy 1996, 2008; Sep-
koski 1998; Connolly and Miller 2001; Foote
2001; Liow and Nichols 2010; Ezard et al.
2011). However, because the paleontological
record is inevitably incomplete, fossil occur-
rences represent a biased representation of the
past diversity, in which the sampled longev-
ities of taxa are likely to underestimate their
true life spans, and entire lineages (especially
those with low preservation potential or short
life span) may leave no trace of their existence
(Foote and Raup 1996; Foote 2000; Hagen

et al. 2017). Thus, the estimation of diversifica-
tion processes from fossil data involves infer-
ring preservation, origination, and extinction
rates. Most available methods estimate
temporal rate variation using the presence or
absence of lineages within predefined time
bins and treating the origination and extinction
rates in each bin as independent parameters
(Foote 2001, 2003; Liow et al. 2008; Liow and
Nichols 2010; Alroy 2014). These methods
have been successfully used to distinguish
between “background rates” and phases of sig-
nificantly elevated rates (e.g., mass extinctions
[Raup and Sepkoski 1982]) and to characterize
general diversification trends (e.g., changes in
longevity after mass extinctions [Miller and
Foote 2003]). However, these methods are not
designed to explicitly assess the degree of hetero-
geneity in origination and extinction rates that
best explains the fossil record, and while confi-
dence intervals have been used to determine
the significance of rate changes between adjacent
time bins (Foote 2003; Liow and Finarelli 2014),
these estimates are still based on potentially
overparameterized models, which limits their
robustness (Burnham and Anderson 2002).
A few years ago we presented a Bayesian

probabilistic framework to estimate preserva-
tion, origination, and extinction rates from
fossil occurrence data implemented in the open-
source program PyRate (Silvestro et al. 2014a,b).
Unlike most other methods, PyRate does not by
default estimate origination and extinction rates
within fixed time bins (although that option is
available [Silvestro et al. 2015b]). Instead, its
core functions are designed to explicitly compare
models with different amounts of rate hetero-
geneity, with the rationale that rate shifts are
only detected when statistically significant.
This procedure is important to avoid overpara-
meterization,which in turn can lead to inconsist-
ent results and false positives. This is especially
truewhen the amount of data is small compared
with the number of parameters (Burnham and
Anderson 2002), which is often the case for
empirical fossil data sets.
Since its original implementation, PyRate has

used a hierarchical Bayesian model to jointly
estimate: (1) the times of origination and extinc-
tion for each sampled lineage (Fig. 1A), (2) the
parameters of a Poisson process modeling
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fossilization and sampling (Fig. 1B), and (3) the
rates of origination and extinction and their
temporal heterogeneity (Fig. 1C) (Silvestro
et al. 2014a). This hierarchical structure allows
us to analyze the entire available fossil record,
including all known occurrences of a lineage
(i.e., not limited to first and last appearances);
singletons (lineages sampled in a single occur-
rence); and extant taxa, provided that they
have at least one fossil occurrence (Fig. 1A).
The analysis is conducted using Metropolis
Hastings Markov chain Monte Carlo (MCMC)
to obtain posterior estimates of all model para-
meters along with the respective 95% credible
intervals (95% CI), providing important infor-
mation about the level of uncertainty surround-
ing the estimates.
The complexity of this Bayesian probabilistic

framework comparedwith alternativemethods
(e.g., Foote 2001; Alroy 2014; Liow and Finarelli
2014) means that a PyRate analysis will typic-
ally require a computation time that is longer
than that required by other methods by orders
of magnitude. While recent studies have com-
pared the performance of these alternative
methods using simulated data sets (Smiley
2018), it remains unclear whether PyRate’s
additional computational burden does in fact
return an improved accuracy in the estimated
rates of origination and extinction.
One of the main and most challenging aims

of the PyRate method is the estimation of how
origination and extinction rates vary through
time, which is done using a birth–death
MCMC (BDMCMC) algorithm (Silvestro et al.
2014b) to sample the number and temporal
placement of rate shifts in a single analysis.
The power of this algorithm, however, becomes
limited with increasing levels of rate heterogen-
eity through time and with large data sets
(Silvestro et al. 2014b), thus making the method
potentially unsuitable to analyze complex evo-
lutionary histories. Another limitation of the
method is that model testing is focused on find-
ing the best birth–death model, while the
choice between different preservation models
(e.g., with homogeneous or nonhomogeneous
rates) remains somewhat arbitrary (e.g., Silves-
tro et al. 2015b).
Here, building upon the PyRate platform, we

develop novel features that expand the scope

FIGURE 1. PyRate’s main analytical structure. The input
data consist of dated fossil occurrences assigned to lineages,
e.g., species or genera (represented by circles in A), includ-
ing singletons and extant taxa. The Bayesian framework
jointly estimates the life spans of all lineages (dashed
lines), preservation rates (B), and origination and extinction
rates (C). All parameter estimates are inferred as posterior
mean values (solid lines in B and C) and 95% credible inter-
vals (shaded areas in B and C).
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and applicability of the program, providing
novel models of fossil preservation and
improved algorithms. Specifically we (1) intro-
duce more realistic preservation models that
simultaneously allow rate heterogeneity across
lineages and through time and develop a
maximum-likelihood framework to statistically
choose the preservation model that best fits the
data. (2)We present a more powerful algorithm
to infer temporal variation in origination and
extinction rates using reversible jump MCMC
(RJMCMC; a Bayesian algorithm that jointly
infers the number of rate shifts best explaining
the data and the parameter values [Green 1995])
and compare its performancewith the alternative
BDMCMC algorithm, demonstrating improved
results on simulated data. (3) We compare the
performance of PyRate against two alternative
approaches, the boundary-crossing method
(Foote 2003) and the three-timer method (Alroy
2014). We analyze simulated data sets generated
under different origination and extinction

scenarios and compare the accuracy across esti-
mates. (4) We demonstrate some of the novel
features developed here with a worked
example by analyzing a recently published
data set of marine mammals (Pimiento et al.
2017) and provide extensive tutorials with
detailed descriptions of analysis setup and out-
put processing. (5) Finally, we develop a C++
library which is integrated in the PyRate pro-
gram and speeds up the analyses by orders of
magnitude, thus extending the applicability of
the method to very large data sets.

Methods

PyRate implements a hierarchical Bayesian
model that jointly samples the preservation
rates (indicated by q), the times of origination
and extinction for each sampled lineage (indi-
cated by vectors s, e), and the origination and
extinction rates (indicated by λ and μ). The
input data are fossil occurrences characterized

TABLE 1. Glossary defining the main terms, acronyms, and parameters used in this study.

Models
BD Birth–death model of origination and extinction
BDS Birth–death model with shifts in origination and/or extinction rates through time
HPP Homogeneous Poisson process—constant preservation rate
NHPP Nonhomogeneous Poisson process—preservation rate changes during the life span of each lineage,

following a bell-shaped trajectory
TPP Time-variable Poisson process—preservation rates vary across time windows
+G Gamma model—can be coupled with any preservation model (HPP, NHPP, TPP) to incorporate

heterogeneity in preservation rates across lineages
Parameters
xi = x1, . . . , xK{ } Vector of fossil occurrences for taxon i
X = x1, . . . , xN{ } List of vectors of fossil occurrences across all sampled taxa
s Vector of times of origination
e Vector of times of extinction
q Preservation rate—expected number of fossil occurrences per sampled lineage per time unit
q = q1, . . . , qW

{ }
Vector of preservation rates across W time windows (TPP model)

α Shape parameter of the gamma distribution modeling preservation rate heterogeneity across lineages
(+G models)

Λ Origination rate—expected number of origination events per sampled lineage per time unit
μ Extinction rate—expected number of extinction events per sampled lineage per time unit
Λ = {λ0, …, λJ} Vector of origination rates through time delimited by J rate shifts (BDS model)

M = {μ0, …, μH} Vector of extinction rates through time delimited by H rate shifts (BDS model)

tL = tL1 , . . . , t
L
J

{ }
Vector times of shift in origination rates

tM = tM1 , . . . , tMH
{ }

Vector times of shift in extinction rates

Algorithms
MCMC Markov chain Monte Carlo—algorithm to jointly estimate the parameters of a given birth–death and

preservation model
BDMCMC Birth–deathMCMC to jointly estimate themodel parameters and the number and temporal placement

of rates shifts in origination and extinction
RJMCMC Reversible jump MCMC to jointly estimate the model parameters and the number and temporal

placement of rates shifts in origination and extinction
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by their ages and their assignment to a taxo-
nomic unit (e.g., a genus or a species) and the
origination and extinction rates scaled to the
taxonomic unit used in the input data.
The joint posterior distribution of all para-

meters is approximated by an MCMC algo-
rithm and can be written as

P(q, s, e, l,m|X)︸���������︷︷���������︸
posterior

/P(X|q, s, e)︸�����︷︷�����︸
likelihood

× P(s,e|l,m)︸�����︷︷�����︸
birth-deathprior

× P(q)P(l,m)︸�����︷︷�����︸
other(hyper-)priors

(1)

where X = {x1, . . . xN} is the list of vectors of
fossil occurrences for each of N lineages, so
that xi = {x1, . . . , xK} is a vector of all fossil
occurrences sampled for taxon i. The main
parameters and models described in this and
the following sections are listed in Table 1. We
consider here as a fossil occurrence the presence
of a species at a sampling locality. The likeli-
hood component of the model allows us to esti-
mate the preservation rates and the times of
origin and extinction given the occurrence
data, based on a stochastic model of fossiliza-
tion and sampling (see Preservation Models).
The birth–death (BD) prior allows us to infer
the underlying diversification process based
on the (estimated) origination and extinction
times. Additional priors on q, λ, μ enable the
estimation of these parameters from the data.
The two main components of the PyRate
model are sampling (which results from fossil
preservation and sampling efforts) and diversi-
fication (origination and extinction). Both
components are modeled through stochastic
processes (as described in the following
sections) and estimated in a single analysis.

Preservation Models
We model the process of fossil preservation

and sampling using Poisson processes, wherein
the estimated preservation rate(s) indicate the
expected number of fossil occurrences per
sampled lineage per time unit. Thus, fossil
preservation is modeled as a time-continuous
stochastic process capturing fossilization, sam-
pling, and identification, that is, all the events
occurring from the living organism to the

digitized fossil occurrence. The likelihood of a
lineage with fossil occurrences x = {x1, …, xK}
given origination time s, extinction time e, and
preservation rate q under a general Poisson
model is

P(x|q, s, e) =
exp − �e

s q(t)dt
( )× ∏K

i=1
q(xi)

K!× 1− exp − �e
s q(t)dt

( )( ) (2)

where q(t) is the preservation rate at time t
(Silvestro et al. 2014b). The two terms of the
numerator quantify the probability of the wait-
ing times between fossil occurrences and the
probability of each occurrence. The denomin-
ator includes the normalizing constant of the
Poisson distribution and the condition on sam-
pling at least one fossil occurrence, where exp
(·) represents the probability of zero fossil
occurrences between origination and extinction
times (Silvestro et al. 2014b).
The original PyRate implementation included

two models of preservation: the homogeneous
Poisson process (HPP) and the nonhomoge-
neous Poisson process (NHPP). The HPP
model assumes that the preservation rate is
constant throughout the life span of an organ-
ism and across time. The NHPP assumes that
preservation rates change along the life span
of a lineage according to a bell-shaped distribu-
tion, in which the rates are lower at the two
extremities (i.e., close to the times of origin
and extinction of the lineage) and highest in
the middle (Silvestro et al. 2014b). The shape
of the distribution is fixed, and the estimated
preservation rate q represents the expected
number of fossil occurrences per sampled lin-
eage per million years averaged across the life
span of the lineage. This model is justified by
the empirical observation that the number of
occurrences per time unit for a given organism
tends to increase following its origination and
to decrease before its extinction (Liow et al.
2010b). The pattern also reflects the idea that a
species originates from a small initial pool of
individuals in a restricted geographic area
(therefore with lower potential for preservation
and sampling) and later expands, thus increas-
ing its chances of leaving a fossil record. Simi-
larly, under this model, species are expected
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to decline in abundance and geographic range
before their extinction (Raia et al. 2016), result-
ing in decreased preservation rates.
Both HPP and NHPP models can be coupled

with a gamma model (i.e., HPP +G and
NHPP +G), which allows us to incorporate
rate heterogeneity across lineages. Under
these models, preservation rates are defined
so that their mean equals q and their hetero-
geneity is distributed according to a gamma
distribution, with shape parameter α, discre-
tized in a user-defined number of categories
(Yang 1994; Silvestro et al. 2014b). The rate par-
ameter of the gamma distribution is set equal
to the shape, so the distribution has mean
equal to 1. Both q and α are estimated as free
parameters by the MCMC, and small values
of α indicate increased amounts of heterogen-
eity. Gamma models do not assign individual
preservation rates to each lineage in the data
set. Instead, the likelihood of each lineage is
averaged across all rates, thus incorporating
rate heterogeneity across lineages while add-
ing a single additional parameter (α) to the
model (Yang 1994).
Here, we introduce a third preservation

model that implements a time-variable Poisson
process (TPP). The TPPmodel is an extension of
the HPP, in which the rate of preservation is
constant within predefined time windows but
allowed to change between them. For instance,
different preservation rates can be estimated
within geological epochs (Foote 2001; Liow
and Nichols 2010). The likelihood of this pro-
cess is the product of piecewise HPP likeli-
hoods across multiple time frames, each with
its specific preservation rate (q = {q1, …, qW},
where W is the number of time windows in the
model). As for the HPP and NHPP models, the
TPP can be coupledwith a gammamodel, there-
fore allowing for rateheterogeneityboth through
time and across lineages.
The default prior specified for q is a gamma

distribution, chosen to reflect the fact that pres-
ervation rates must take positive and real
values. Defining appropriate prior distribu-
tions is often a challenge in Bayesian analysis,
and prior choice can strongly affect the effective
parameter space and the complexity of a model
(Gelman et al. 2013). This may become even
more problematic under the TPP model, in

which very strict priors could artificially reduce
rate heterogeneity through time, whereas very
vague priors could unnecessarily expand the
amount of parameter space, increasing the
risk of overparameterization. To overcome
this issue, we use a hyper-prior to estimate
the prior on the preservation rates from the
data, instead of setting the prior to a fixed dis-
tribution. We set a single gamma distribution
as prior on the preservation rates q, with a
fixed shape parameter (α = 1.5) and unknown
rate parameter β. The rate parameter is
assigned a vague gamma hyper-prior, β∼ Γ(a
= 1.01, b = 0.1), and is itself estimated by the
MCMC. Estimating the rate using a hyper-prior
makes the gamma prior on qmore adaptable to
different data sets and reduces the subjectivity
of prior choices. Using the properties of the con-
jugate gamma prior, whereby the posterior dis-
tribution of the rate parameter of a gamma
likelihood with known shape and gamma-
distributed prior is itself a gamma distribution
(Gelman et al. 2013), we can sample the rate
parameter β directly from its posterior distribu-
tion, given any vector of preservation rates q,
the shape parameter α, and shape and rate of
the prior a, b:

P(b|q,a, a, b) � G a+ aW, b+
∑W
i=1

(qi)
( )

. (3)

A Maximum-Likelihood Test to Compare
Preservation Models
Because the preservation process represents

a fundamental component of the PyRate
model (Fig. 1A,B), it is important to choose
themodel that best fits the datawhen analyzing
a fossil data set. To this end, we developed a
likelihood-based test to assess the statistical fit
of alternative preservation processes. The pres-
ervation process, with constant or variable
rates, is expected to leave a signature in the tem-
poral distribution of fossil occurrences, which
will tend to be roughly uniformly distributed
under an HPP model (Fig. 2A), to show higher
density of record toward the center of a species’
life span under the NHPP model (Fig. 2B) and
to follow time-variable distributions under
the TPP model (Fig. 2C).
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FIGURE 2. Graphical representation of the preservation rate models implemented in PyRate. In the homogeneous Poisson
processmodel (A), the preservation rate is constant through time, and the expected times of origination and extinction (s, e)
are exponentially distributed. In the nonhomogeneous Poisson process model (B), preservation rates vary throughout the
life span of a species, generating gamma-like expected s, e. The time-variable Poisson process model (C) assumes piecewise
constant preservation rates (e.g., different rates for each epoch) and the resulting expected s, e values combine multiple
exponential distributions. All models can incorporate rate heterogeneity across lineages (gamma models).
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Although it is theoretically possible to infer
the marginal likelihood of a preservation
model in a Bayesian framework (for instance
using the thermodynamic integration available
in PyRate to test between alternative birth–
death models [Lartillot and Philippe 2006;
Silvestro et al. 2014b]), the task would be com-
putationally extremely demanding. Indeed,
the number of parameters over which the
likelihood needs to be marginalized can be
very high, including the vectors of origination
and extinction times, the preservation rates,
and potentially the parameters of the birth–
death prior. Thus, we implemented a
maximum-likelihood test for preservationmod-
els that substantially reduces the computational
burden. This maximum-likelihood test is
intended as a first step in the analysis of a fossil
data set, inwhich the best preservationmodel is
identified. Then, the full Bayesian analysis of
preservation, origination, and extinction rates
is performed under the selected preservation
model (see also Analysis Protocol for Marine
Mammals, Supplementary Material).
Let ŝ and ê be the expected times of origin-

ation and extinction of a lineage with fossil
occurrences x = {x1, . . . , xK} (sorted from oldest
to most recent) for a given preservation rate q.
To compare the fit of different models, we
maximize the likelihood P(x, ŝ, ê|q), where q is
treated as a free parameter and estimated in
the optimization, while ŝ and ê are calculated
based on the preservation rate and model. In
the simplest case of an HPP of preservation,
the expected times of origination and extinction
are determined by the expectation of an expo-
nential distribution with rate equal q: E[Exp(q)]
= 1/q. Thus, under HPP, the expected times of
origination and extinction are ŝ = x1 + 1/q and
ê = xK − 1/q (Fig. 2A). Note that the expected
times of origination and extinction differ from
their maximum-likelihood estimates, which
under HPP are sML = x1 and eML = xK.
In the case of the NHPP model, neither the

expectation nor the maximum-likelihood
values of s and e are easily derived analytic-
ally. Instead, we use a two-step approach to
obtain a maximum-likelihood value that is
comparable to that obtained under HPP.
First, we optimize the rate q by maximizing
the likelihood P(x|q, s, e), where q, s, and e

are treated as free parameters. This results in
maximum-likelihood estimates of the preserva-
tion rate (qML) and origination and extinction
times (sML and eML). Second, because the likeli-
hoods of different preservation models are
compared based on the expected origination
and extinction times (i.e., not their maximum-
likelihood values), we use MCMC sampling
to infer ŝ and ê, given the estimated rate qML

(Fig. 2B). The MCMC samples from the poster-
ior probability

P(s, e|qML, x)/ P(x|qML, s, e) × P(s) P(e) (4)

where P(s) � U(x1,1) and P(e) � U(0, xK) are
uniform priors on origination and extinction
times. These priors, while unrealistic, essen-
tially imply that the acceptance probability of
theMCMC is only driven by the likelihood sur-
face. We sample 1000 values of s and e and use
their mean as expected origination and extinc-
tion times ŝq, and êq. Once we have obtained
q̂, ŝq, and êq, we can calculate the likelihood of
the data given the model and use it for model
comparison.
Under the TPP model, the expected times

of origination and extinction are determined
by a combination of exponential expectations
with rate parameters (i.e., preservation rates)
q = {q1, …, qW}, truncated at the boundaries
of each of W time window (Fig. 2C). For
any given preservation rate q, we use numer-
ical integration to approximate the resulting
distribution and obtain expected values for
the times of origination and extinction (ŝ, ê).
We use maximum likelihood to optimize the
vector of preservation rates.
The likelihood of a data set encompassing

multiple taxa, under any preservation model,
is the product of the individual likelihood of
each lineage (Silvestro et al. 2014b). For the pur-
pose of model testing between HPP, NHPP,
and TPP models, we assume that the preserva-
tion rates are constant across lineages and
therefore optimize a single parameter q (or
vector of parameters q under the TPP model)
to obtain the maximum likelihood of the data.
We then calculate the fit of each model using
the Akaike information criterion corrected for
sample size (AICc), based on the number of
analyzed lineages (Burnham and Anderson
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2002). We consider this test as a useful tool to
choose between qualitatively different preser-
vation processes (HPP, NHPP, and TPP) and
advise researchers to always couple the best-
fitting Poisson process with the gamma model
in empirical analyses. The risk that the
gammamodel represents an overparameteriza-
tion of the preservation process is minimal,
because the gamma model only adds a single
parameter to incorporate any potential amount
of rate heterogeneity across clades (Silvestro
et al. 2014b). Additionally, virtually all empir-
ical data sets we have analyzed so far indicated
very high levels of rate variation across clades
(see also “Results”).

AICc Thresholds and Testing.—We used simu-
lated data to assess the performance of our like-
lihood test for preservation models. We
simulated 1000 data sets of fossil occurrences
under each of three models (HPP, NHPP, and
TPP). Each simulation included 100 lineages,
with life span determined by a randomly
sampled extinction rate m � U[0.05, 0.5],
reflecting a realistic range of extinction rates
(Pimiento et al. 2017). Thus, for the properties
of the birth–death process (Kendall 1948), the
distribution of life spans followed an exponen-
tial distribution with mean 1/μ. Fossil occur-
rences were then simulated based on each
Poisson process with a rate q randomly drawn
from U[0.05, 3.5]. The rate q represented the
mean preservation rate for each lineage in
NHPP simulations (Silvestro et al. 2014b).
In TPP simulations, we simulated one shift
in preservation rate occurring halfway
between the origination time of the oldest lin-
eage and the most recent extinction time. The
preservation rate after the shift was then set
to 5 × q.
Although singletons (i.e., lineages repre-

sented by a single fossil occurrence) can be ana-
lyzed and are usually included in PyRate
analyses, they should be removed when the
aim to compare the fit of different preservation
models. While singletons contribute to the cor-
rect inference of preservation rates in an ana-
lysis aimed at parameter estimation, at least
one waiting time between occurrences is
needed when testing among preservation
models. Singletons are therefore removed auto-

matically from the data when using the model-
testing function implemented in PyRate. Thus,
before running the test on simulated data, we
removed all lineages with fewer than 2 occur-
rences. This procedure left, depending on the
simulation settings, between 10 and 100
sampled lineages, providing a range of data
sizes.
We used simulations to define the appropri-

ate ΔAICc thresholds necessary to confidently
choose between preservation models. While
the model yielding the smallest AIC score can
be considered as best fitting (Burnham and
Anderson 2002), small differences in AICc
values might be difficult to interpret, and the
threshold for significance is often obtained
through simulations (e.g., Dib et al. 2014;
Pennell et al. 2014). Additionally, empirically
verifying the accuracy of model testing is espe-
cially important here, because the optimization
involves a combination of analytical expecta-
tions of origination and extinction times for
HPP and numerical approximations for
NHPP and TPP. Thus, we used the 3000 simu-
lations (for which the true generating model is
known) as a training set and for each computed
AICc score under the three preservation mod-
els. Based on the resulting distributions of
AICc scores, we determined the ΔAICc thresh-
olds that yielded less than 5% errors and less
than 1% errors in model selection. We then
simulated an additional 300 data sets (100 for
each preservation model) to verify the appro-
priateness of the thresholds (Supplementary
Figs. S1–S3).

Time-Variable Birth–Death Models
The temporal distribution of origination

and extinction times of sampled lineages, esti-
mated through the preservation process, is
modeled to be the result of a time-continuous
birth–death stochastic process, in which
lineages originate at a rate λ and go extinct
at a rate μ (Kendall 1948). PyRate implements
several birth–death models, in which rates can
change through time at discrete events or rate
shifts (Silvestro et al. 2014b), following time-
continuous variables (Lehtonen et al. 2017). The
general likelihood of a birth–death process with
time-variable rates is derived from Keiding
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(1975):

P(s, e|l,m)/
∏N
i=1

l(si)× m(ei)Ii

× exp −
∫ei
si

l(t) + m(t) dt
( )

(5)

where N is the number of lineages, λ(t) is the
origination rate at time t, μ(t) is the extinction
rate at time t, and Ii is an indicator set to Ii = 1
if species i is extinct (ei >0) and Ii = 0 if species
i is extant (in which case the extinction time ei
= 0 is not sampled as a parameter).
A birth–death model with rate shifts (BDS) is

characterized by changes in rates of origination
and extinction at shift times, while the rates are
constant between shifts (Silvestro et al. 2014b).
TheBDSmodel isdescribedbyavectorof origin-
ation ratesΛ = {λ0, λ1,…, λJ} delimitedby timesof
shifts tL = {tL1 , . . . , t

L
J } and by extinction rates

M = {μ0, μ1, …, μH} delimited by times of shifts
tM = {tM1 , . . . , t

M
H }, where J and H represent the

number of origination and extinction rate shifts,
respectively. Under this notation, origination
and extinction rates are constant and equal to
λ0 and μ0, respectively, when themodel includes
no rate shifts. The original PyRate implementa-
tion used a Bayesian algorithm, the BDMCMC
(Stephens 2000), to jointly infer the number of
rate shifts ( J and H ), the rates between shifts
(Λ, M ), and the times of rate shift (τΛ, τM).
While we showed BDMCMC to be able to cor-
rectly infer rate variation under several scen-
arios, it tends to be too conservative in
assessing rate heterogeneity through time
when the true generating process involves sev-
eral rate shifts (Silvestro et al. 2014b). In the fol-
lowing sections we develop an alternative
method to estimate birth–death models with
rate shiftsusing themoregeneralRJMCMCalgo-
rithm (Green 1995) and demonstrate through
simulations that it outperforms BDMCMC.

Inferring Rate Variation Using RJMCMC
TheRJMCMCalgorithm is amodifiedversion

of the standard Metropolis-Hastings MCMC, in
which the model (here the number of rate shifts)
is itself considered a parameter. In a maximum-
likelihood framework, model testing is typically

done using AIC or similar metrics that penalize
parameter-rich models to find the best balance
between model fit and its complexity. The
RJMCMC algorithm “jumps” across different
models and uses the posterior ratio to avoid
under- and overparameterization. The result of
RJMCMC is a posterior sample of parameter
values (here origination and extinction rates
through time) averaged over model uncertainty
and posterior probabilities associated with each
model, while incorporating the uncertainties
associated with the preservation process.
In the RJMCMC framework, the number of

rate shifts is considered an unknown variable
and is estimated from the data. To this end
we include two additional types of proposals:
namely, the forward move and the backward
move, which add or remove rate shifts, respect-
ively, thus changing the number of parameters
in the birth–death model. Given that these
moves are identical for both speciation and
extinction rates, we use the notationΦ to denote
either the speciation (Λ) or extinction (M ) rates.
We indicate the time frames identified by rate
shifts with Δ = {δ0, δ1,…, δK−1}. Under this nota-
tion, we set δi = τi− τi+1, where τ is the time of
rate shift for 0 < i≤K, whereas t0 = max(s) and
tK+1 = min(e) represent themaximumandmin-
imum ages, respectively, of the full birth–death
process spanned by the data. A given set of
time framesΔof lengthK is associatedwithavec-
tor of rate parameters Φ = {ϕ0, ϕ1,…, ϕK}.
The RJMCMC algorithm requires a modifica-

tion in the acceptance rule of a standard
MCMC in order to maintain its reversibility
whilemoving across models with different para-
meterizations (Green 1995). The general form of
the acceptance probability for a forward move
(i.e., adding a rate shift) can be written as min
{1, A(θ, θ′)}, where θ and θ′ are the model para-
metersof the currentandnewstates, respectively,
and A(θ, θ′) is the product of three main terms:

A(u, u′) = p(u′)
p(u)︸�︷︷�︸

Posterior ratio

×P(M|M′)
P(M′|M) ×

P(u|u′)
P(u′|u)︸�����������︷︷�����������︸

Hastings ratio

× ∂(u′)
∂(u, u)

∣∣∣∣
∣∣∣∣︸���︷︷���︸

Jacobian

(6)
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The first term is the posterior ratio, that is, the
ratio between unnormalized posterior probabil-
ities, of the new state over the current state
(where π(·) indicates the posterior as in eq. 1).
The second term, often referred toas theHastings
ratio (e.g., Heath et al. 2014), describes the ratio
between the probability of going back from the
new state to the current one and the probability
of proposing the new state given the current
one. This term includes the probability of a for-
ward move, which generates a new model M′

from the current one M by adding a rate shift
and the probability of a backward move, which
removes a rate shift. The Hastings ratio also
includes the probability of proposing a new par-
ameter state θ′ from the current one θ and vice
versa. Note that the new and current states will
differ in the number of parameters by one add-
itional time of rate shift and one additional rate
shift. The third term is the Jacobian of the deter-
ministic functionmapping thevalues of the para-
meters of the current state into the parameters of
the new state and corrects for the change in the
dimensionality of the parameter space. The
acceptance probability of a backward move (i.e.,
removing a rate shift) can be directly deduced
from the associated forward move. The move
from a model with parameters θ (with K rates)
to amodelθ′ (withK− 1 rates) has the acceptance
probability set to min[1, A(θ′, θ)], with

A(u′, u) = A(u, u′)−1. (7)

Probability of a Reversible Jump.—In our
implementation, forward and backward
moves are selected with equal probability
P(MK+1|MK) = P(MK|MK+1) = 0.5, except
for the boundary cases K = 1 and K = Kmax,
where Kmax is the maximum allowed number
of rate shifts. When K = 1, that is, constant
rates and no rate shift, forward moves are
proposed with probability 1, while only back-
ward moves are proposed when K = Kmax. To
avoid numerical issues (e.g., overflows),
PyRate does not allow time windows smaller
than 1 time unit (i.e., δ ≥ 1), therefore result-
ing in Kmax = τK+1 − τ0.

Forward Move: Adding a New Rate Shift.—A
forward move from model MK to MK+1 is
done by splitting an existing time frame into

two time frames to which new rates are
assigned. We first select a time frame δi ran-
domly from Δ and split it into two time frames
δx, δy by drawing a new time of rate shift τ′ from
U(ti, ti+1). Because δx + δy = δi, we can calculate
the relative weight of the two new time frames
as wx = δx/δi and wy = δy/δi. We then assign the
rates ϕx and ϕy to the new time frames to replace
the original ϕi. Although the new rates could be
drawn from independent distributions, we
choose ϕx and ϕy, such that their weighted geo-
metric mean equals the original rate ϕi, which
was shown to be more efficient in Poisson pro-
cesses with rate shifts Green (1995). The
weights arewx andwy (i.e., based on the relative
size of the new time frames) and the new rates
are chosen so that

fi = exp [wx log(fx) + wy log(fy)] (8)

We draw a random variable u from a beta dis-
tribution B(a,b) that quantifies the amount of
discrepancy between rates ϕx and ϕy by using
the following equation

1− u
u

= fy

fx
.

We therefore generate the new rates as:

fx = exp {log (fi) − wy log [(1− u)/u]} (9)

fy = exp {log(fi) + wx log [(1− u)/u]} (10)

The parameters of the beta distribution are set
by default to α = β = 10, yielding an expected
E[u] = 0.5, with 95% of the values ranging
from 0.29 to 0.71. We chose these values as
they provided good convergence in our tests,
although PyRate includes commands to easily
tweak this and other tuning settings.
The Hastings ratio for a forward moveMk→

Mk+1 is computed as

P(M|M′)
P(M′|M) ×

(K + 1)−1

(K + 1)−1 ×
1

P(u|a,b)
× 1

(di)−1 , (11)
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where the first ratio is based on the simple rules
described earlier and allows forward and back-
ward moves with equal probabilities when 1
< K < Kmax. The numerator and denominator
of the second ratio define the uniform probabil-
ity of drawing one of the K rate shifts from the
new model MK+1 and the uniform probability
of drawing one of the K time frames from the
current model MK, respectively (noting that a
model with K rate shifts includes K + 1 time
frames). The two following denominators iden-
tify the probability of drawing u from its distri-
bution β(α, β), where P(u|α, β) is based on the
probability density function of a beta distribu-
tion and the probability of uniformly drawing
a new rate shift within time frame δi. The
Jacobian for the transformation of variables
(ϕi, u)→ (ϕx, ϕy) (eq. 9) is equal to (Green 1995):

∂(fx,fy)

∂(fi, u)
= (fx + fy)2

fi
. (12)

Backward Move: Removing an Existing Rate
Shift.—A backward move from model MK+1

to MK is done by removing an existing rate
shift and merging the two adjacent time frames
and their rates. The first step is to randomly
select a rate shift J over the K− 1 existing
ones. The temporal placement of the rate shift
is τj, and its adjacent time frames are identified
as δj−1 and δj. Thus, the rates ϕx and ϕy are com-
bined toobtainanewrateϕibasedonequation (8).
For a backward move MK+1 � MK, the

same computations are applied, but the Hast-
ings ratio and the Jacobian must be inverted
as defined in equation (7). The value u must
be defined using equation (9) in order to com-
pute P(u|α, β).

Priors on the Number of Shifts.—Because the
number of origination and extinction rates
(J and K, respectively) are considered unknown
variables in the RJMCMC implementation, we
assign them a prior distribution to sample
them from their posterior distribution. We use
a single Poisson distribution with rate param-
eter r to compute the prior probability of J
and K. To reduce the subjectivity of the prior,
we consider r itself an unknown parameter
and estimate it from the data. We assign a
gamma hyper-prior, which allows us to sample

r directly from its conjugate posterior distribu-
tion for any given J and K values:

P(r|J,K,a,b) � G(a+ J + K, b+ 2), (13)

where α and β are the shape and rate para-
meters of the gamma hyper-prior distribution.
In our simulations, we use the hyper-prior Γ
(α = 2, β = 1), which sets the highest prior prob-
ability to models with constant origination and
extinction rates (i.e., mode = 1).

Marginal Origination and Extinction Rates.—
To summarize the origination and extinction
rates sampled by RJMCMC, we marginalize
them within arbitrary small (user-defined)
time bins. We emphasize that this procedure
does not imply that the birth–death process
itself is discretized in time bins, as both the ori-
gination and extinction events are modeled
within a time-continuous stochastic process.
The marginal distributions of origination and
extinction rates incorporate uncertainties on:
(1) the true times of origination and extinction
of sampled lineages, which are themselves a
function of the preservation process; (2) the
number of rate shifts as sampled by the
RJMCMC; and (3) the temporal placement of
the rate shifts. We summarize the marginal
rates by computing their posterior mean and
95% credible intervals (95% CI).

Timing of Significant Rate Shifts.—We imple-
mented a function to assess the timing of sig-
nificant rate changes based on the RJMCMC
posterior samples. To this end, we compute
the frequency of sampling a rate shift (using
arbitrarily small time bins) and plot them
against time to assess when rate shifts are
more likely to have occurred. To assess whether
the frequency of a rate shift significantly
exceeds the prior expectation, we run an
MCMC simulation in which the number and
times of rate shifts are purely sampled from
their respective priors, that is, a uniform distri-
bution on the times of shift and Poisson distri-
butions on the number of speciation and
extinction rates with a gamma prior assigned
to its hyper-parameter r (see previous para-
graph). From the samples obtained from the
simulation, we compute the prior probability
of a rate shift at any given time, based on the
user-specified size of the bins.
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We then compute the posterior sampling fre-
quencies corresponding to significant statistical
support based on the standard log Bayes fac-
tors thresholds (so that 2log BF = 2 and 6, for
positive and strong support, respectively)
(Kass and Raftery 1995).
Given the two alternative hypotheses (pres-

ence or absence of a shift in a bin), we can define
the Bayes factor as the posterior odds divided
by the prior odds (Kass and Raftery 1995):

BF = P(t|D)
1− P(t|D) /

P(t)
1− P(t)

, (14)

where P(τ|D) is the posterior probability of a
rate shift, and P(τ) is its prior probability.
After solving the equation for the posterior
term, we obtain that the posterior probability
corresponding to a 2log BF = x is

P(t|D) = A
1+ A

, where A

= exp
x
2

( ) P(t)
1− P(t)

. (15)

We implemented these calculations directly
into a single function that generates plots of
marginal origination and extinction rates
through time and posterior frequencies of rate
shifts through time, with dashed lines indicat-
ing positive and strong statistical support
based on Bayes factors (i.e., 2 log BF = 2 and 6,
respectively [Kass and Raftery 1995]).

Validation of the Method through Simulations
We tested the new RJMCMC algorithm on

simulated data sets and compared its perform-
ance with that of the BDMCMC algorithm pre-
viously implemented in PyRate. We simulated
fossil data sets under three different birth–
death scenarios:

1. Constant origination and extinction rates set
to 0.15 and 0.07, respectively, with root age
set to 45 Ma.

2. Time-variable birth–death model with 2 rate
shifts in origination and 2 rate shifts in
extinction. The time of origin was set to 35,
with origination rate shifts at 20 and 10 Ma
and extinction rate shifts at 15 and 10 Ma.
Origination rates decreased across time

windows [Λ = (0.4, 0.1, 0.01)], whereas
extinction rates peaked between 15 and
10 Ma [M = (0.05, 0.3, 0.01)].

3. Time-variable birth–death model with 4 rate
shifts in origination (at 30, 18, 15, and 7 Ma)
and 4 rate shifts in extinction (at 25, 22,
17, and 2). Origin time was set to 45 Ma,
and the rates between shifts were: Λ = {0.3,
0.07, 0.6, 0.05, 0.3} and M = {0.02, 0.6, 0.05,
0.2, 0.5}.

We simulated 100 data sets under each scenario,
assuming a homogeneous Poisson process of
preservation, with rate drawn from a uniform
distribution q � U[0.5, 1.5]. To avoid extremely
small or large data sets, we constrained the
simulations to yield between 150 and 250
lineages. We analyzed each data set using
both BDMCMC and RJMCMC, running
2,000,000 MCMC iterations for each algorithm
and sampling every 1000 iterations.
We assessed the performance of the

BDMCMC and RJMCMC algorithms by quan-
tifying their ability to infer the correct number
of rate shifts and the accuracy and precision of
the origination and extinction rates, margina-
lized within 1 Myr time bins. We computed
the posterior probability of models with differ-
ent numbers of rate shifts based on their sam-
pling frequencies and compared them with
the true values used to simulate the data. To
quantify the accuracy of rate estimates, we
used the posterior mean of the marginal rates
at different times and calculated the relative
error as the absolute difference between the
estimated rate (rest) and the true rate (rtrue) rela-
tive to their mean, that is, (|rest− rtrue|)/[(rtrue
+ rest)/2]. Relative errors were then averaged
across rates and among simulations. We also
summarized the precision of the rate estimates
in terms of size of the 95% CI relative to the
mean rate, again averaged across rates and
among simulations.

Comparisons with Other Approaches
We analyzed the same simulated data sets

using two alternative methods to infer origin-
ationandextinction rates, theboundary-crossing
method (Foote 2000) and the three-timermethod
(Alroy 2015) as implemented in the R package
‘fbdR’ (github.com/rachelwarnock/fbdR). We
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binned fossil occurrences based on 20 time
intervals of equal size (bin size of 1.75–
2.25 Myr depending on the simulation) and
inferred origination and extinction rates within
each bin. Although there exist methods to infer
some confidence intervals around rate esti-
mates (Foote 2001), these are not necessarily
comparable with the 95% credible intervals
obtained from Bayesian inferences. Thus, we
focused the comparison on the accuracy of the
estimates, rather than on their precision
(which was only evaluated for the PyRate
method; see Validation of the Method through
Simulations). We therefore quantified the
accuracy of the estimates by computing the
relative errors averaged through time as done
for the PyRate estimates and compared relative
errors among methods.

Empirical Case Study
We demonstrate the new PyRate imple-

mentation by analyzing genus-level fossil
occurrences of marine mammals recently
compiled by Pimiento et al. (2017). The data
included 535 genera, 73 of which are extant,
and 4740 occurrences spanning from the
Eocene to the recent. Because the dating of
most fossil occurrences is given as a temporal
range, we resampled the age of each occur-
rence uniformly from its range and produced
10 randomized input files, as in Silvestro
et al. (2014b). We then repeated all analyses
on each replicate and combined the results
to incorporate dating uncertainties in our
estimates.
First of all, we ran a model test to choose the

most appropriate preservation model. We
tested the HPP and NHPP models as well as
a TPP model with rate shifts set at the bound-
aries between epochs in the Cenozoic. We
therefore ran the subsequent analyses using
the best-fitting preservation model and
added the gamma option to allow for rate het-
erogeneity across lineages. We assumed a
birth–death process with rate shifts and used
the RJMCMC algorithm to determine the num-
ber and temporal placement of the shifts and
the origination and extinction rates through
time. After running 50 million iterations, sam-
pling every 10,000 iterations, we combined
samples of the 10 randomized data sets to

infer the number of rate shifts and plot origin-
ation and extinction rates through time. The
complete list of commands used for the empir-
ical analyses presented here along all input
files are available as Supplementary Material
(Dryad Repository: https://doi.org/10.5061/
dryad.j3t420p).
We analyzed the marine mammal data set

under the boundary-crossing and three-timer
methods, for comparison. The ages of fossil
occurrences were randomized 100 times based
on the respective stratigraphic intervals, and
the rates were estimated across equal time
bins of 2 Myr, using the R package ‘divDyn’
(Kocsis et al. 2019).

Performance Boost
Because of the large number of parameters

estimated in a typical PyRate analysis and
due to the inherent iterative nature of MCMC
algorithms, the analyses of large fossil data
sets (e.g., hundreds or thousands of lineages)
can be very time-consuming. We therefore
developed a Python module named FastPyRa-
teC to boost the performance of the analysis.
This module consists of a SWIG (http://
www.swig.org) wrapper to a fast C++ imple-
mentation of PyRate core functions such as
the main likelihood functions (e.g., preserva-
tion models and most available birth–death
models). This module is precompiled for the
main operating systems (see Software Avail-
ability), can be easily compiled using a Python
installation script, and requires a single external
dependency, the C++ boost library (http://
www.boost.org).
We assessed the improvement in perform-

ance by running analyses on three data sets
of 50, 150, and 300 lineages (with 543, 1368,
and 2736 fossil occurrences, respectively). We
ran 100,000 RJMCMC iterations under the
HPP, NHPP, and TPP models coupled with
the gamma model of rate heterogeneity
among lineages. Analyses were run on a Mac-
intosh computer with a 3.1 GHz Intel Core i7
processor. We ran with and without the FAS-

TPYRATEC library to compute the speed-up
achieved by the C++ library and estimate the
time necessary to run the default 10 million
iterations, which are the default number of
iterations in PyRate.
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Results

Testing among Preservation Models
The maximum-likelihood test implemented

to distinguish among alternative preservation
processes provides a reliable tool to infer the
correct model. Extensive simulations show
that different δ AIC thresholds can be applied
for different competing models. For instance,
if the best model (smallest AIC) is obtained
for NHPP, we can reject the HPP model as a
valid alternative only if AICHPP-AICNHPP

>3.8 (for a 5% error tolerance) or AICHPP-

-AICNHPP >8 (for a 1% error tolerance).
However, the TPP model can be confidently
rejected simply based on AICTPP-AICNHPP

>0. The full set of thresholds derived from
our simulations is given in Table 2 and incor-
porated in the model test as implemented in
PyRate 2.0.
Our simulations show that the ability to stat-

istically distinguish between preservation
models (computed as δ AIC scores) generally
increases with the size of the data set, that is,
number of lineages and number of occurrences
(Supplementary Figs. S1–S3). Increasing pres-
ervation rates also yield stronger support for
the correct model. Additionally, there is an
effect of the extinction rate, whereby lower
extinction rates are associated with better dif-
ferentiation between preservation models.
This effect is likely linked with the increased
mean longevity of lineages, which therefore
tend to accumulate more occurrences.

Performance of RJMCMC Compared with
BDMCMC
The RJMCMC algorithm outperformed the

BDMCMC alternative in most simulations
(Table 3). The RJMCMC method identified
the correct number of shifts in origination
rates in 88% of the simulations. In compari-
son, the BDMCMC method identified the cor-
rect model of origination in 52% of the
simulations. This value is mostly driven by a
consistent underestimation of rate heterogen-
eity in simulation scenarios 2 and 3. The
RJMCMC analyses identified the correct
model of extinction in 67% of the simulations.
We note that the correct number of shifts in
extinction rates was found in 99% of the simu-
lations under scenarios 1 and 2, whereas
under scenario 3 the algorithm consistently
inferred four rates instead of five, suggesting
that one of the rate shifts did not leave a sig-
nificant signature on the simulated fossil data.
The BDMCMC analyses correctly identified
the absence of extinction rate shifts in scenario
1, but were substantially less accurate than
RJMCMC analyses in finding the correct
model in the case of rate heterogeneity
(Table 3).

TABLE 2. Thresholds for change in Akaike information
criterion (ΔAICc) estimated by simulations to test between
different preservation models. Depending on the selected
best model (i.e., the one with the lowest AICc score),
different thresholds are applied to determine whether the
model is significantly better than the alternatives ( p <0.05).
Values in parentheses show the thresholds estimated for p
<0.01. Cases in which ΔAICc values do not exceed the
thresholds provided here indicate that the evidence in the
data is not sufficient to confidently choose among
preservation models. HPP, homogeneous Poisson process;
NHPP, nonhomogeneous Poisson process; TPP,
time-variable Poisson process.

Best model

ΔAICc thresholds

HPP NHPP TPP

HPP — 6.4 (17.4) 0 (0)
NHPP 3.8 (8) — 0 (2.4)
TPP 3.2 (6.8) 10.6 (23.3) —

TABLE 3. Model testing using the reversible jumpMarkov
chain Monte Carlo (RJMCMC ) and birth–death Markov
chain Monte Carlo (BDMCMC) algorithms. The
simulations (replicated 100 times) are based on different
numbers of origination rates (J ) and extinction rates : (1) J =
1,K = 1; (2) J = 3,K = 3; and (3) J = 5,K = 5. For each value of J
and K, we estimated the how frequently it was estimated as
the best model by RJMCMC and BDMCMC across all
replicates. Values in bold represent the frequencies at which
the correct models were identified by the algorithms.

No. of shifts

Simulation
1

Simulation
2

Simulation
3

RJ BD RJ BD RJ BD

J = 1 0.83 0.91 0 0 0 0
J = 2 0.17 0.09 0.02 0.42 0.01 0.09
J = 3 0 0 0.98 0.55 0.09 0.6
J = 4 0 0 0 0.03 0.06 0.22
J = 5 0 0 0 0 0.83 0.09
J = 6 0 0 0 0 0.01 0
J = 7 0 0 0 0 0 0
K = 1 0.99 1 0 0 0 0.01
K = 2 0.01 0 0 0.3 0.09 0.7
K = 3 0 0 0.99 0.13 0.23 0.16
K = 4 0 0.01 0.56 0.65 0.13
K = 5 0 0 0 0 0.03 0
K = 6 0 0 0 0 0 0
K = 7 0 0 0 0 0
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The marginal rates of origination and extinc-
tion were estimated with high accuracy by both
BDMCMC and RJMCMC under scenario 1
(constant rates), with relative errors between
0.09 and 0.14 (Table 4, Supplementary
Fig. S4). In contrast, simulations based on time-
variable origination and extinction rates show
that RJMCMC estimates are substantially
more accurate than those yielded by BDMCMC
(Fig. 3; Supplementary Fig. S5). For instance,
for scenario 2, RJMCMC estimates marginal
rates with an average relative error around
0.26, about three times more accurate than the
rates obtained from BDMCMC. These results
reflect the better ability of RJMCMC to recover
the correct birth–death model, in terms of num-
ber of rate shifts (Table 3).

Performance of PyRate Compared with Other
Methods
Although all methods correctly picked up

the general trends in diversification rates,
PyRate estimates of both origination and
extinction rates through time decisively outper-
formed the results of the boundary-crossing
and three-timer methods under our simulation
settings. The accuracy of the estimates was
similar between boundary-crossing and three-
timer and substantially higher in PyRate esti-
mates (Fig. 4A). The relative errors generally
ranged between 50 and 130% when using

boundary-crossing and three-timer methods
and ranged between 10 and 50% in PyRate
estimates.
The difference in accuracy between methods

does not appear to stem from any systematic
bias in the estimates. Instead, it is mostly linked
to a higher volatility of the estimated rates
through time under the boundary-crossing
and three-timer methods, which is apparent
from the rates-through-time plots (Fig. 4B, Sup-
plementary Figs. S6–S8). The volatility of the
rate estimates is especially high for simulation
scenario 1 (constant rates; Supplementary
Fig. S6) and, in general, early in the history of
the clade (e.g., the first 10–15 Myr in simulation
scenarios 1 and 2; Fig. 4B, Supplementary
Fig. S6), where the size of the clade in terms
of number of sampled species is lower.

Diversification Dynamics of Cenozoic Marine
Mammals
The maximum-likelihood test of preserva-

tion models resulted in a very strong support
for the TPP model against the HPP (ΔAICc =
324.23) and NHPP models (ΔAICc = 799.41).
The TPP model assumed independent rates at
each epoch and included 7 parameters (for
Eocene, Oligocene, Miocene, Pliocene, Pleisto-
cene, Holocene, and the α parameter of the
gammamodel).We therefore ran thePyRate ana-
lyses using a TPPmodel of preservation coupled
with rate heterogeneity across lineages (gamma
model).
The estimated preservation rates showed a

strong increase toward the recent. For instance,
the preservation rate estimated for the Miocene
was 1.15 (95% CI: 0.89–1.40), whereas in the
Pliocene it was 4.06 (95% CI: 3.07–5.30), rising
in the Pleistocene to 8.52 (95% CI: 6.80–10.67).
Furthermore, we found evidence of strong het-
erogeneity of preservation across lineages, as
identified by the estimated parameter α = 0.88
(95% CI: 0.75–1.01). This indicates that, for
instance, while the average preservation rate
in the Miocene was 1.15, the rate varied across
lineages between 0.14 and 2.71 (median rate =
0.88).
The RJMCMC algorithm estimated a consid-

erable amount of temporal variation in the ori-
gination and extinction rates. Constant-rate
birth–death models were never sampled

TABLE 4. Comparison of accuracy and precision of the
marginal origination and extinction rates between the new
reversible jump Markov chain Monte Carlo (RJMCMC )
and birth–death Markov chain Monte Carlo (BDMCMC)
algorithms. Accuracy (relative errors) and precision are
averaged across analyses of 100 simulated data sets for each
simulation scenario. While the precision of rate estimates
(here quantified by the relative size of the 95% credible
intervals) is similar between algorithms, the RJMCMC
implementation yields substantially more accurate results,
especially in the presence of rate heterogeneity through
time.

Simulation Algorithm

Origination
rates Extinction rates

Rel.
error Precision

Rel.
error Precision

1 BD 0.088 0.477 0.134 0.517
RJ 0.106 0.462 0.138 0.550

2 BD 0.729 1.393 0.840 2.058
RJ 0.254 1.145 0.269 1.203

3 BD 0.496 1.317 0.696 1.085
RJ 0.286 1.285 0.537 1.110
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(i.e., null estimated posterior probability). The
estimated number of rate shifts was 3
(95% CI: 2–5) for origination and 2 for
extinction (95% CI: 2–5).
Origination rates (Fig. 5A) were highest in

the early Eocene, indicating a rapid diversifica-
tion of marine mammals, but potentially also
reflecting the lack of Paleocene records in the
data set (this is also reflected in large credible
intervals). After a decrease in the late Eocene,
origination rates increased again during the
Oligocene and early Miocene. The lowest ori-
gination rates were estimated between the late
Miocene and the early Pleistocene, after which
they show a mild increase. Five times of rate
shift (Fig. 5C) received positive support by

Bayes factors (i.e., 2log BF>2) including 48–
45.5, 32–29, 21–18.5, 11–15, and 1.5–1.25 Ma.
Inferred extinction rates (Fig. 5B) were stable

across most of the Eocene and Oligocene and
dropped in the early Miocene. The rates then
increased dramatically during the late Miocene
and high levels of extinctions were inferred for
the Pliocene and Pleistocene, although we esti-
mated a mild rate decrease in the middle Pleis-
tocene. Bayes factors indicated strong support
(i.e., 2log BF>6) for rate shifts 23–21 and 6.25–
5.75 Ma and positive support of shifts 16–15
and 1.25–1.75 Ma (Fig. 5D).
The origination and extinction rates obtained

from the boundary-crossing and three-timer
methods broadly follow the trajectories

FIGURE 3. Marginal rates through time inferred for simulation scenario 2. The data sets were simulated under decreasing
rates of origination (with shifts at 20 and 10 Ma) and extinction rates (with a peak at 15–10 Ma; true values are shown as
dashed lines). Estimates are averaged across 100 simulations, with the shaded areas showing 95% credible intervals. The
top row shows the origination and extinction rates inferred using the birth–death Markov chain Monte Carlo algorithm,
whereas the bottom row shows the results of the reversible jump Markov chain Monte Carlo.

DANIELE SILVESTRO ET AL.562

https://doi.org/10.1017/pab.2019.23 Published online by Cambridge University Press

https://doi.org/10.1017/pab.2019.23


estimated using PyRate but display a substan-
tially higher number of fluctuations, particu-
larly in the Paleogene, where rates appear to

vary by up to one order of magnitude across
adjacent time bins (Fig. 5E–H). Both methods
indicate an increase in extinction rates toward

FIGURE 4. Origination and extinction rates estimated using different methods. Relative errors (A) in the rate estimates as
inferred using the boundary-crossing method (Foote 2000), the three-timer approach (Alroy 2014), and our new algorithm
implemented in PyRate. Box plots summarize the results of 100 simulations under three diversification scenarios. The
errors were computed based on the rate estimates within 2 Myr time bins in boundary-crossing and three-timer analyses
and based on the posterior means of the marginal rates through time in PyRate analyses (B).
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the recent, although it is difficult to pinpoint
when the extinction rates began to increase.

Performance of the FASTPYRATEC Library
The new C++ library dramatically boosted

the PyRate performance, with different levels
of speed-up depending on the underlying
model and the size of the data set. In our
tests, the C++ version was between five and
eight times faster than the Python implementa-
tion when using the HPP model of preservation.
Under the TPP model, the speed-up reached 26
times for a data set of 300 taxa (Supplementary
Fig. S9). This performance improvement has a
very significant impact on the feasibility of ana-
lyzing large data sets. For instance, an analysis
of 300 taxa with the TPP model, running 10 mil-
lion RJMCMC iterations (default in PyRate) on a
reasonably fast CPU, takes about 3 hours using
the FASTPYRATEC library, whereas it takes around
3 days using the all-Python version. The magni-
tude of this performance boost becomes crucial
when it comes to the analysis of large empirical
data sets. The analysis of Cenozoic marine mam-
mals presented in this study (more than 500 taxa,
50 millionMCMC iterations) takes about 14 h on
a3.1 GHzCPU,using theC++ library. In contrast,
the same analysis performed using the Python
implementation would need more than 19 days
to complete (i.e., more than 30 times longer).

Discussion

InferringMacroevolutionary Rates from Fossils
A large proportion of macroevolutionary

research processes with the aim of understand-
ing how biodiversity has evolved through time
and space and what drives the rise and demise
of clades in the tree of life (e.g., Raup and Sep-
koski 1984; Raup 1986; Foote et al. 2007; Alroy
2008; Quental and Marshall 2013; Benton et al.
2014; Cantalapiedra et al. 2015; Ezard et al.
2016). The fossil record has been used to infer
diversification and extinction processes for a
long time and arguably provides for many
lineages (e.g., any organism with a mineralized
skeleton), the most informative available data
for understanding macroevolutionary dynam-
ics (Marshall 2017).
PyRate is a software designed to analyze fos-

sil data in a Bayesian framework. Its main

strengths are: (1) enabling users to analyze the
entire fossil occurrence record (i.e., not only
first and last appearances) and all described
lineages (including singletons and extant
taxa), (2) incorporating parameter uncertainties
using Bayesian algorithms, and (3) using expli-
cit probabilistic model selection to adequately
infer the complexity of the preservation and
birth–death models based on the data. Because
fossil data are often limited in size, it is essential
to adequately quantify the uncertainty around
each parameter estimate to avoid interpreting
the results with a false sense of precision.
Thus, the use of a Bayesian framework is well
suited for the task, providing credible intervals
for each parameter rather than point estimates
and simultaneously integrating the uncertain-
ties associated with all parameters (Gelman
et al. 2013).

Methodological Advances
We presented a flexible and powerful suite of

quantitative methods to infer macroevolution-
ary processes using fossil occurrence data. Pres-
ervation processes are typically modeled by
constant or time-varying sampling probabil-
ities (Foote 2000; Liow and Nichols 2010;
Bapst and Hopkins 2016), which are, however,
assumed to be constant across lineages. Here,
we developed a new model in which a preser-
vation process with time-variable mean rates
can be coupled with rate heterogeneity across
lineages. Both types of rate variations are
expected to be ubiquitous, reflecting temporal
environmental changes, which may affect sedi-
mentation and fossilization processes as well as
preservation biases associatedwith each organ-
ism (lifestyle, anatomy, size, and other traits,
e.g., shell composition [Foote et al. 2015]). We
also presented a novel likelihood-based test
allowing a formal statistical comparison
among alternative preservation models. This
procedure facilitates an objective, data-driven
selection of the most appropriate model of fos-
sil preservation. As expected, our model
incorporating rate heterogeneity both through
time and among lineages is indeed supported
by empirical data against the alternative mod-
els, as shown with the marine mammals ana-
lyzed here. We note that the parameterization
of the preservation process and the priors
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FIGURE 5. Origination and extinction rates through time in marine mammals. Marginal posterior estimates of origination
rates (A) and extinction rates (B) are shown together with the respective 95% credible intervals. These estimates incorporate
not only parameter uncertainty, but also dating uncertainties (deriving from 10 replicated analyses obtained by resampling
the ages of the fossil occurrences) and uncertainties around model selection, as the reversible jump Markov Chain Monte
Carlo algorithm samples the number of rate shifts from their joint posterior distribution. Plots on the right show the fre-
quency of sampling a shift in origination (C) and extinction (D) rates within arbitrarily small time bins (here set to
0.5 Myr). Dashed lines show log Bayes factors of 2 and 6 (as inferred fromMarkov chainMonte Carlo simulation). Sampling
frequencies exceeding these lines indicate positive and strong statistical evidence for a rate shift, respectively. For compari-
son, origination and extinction rate estimates were also inferred under the boundary-crossing method (E, F) (Foote 2000)
and the three-timer approach (G, H) (Alroy 2014). The ages of fossil occurrences were randomized 100 times based on the
respective stratigraphic intervals (as in the PyRate analyses), and the rates were estimated using equal time bins of 2 Myr.
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used here are designed for general-purpose
analyses and do not include additional empir-
ical evidence beyond the temporal distribution
of fossil occurrences for each species. Thus,
while the rate heterogeneity across lineages
inferred from empirical data sets may reflect
preservation potentials due to different ana-
tomical and life-history traits, this information
is not provided a priori in the analysis. Simi-
larly, the preservation process is affected by
the amount of available rock volume and is
likely characterized by strong geographic
biases that are not explicitly accounted for by
our model. Future developments should
incorporate additional information about
these sampling biases, potentially building
upon previously demonstrated analytical
methods (Sadler et al. 2008; Wagner and Mar-
cot 2013; Foote et al. 2015; Silvestro et al. 2016).
We implemented a new algorithm that uses

RJMCMC to estimate birth–death processes
and jointly infer (in addition to the preservation
parameters) the number and temporal place-
ment of rate shifts and marginal origination
and extinction rates through time. We found
RJMCMC to outperform the previously imple-
mented BDMCMC algorithm, providing more
accurate rates and estimated numbers of shifts.
Themain advantages of RJMCMC are that (1) it
provides marginal rates that account for uncer-
tainties in the time and number of rate shifts, (2)
it allows us to easily compute Bayes factors to
assess statistically significant times of rate
shift, and (3) its prior on the number of rate
shifts is itself estimated from the data (unlike
in BDMCMC, where it is fixed a priori [Silves-
tro et al. 2014b]), thus making the algorithm
more versatile and able to adapt to different
data sets.
Whereas several methods have been devel-

oped to infer rate variation in origination and
extinction rates through time (e.g., Foote 2001,
2003; Liow and Nichols 2010; Alroy 2014,
2015; Liow and Finarelli 2014; Foote et al.
2015), these approaches do not explicitly assess
the minimum number of parameters required
to accurately describe the data, that is, the best-
fitting model. The suite of methods presented
here implements probabilistic tests and algo-
rithms that specifically tackle this issue. The
number of parameters included in preservation

models and birth–death models in PyRate is
determined by the information intrinsic to the
data, rather than a priori. The result of this
approach is a direct estimation of when and
how many times the pace of diversification
has changed throughout the history of a
clade. With the implementation of the new
RJMCMC algorithm, the timing of rate changes
is itself estimated through Bayes factors to
assess its significance (Fig. 5B,C). A similar
approach had been used before in a phylogen-
etic (neontological) context (May et al. 2016)
but, to the best of our knowledge, was not
available in the analysis of paleontological
data.
Theapproachpresentedheremodelspreserva-

tion, origination, and extinction as continuous-
time processes. Most other methods (e.g.,
boundary-crossing and three-timer) are based
on discrete time, whereby the ages of the fossil
occurrences are translated into presence or
absence within a predefined time bin. Although
the true nature of natural processes such as spe-
cies appearance and disappearance is obvi-
ously time continuous, the choice of binned
data reflects the fact that most occurrences are
not dated directly, but instead assigned to tem-
poral ranges based on their respective strati-
graphic units (Foote and Miller 2007). In
PyRatewe treat these temporal ranges as uncer-
tainties in the dating and resample them ran-
domly to incorporate such uncertainties in the
analyses (see also Analysis Protocol for Marine
Mammals, Supplementary Material). In a
discrete-time analysis assuming two bins for
the Pliocene or the Pleistocene, one could
assign fossil occurrences to either of the two
epochs. However, under these settings, even
an occurrence dated with higher precision
(e.g., assigned to the Piacenzian) will be treated
as “Pliocene,” therefore ignoring the
additional information. In contrast, one advan-
tage of our approach is that each
occurrence (or all occurrences from each fossil
assemblage) will be assigned its own uncer-
tainty range.
The parameterization of the PyRate model

and the algorithms implemented to carry out
parameter estimation and model testing neces-
sarily result in amore computationally demand-
ing approach compared with alternative

DANIELE SILVESTRO ET AL.566

https://doi.org/10.1017/pab.2019.23 Published online by Cambridge University Press

https://doi.org/10.1017/pab.2019.23


methods. To alleviate this potential bottleneck,
we implemented a new C++ library, which
yields considerable speed-up compared with
previousversions of the software (orders ofmag-
nitude; Supplementary Fig. S9). This and the
ever-increasing performance of computers and
clusters make PyRate a suitable method even
for relatively large data sets.

Importance of Model Testing in Estimating
Origination and Extinction: Comparing PyRate
with Other Methods
Using a robust and explicit model selection

framework is crucial to avoidoverparameteriza-
tion, and this represents one of the biggest nov-
elties of the methods presented here, compared
with other approaches. Indeed, assuming ori-
gination and extinction rates to be independent
parameters in predefined timebins (i.e.,without
explicitly model testing) is common practice in
paleobiological studies of macroevolution
(Foote 2003; Liow and Finarelli 2014; Alroy
2015; but see Connolly and Miller 2001; Foote
2007). However, this practice may generate
spurious results if the amount of data is insuffi-
cient to confidently estimate all the parameters
(Smiley 2018), which is a general problem with
overparameterization and overfitting (Burnham
and Anderson 2002). The RJMCMC algorithm
presented here and the other algorithms imple-
mented in PyRate infer the amount of rate vari-
ation directly from the data. Although we
focused here on algorithms that simultaneously
optimize the parameters and the model
(RJMCMC and BDMCMC), other methods to
avoid overparameterization are available in
PyRate, based on the estimation of model mar-
ginal likelihoods (Silvestro et al. 2014b), Bayes-
ian variable selection (Silvestro et al. 2015a),
and Bayesian shrinkage (Silvestro et al. 2015b,
2017). Using these methods, the complexity of
the model adapts to the signal provided by the
data and its statistical power, so that only statis-
tically significant rate changes are identified.
This procedure also provides a formal approach
to assess whether apparent rate variations are
not just the result of the stochastic nature of a
constant-rate birth–death process.
The levels of accuracy obtained by our

RJMCMC algorithmwere up to 10 times higher
than with other methods when the true

underlying model was a time-homogeneous
birth–death process (Supplementary Fig. S6).
This is clearly a case in which assuming inde-
pendent rates per time bin represents an over-
parameterization of the true process. Indeed,
the difference in accuracy between rate esti-
mates from the boundary-crossing and three-
timer methods and rates inferred in PyRate
tended to decrease when the true underlying
model included rate shifts. We interpret this as
a consequence of the fact that the true speciation
and extinction dynamics in these simulations
better conform to models with independent
rates per time bin. Yet even under simulations
characterized by a high rate heterogeneity
through time (scenario 3), PyRate accuracy
was substantially higher than with the other
methods (Supplementary Fig. S8).
While a comprehensive comparison between

all available methods to infer origination and
extinction rates from fossil data is beyond the
scope of this study (but see Smiley [2018] for
a recent and extensive simulation study), our
results clearly indicate that there are substantial
benefits associated with the use of explicit
model testing to prevent overparameterization.
The optimization of the complexity of the
model based on the data is crucial to obtaining
realistic estimates of diversification processes
from incomplete fossil data. Based on these
results, we recommend always verifying the
statistical support for the number of model
parameters when inferring diversification
dynamics from fossil data.

Conclusions

PyRate is an open-source project to which
researchers are welcome to contribute code,
ideas, and feedback through its online reposi-
tory. It includes many birth–death models for
taxonomic diversification as well as several
preservation models in which rates can vary
through time and across lineages. The hierarch-
ical Bayesian methods implemented in PyRate
allow users to assess the statistical support of
different models and to jointly infer all the
parameters. We have shown that explicit
model testing when inferring origination and
extinction rates yields substantially improved
accuracy. As a by-product of the Bayesian

BAYESIAN ESTIMATION OF MACROEVOLUTIONARY RATES 567

https://doi.org/10.1017/pab.2019.23 Published online by Cambridge University Press

https://doi.org/10.1017/pab.2019.23


algorithms used in PyRate, credible intervals
are inferred for all model parameters (e.g., pres-
ervation, origination, and extinction rates) and
can be used to quantify the level of uncertain-
ties surrounding the estimates.
Although we focused here on diversification

processes in which origination and extinction
rates change through time, several other models
have been implemented in PyRate enabling
users to test specific hypotheses about, for
example, diversity-dependent diversification
with competition within and among clades
(Pires et al. 2017), correlations to biotic and abi-
otic factors (Lehtonen et al. 2017), and age-
dependent and trait-dependent extinction rates
(Hagen et al. 2017; Piras et al. 2018). The versatil-
ity of a fully probabilistic Bayesian method to
infer diversification dynamics allows for the
development of additional models and algo-
rithms to tackle specific questions. For example,
a model of pulsed turnover (Vrba 1985) might
be better captured by an algorithm that, rather
than looking for rate shifts, clusters time bins
by the magnitude of the origination and extinc-
tion rates, one example being the Dirichlet pro-
cess prior method (Neal 2000) (a prototype of
which is already available in the current version
ofPyRate). In conclusion, PyRateprovides aflex-
ible, statistically sound analytical framework
enabling researchers to analyze the growing
amount of available fossil occurrence data, and
we think it can serve as a useful tool kit for
many future studies in paleobiology.

Software Availability

All the models described in this study are
implemented within the open-source package
PyRate and are available at: https://github.
com/dsilvestro/PyRate. The program is writ-
ten in Python 2.7 and R and has been tested
under the major operating systems (MacOS,
Windows, and several Linux distributions). A
detailed command list and tutorials are avail-
able in the GitHub repository.
Importantly, PyRate requires a minimum

number of a priori decisions from the user, and
while each setting can be accessed through spe-
cific commands, default values and settings are
set to adapt to most data sets. PyRate runs as a
stand-alone command-line program, and

running the softwaredoesnot require anyknowl-
edge of Python from the user. The program also
includes many utility functions that can be used
to plot and summarize the results, process mul-
tiple output files, and parse large data sets to
identify potential spelling variation in taxon
namesusingabuilt-inmachine-learningclassifier
(as shown in the Supplementary Material).
To provide easy access to the augmented per-

formance of the FASTPYRATEC library, precom-
piled modules for 64-bit versions of Windows,
MacOS, and Linux are available on the PyRate
Github repository, in addition to the source code.
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