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Abstract

Clouds play an important role in the Arctic surface radiative budget, impacting the seasonal evo-
lution of Arctic sea-ice cover. We explore the large-scale impacts of springtime and early summer
(March through July) cloud and radiative fluxes on sea ice by comparing these fluxes to seasonal
ice volume losses over the central Arctic basin, calculated for available observational years 2004–
2007 (ICESat) and 2011–2017 (CryoSat-2). We also supplement observation data with sea-ice
volume computed from the Pan-Arctic Ice–Ocean Modeling and Assimilation System
(PIOMAS) during summer months. We find that the volume of sea ice lost over the melt season
is most closely related to observed downwelling longwave radiation in March and early summer
(June and July) longwave cloud radiative forcing, which together explain a large fraction of inter-
annual variability in seasonal sea-ice volume loss (R2 = 0.71, p = 0.007). We show that downwell-
ing longwave fluxes likely impact the timing of melt onset near the sea-ice edge, and can limit the
magnitude of ice thickening from March to April. Radiative fluxes in June and July are likely crit-
ical to seasonal volume loss because modeled data show the greatest ice volume reductions occur
during these months.

Introduction

Sea ice is a fundamental feature in the Arctic climate system that enhances the albedo of the
ocean surface and forms a physical barrier that inhibits ocean-atmosphere heat, moisture and
momentum fluxes (Juricke and Jung, 2014; Vihma, 2014). The loss of sea ice is a key factor
in the accelerated warming of the Arctic (Serreze and others, 2009), where temperatures are
increasing at a rate twice the global average (Blunden and Arndt, 2015). A variety of socio-
economic interests are also tied to the presence or absence of sea ice, increasing the demand
for more skillful predictions of the evolving ice coverage. However, seasonal ice forecasts remain
challenging due in part to a high degree of interannual variability (Francis and Hunter, 2006)
stemming from a complex, and not fully resolved, system of dynamic (Zhang and others,
2008) and thermodynamic (Stroeve and others, 2007; Mills and Walsh, 2014) processes.

Large-scale atmospheric circulation patterns, in combination with ocean currents, drive
sea-ice advection and export, thereby dynamically impacting seasonal sea-ice coverage
(Parkinson and Comiso, 2013; Tilling and others, 2015). Thermodynamic processes, mean-
while, regulate the freezing and melting cycles. The surface radiative budget in particular is
critical to determine the timing and magnitude of the seasonal melt at the ice–ocean and
ice–atmosphere boundaries. Clouds add considerable complexity to the Arctic surface radiative
budget (Kay and Gettelman, 2009), constituting a mean fractional sky coverage >80% (Liu and
others, 2010), making realistic representations of ice–atmosphere interactions challenging,
though critical. Clouds can impart two competing effects in the radiative budget of the surface:
cooling via reflecting incoming solar radiation and warming by emitting downwelling long-
wave radiation to the surface (Shupe and Intrieri, 2004). The relative magnitude of these effects
is variable over sea-ice surfaces with potentially high and seasonally-varying albedo. The
impact of Arctic clouds on surface-atmosphere moisture and energy exchanges is also ampli-
fied by aridity in this region (Cox and others, 2015). The net impact of cloud presence in the
Arctic varies considerably through the year due to large seasonal oscillations in incident solar
radiation and episodic changes to fractional cloud coverage and composition.

Here, we focus on the radiative fluxes commonly associated with variable cloud coverage
and composition to better constrain the role of Arctic clouds in seasonal sea-ice declines.
Several studies have highlighted how the presence and composition of Arctic clouds, and
their related impact on surface radiative fluxes, affect sea-ice concentration and extent (Kay
and Gettelman, 2009; Barton and Veron, 2012; Choi and others, 2014; Liu and Key, 2014).
Recent study has also found that springtime and early summer radiative fluxes, particularly
downwelling longwave fluxes, can regulate the timing of snowmelt onset over sea ice
(Maksimovich and Vihma, 2012) and can initiate processes that affect summer and fall sea-ice
extent (Kapsch and others, 2013, 2014; Cox and others, 2016; Kapsch and others, 2016). Other
recent study found that decadal-scale variability in summertime conditions outside the Arctic,
particularly Pacific sea surface temperatures (Bonan and Blanchard-Wrigglesworth, 2020), can
impact September sea-ice conditions by creating Arctic atmospheric conditions favorable to
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sea-ice melt (Baxter and others, 2019; Ding and others, 2019).
Huang and others (2019) showed that significant increasing
trends in cloud fraction and cloud water path are most widespread
in March and April, enhancing downwelling longwave radiation
and near surface warming. Even under clear sky conditions, Liu
and Schweiger (2017) showed that enhanced downwelling long-
wave radiation from warm air advection can initiate melt onset
in the Beaufort and Chukchi Seas.

In addition to reductions in sea-ice extent and concentration,
Arctic sea ice is thinning, resulting in less multi-year sea ice
(Kwok, 2018). Surface radiative imbalances, such as those in the
spring during periods of melt onset as discussed above, have
been shown to impact sea-ice thickness for months after the ini-
tial radiative forcing (Letterly and others, 2016). Thus, here we
focus on seasonal ice volume loss, combining both sea-ice con-
centration and thickness terms. Using satellite observations of
ice volume and radiative fluxes, this study seeks to develop an
empirical predictive model of seasonal ice volume loss by identi-
fying when volume changes are most sensitive to specific radiative
fluxes. In addition to a statistical analysis, we trace the physical
mechanisms responsible for converting the radiative forcing into
seasonal ice volume loss. A better understanding of the causes
of interannual variability in sea-ice melt can inform improve-
ments to both modeling of the Arctic sea-ice cover and to empir-
ical seasonal forecasts.

Data

Cloud radiative flux data

The NASA Langley Research Center distributes monthly Arctic
cloud radiative fluxes from the Cloud and Earth’s Radiant
Energy System (CERES) MODerate resolution Imaging
Spectroradiometer (MODIS) Energy Balanced and Filled (EBAF)
Surface Product, edition 4.0 (Wielicki and others, 1996; Kato and
others, 2018), on a 1° × 1° grid. Specific CERES-EBAF variables
used in this study are listed in Table 1. They include downwelling
shortwave and longwave radiation (SWd and LWd), net shortwave
and longwave cloud radiative effects (CRESW and CRELW), down-
welling shortwave and longwave cloud radiative effects (CRESWd

and CRELWd) and the net surface cloud radiative effect (CRENet).
The intra-annual variation of some of the key variables is shown
in Figure 1. Uncertainties in the monthly gridded product are
described in detail by Kato and others (2018), who found an aver-
age uncertainty, or mean monthly RMS difference between the
gridded Ed4 EBAF surface irradiance product and four Arctic
observational stations, of 12Wm−2 (longwave) and 14Wm−2

(shortwave). Three of the four Arctic stations are land-based, how-
ever, and irradiances within a 1° × 1° gridcell can be highly variable,
making validation in this region challenging.

Sea-ice data

We use two satellite data products along with output from a coupled
ice–oceanmodel to trackmonthly and interannual changes inArctic
sea-ice volume. Quasi-monthly sea-ice thickness estimates for 2004–
2007 are derived from ICESat laser altimetry data. The gridded
sea-ice thickness product on a 25 km × 25 km equal-area grid,
obtained from the NASA Jet Propulsion Laboratory online portal,
represents a composite of data collected during ∼35-day observa-
tional campaigns in the spring and fall (Kwok and others, 2009).
The data domain, here referenced as ‘IS/JPL’, extends over the central
Arctic Ocean and serves as the analysis domain in this study, as it is
the smallest of all dataset domains (Fig. 2). Themean ICESat-derived
sea-ice thickness uncertainty, averaged over all campaigns and the
full ICESat domain, is ∼ ±0.25m (±0.28 in spring and ±0.21 in

fall), due to snow depth and ice density assumptions made when
deriving ice thickness values from laser altimetry measurements
(Zygmuntowska and others, 2014). We obtained CryoSat-2-based
ice thickness estimates from the Alfred Wegener Institute for Polar
and Marine Research (Hendricks and others, 2016) for the 2011–
2017 period. These data are available on a 25 km × 25 km EASE
grid as monthly averages, except for May–September, due to wide-
spread formation ofmelt ponds and the reduced reliability of satellite
freeboard retrievals. Sea-ice thickness estimates from the AWI
CryoSat-2 product, hereafter denoted ‘CS-2’, have been found to
closely agree with upward looking sonar mooring data and
Operation IceBridge retrievals (Sallila and others, 2019) and are
similar to other existing CryoSat-2 products, such as the one from
Centre for Polar Observation and Modeling (CPOM) (Tilling and
others, 2018). Uncertainties in both satellite-derived sea-ice thick-
ness datasets are due to noise in the return echoes, variability in
the local sea surface and snow signal interference. Gridcell-level
uncertainty varies across the domain as a function of data point
density. Within the IS/JPL domain, high data point density reduces
the uncertainty compared to the peripheral sea-ice regions
(Hendricks and others, 2016), and radar-derived ice thickness
uncertainties are comparable to the ICESat thickness uncertainty
of ±0.25 m. CS-2 data are trimmed and bilinearly interpolated
onto the IS/JPL grid of 25 km × 25 km equal-area cells. The so-called
pole hole, where CS-2 data are missing north of 88° N due to the
satellite’s orbital inclination, is filled by solving a series of elliptical

Table 1. CERES-EBAF surface products used in this study

Abbrev. Description

SWd Downwelling SW radiation: all-sky downwelling component of SW
LWd Downwelling LW radiation: all-sky downwelling component of LW
CRESW SW cloud radiative effect: net SW cloud component (difference

between all-sky and clear-sky)
CRELW LW cloud radiative effect: net LW cloud component (difference

between all-sky and clear-sky)
CRESWd Downwelling SW cloud radiative effect: the downwelling component of

SW cloud radiative effect
CRELWd Downwelling LW cloud radiative effect: downwelling component of LW

cloud radiative effect
CRENet Net cloud radiative effect: net cloud component of the into-surface flux

(includes both LW and SW)

Cloud radiative effect (‘CRE’) describes the difference between the all-sky and clear-sky
into-surface flux. The abbreviations ‘LW’ and ‘SW’ refer to longwave and shortwave
radiation, respectively.

Fig. 1. Arctic (70–90° N) mean monthly radiative fluxes from the CERES-EBAF surface
product calculated over the 2000–2017 period, including downwelling longwave
(dashed blue), downwelling shortwave (dashed red), longwave cloud radiative effect
(solid blue), shortwave cloud radiative effect (solid red) and net cloud radiative effect
(solid gray). Shaded contours denote ± 1 SD.
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partial differential equations. Valid surrounding pixels provide
boundary values to the PDE, resulting in a smoothed surface with
thicknesses that tend toward the mean of the surrounding pixels
(D’Errico, 2020). We use the native sea-ice concentration data asso-
ciated with each source (NSIDC Near-Real-Time DMSP SSMI/S
Daily Polar Gridded Sea Ice Concentration for ICESat and
EUMETSAT’s Ocean and Sea Ice Satellite Application Facility
(OSI-SAF) for AWI’s CS-2 sea-ice concentration) to compute grid-
cell ice volume, as described in the ‘Methods’ Section.

We also utilize continuous monthly modeled sea-ice thickness
and concentration fields from the Pan-Arctic Ice–Ocean Modeling
and Assimilation System (PIOMAS) (Zhang and Rothrock, 2003).
PIOMAS combines the Parallel Ocean Program (POP) model with
the Thickness and Enthalpy Distribution (TED) sea-ice model
(Zhang and Rothrock, 2003) to produce a variety of continuous ice
variables available throughout the study period at monthly reso-
lution. PIOMAS outputs are generated on a generalized orthogonal
curvilinear grid, with a mean horizontal resolution of 22 km.
PIOMAS is driven by daily mean NCEP/NCAR reanalysis atmos-
pheric variables, and assimilates near-real time observed sea-ice con-
centration (Anderson and others, 2014; Tschudi and others, 2016).
Since monthly observations of sea-ice volume across the Arctic are
not available during summer months, these are estimated from
PIOMAS.

Melt onset data over the 2000–2017 period are taken from the
SMMR SSM/I brightness temperature product, version 4
(Anderson and others, 2014; Bliss and Anderson, 2018), and
used to analyze relationships with cloud radiative properties.
Melt onset is defined as the day of year on which melting of
the overlying snow on the sea-ice surface is first detected within
each gridcell, with values ranging from day 60 to day 244 (Bliss
and Anderson, 2018).

Methods

Calculation of seasonal sea-ice volume loss

Sea-ice volume is calculated as the product of ice thickness
and areal coverage of ice in each 25 km equal-area gridcell.
Following the conventions of Laxon and others (2003, 2013),
gridcells with <15% sea-ice concentration, a threshold commonly

used to define the sea-ice extent edge (Ogi and Wallace, 2007;
Serreze and others, 2009; Stroeve and others, 2012; Wang and
others, 2013; Meier and others, 2014; Tilling and others, 2015),
are excluded from the total regional ice volume estimates. Thus,
the total sea-ice volume for the study domain is:

Volume =
∑n

i=1

(Thicknessi)(Concentrationi)(625 km
2), (1)

where the summation is taken over gridcells with at least 15%
sea-ice concentration.

Uncertainties associated with sea-ice thickness and sea-ice
concentration observations introduce uncertainty into sea-ice
volume calculations. Following Kwok and others (2009) and
assuming an optimal scenario of uncorrelated errors, uncertainty
(σT) is estimated by:

s2
T = N(A2

cs
2
h + h2s2

Ac
), (2)

where N is the number of gridcells in the domain, h is the mean
sea-ice thickness, and Ac is the mean gridcell area covered by ice.
The absolute sea-ice thickness uncertainty, σh, is conservatively
estimated to be ∼0.5 m. We use a sea-ice concentration uncer-
tainty of ± 10%, based on NSIDC’s algorithm descriptions
(http://nsidc.org/data/amsre/data-quality/data-uncertainty.html)
which estimate uncertainty to vary from 5% during the winter
months to 15% in the wetter summer months. For each 25 km×
25 km gridcell, this implies sAc = 62.5 km2. There are approxi-
mately N = 11 000 gridcells in the domain, but the number of
gridcells entering the estimate can vary slightly during the fall
months, when not all gridcells within the domain contain sea
ice. The ice volume uncertainty using this approach is < 40 km3

for all months with ICESat or CS-2 data. Additional uncertainties
due to the interpolation of missing CS-2 data are estimated to be
<± 3 km3, based on the standard error of the surrounding grid-
cells that fall within a 1° radius of the pole hole.

This study defines the Arctic melt season as the period from
15th March to 15th October, with seasonal sea-ice volume loss
defined as the difference in sea-ice volume between these two
dates. Monthly averages are assumed to be representative of the
15th of that month. Unfortunately, ICESat data were not consist-
ently collected on the same dates. Therefore, small adjustments
are necessary to maintain temporal consistency. For this purpose,
we calculate average daily rates of ice volume change for the
February–March, March–April and October–November periods
from the CS-2 record. These daily rates are then used to correct
for the temporal offset in the ICESat record. For example, the
midpoint date of the Spring 2004 ICESat campaign is 5th
March, 10 days before the desired midpoint date of 15th March.
The temporal correction of 10 times the daily February–March
volume change rate from CS-2 is then applied to the volume esti-
mates. We use the SD of the daily rates to calculate an uncertainty
associated with each temporal adjustment, and compound this
with the existing volume uncertainty for ICESat-derived observa-
tions, increasing the total uncertainty of ICESat volume estimates
to ∼200 km3, on average. The resulting monthly ice volume esti-
mates are shown in Figure 3.

Linear regression analysis

Linear regression is used to test for a simple linear predictive rela-
tionship between any of the radiative variables (Table 1) and the
magnitude of regional seasonal ice volume loss. Monthly and
bimonthly averages of shortwave and longwave downwelling,
cloud-induced downwelling, and the net cloud-induced surface

Fig. 2. Boundaries and/or coverage of sea-ice datasets included in this study, with
the CS-2 domain shown in blue, and the native curvilinear PIOMAS grid in gray.
The IS/JPL domain, outlined in teal, is used as the common analysis domain.
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radiative budget, averaged over 70--90◦ N (encompassing the cen-
tral Arctic basin), are used as potential predictors. Prior to areal
averaging, predictor radiative variables from CERES, which
cover the months from March through July, are resampled from
the native 1° × 1° grid to an equally-spaced grid corresponding
to the sea-ice data grid. Values over land surfaces are excluded.
Total seasonal sea-ice volume loss from years with observational
data serves as the dependent variable. R2, the p-value and the
residual are used to evaluate the regression models. The regression
is performed initially over all 11 years with ICESat and CS-2
observational data. To check robustness, the regression is then
repeated for the first 9 years only, retaining two years (2016
and 2017) for validation.

Results

Sea-ice volume loss

Our calculated spring and fall sea-ice volumes are consistent with
existing estimates (Kwok and others, 2009; Laxon and others,
2013; Zygmuntowska and others, 2014) prior to our applied tem-
poral adjustments. Comparisons of seasonal ice volume loss esti-
mates from PIOMAS, ICESat and CS-2 are shown in Figure 3.
The model time series is in reasonable agreement with the obser-
vations, with generally larger differences in the early years with
ICESat estimates. PIOMAS tends to show lower October and
higher March ice volumes, resulting in larger seasonal ice volume
loss estimates than are observed by ICESat. Validations performed
by Schweiger and others (2011) show that PIOMAS modeled ice
thicknesses are biased low compared to in-situ data, which con-
tribute to a volume bias of ∼10% of the total modeled volume
in March and October, as compared to available submarine thick-
ness data. However, PIOMAS run with sufficient observational
and reanalysis data, as in this study, performs generally well in
capturing the observed seasonality and overall spatial variability
of ice thickness across the IS/JPL domain. On this domain, mod-
eled monthly sea-ice volume estimates are valuable for assessing
the relative magnitude of monthly changes over the study period,
particularly in summer months lacking observations. Previous

studies also find potential biases in the observational products,
and results from Wang and others (2016) suggest that ICESat
sea-ice thickness retrievals are biased high, particularly in the
fall, leading to underestimated seasonal ice volume losses.
PIOMAS also predicts greater volume loss than that observed
by CS-2 in all years except for 2014. Assuming a consistent bias
in PIOMAS over the entire study period, we correct the bias in
ICESat ice thickness estimates by setting the average PIOMAS
−ICESat bias equal to the average PIOMAS−CS-2 bias in that
month (March or October). The temporally-corrected ICESat
retrievals in March show an approximate mean bias in ice thick-
ness of + 0.2 m (relative to PIOMAS−CS-2 differences), while
those in October show an average bias of +0.4 m. These correc-
tions to ICESat springtime and fall thicknesses result in increases
in the estimates of seasonal ice volume losses of, on average,
850 km3 (Fig. 3). The mean seasonal volume loss calculated
from both observational datasets is 7190 ±1490 km3, which
includes the bias-corrected ICESat average of 6840 km3 and
CS-2 average of 7390 km3.

Regression models

The statistically significant (p-value < 0.1) univariate linear
regression models relating observed sea-ice loss to radiative flux
variables are listed in Table 2, along with several statistical
metrics. We find the strongest relationship between seasonal vol-
ume loss and March LWd, with an R2 of 0.49 (p = 0.02). The
second most highly correlated individual predictor is CRELWd

averaged over June and July (R2 = 0.34, p = 0.06). Combined in
a multiple linear regression model, March LWd and June–July
CRELWd together reasonably predict seasonal ice volume losses,
with an R2 of 0.71 (p = 0.007). Over the 11 years, the RMSE of
the bivariate regression model is 880 km3, which is ∼60% of the
RMSE using the 11-year mean as prediction (1490 km3) and
12% of the mean seasonal volume loss. The model’s performance
is shown graphically in Figure 4.

The regression model’s performance and coefficients are not
significantly altered when tested on the 9-year subset (excluding
the most recent years, 2016 and 2017), with similar relationships

Fig. 3. Top panel: Monthly total sea-ice volume estimates from PIOMAS (black line), raw (light blue) and bias-corrected ICESat (dark blue), and CS-2 (green trian-
gles) from 2000 to 2017. Bottom panel: Net seasonal volume loss (March–October sea-ice volume) for PIOMAS (gray-hatched), ICESat (blue) and CS-2 (green).
Uncertainties (±1− σ) in the total volume loss for observational years are shown, and appear as a dark band in CS-2 years due to the relatively small error.
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to March LWd (R2 = 0.56, p = 0.02), June + July CRELWd (R2 =
0.32, p = 0.11), and a strong fit in the bivariate linear regression
model (R2 = 0.74, p = 0.02, with a RMSE of 940 km3 vs
1650 km3 RMS deviation from the 9-year mean). We note that
given the small sample size and use of several tested independent
variables, interpretations of relationships with p-values near 0.1
are limited. A relationship meeting the p = 0.10 threshold in
and of itself may occur by chance rather than through related
physical mechanisms. However, the consistency of the most cor-
related independent variables and their respective levels of signifi-
cance in both the full and subset samples improve our confidence
in their importance to sea-ice variability. The resulting predicted
2016 and 2017 values are biased similarly in sign to the predicted
values from the 11-year model, with the model under-predicting
volume loss in 2016 and over-predicting loss in 2017. The mean
bias for these two years (600 km3) is comparable to the bias using
the 11-year model (575 km3). The physical mechanisms connect-
ing these two radiative variables to interannual variability in
sea-ice melt are discussed in the following sections.

Radiative impact of March LWd on melt onset

March marks an important transition period in the Arctic
between an insolation-free winter and the return of incident
solar radiation. As shortwave radiation returns to the surface
energy budget, the CRENet flux begins to decline, due to the
increase in magnitude of CRESW which is opposite in sign to
CRELW (Fig. 1). CRESW increases in magnitude until the short-
wave component eventually dominates CRELW in June and July.
March also marks the initial melt onset of snow on sea ice. The

timing of melt onset exhibits a strong meridional gradient
(Markus and others, 2009), with regions of melt onset in March
limited to near the ice edge, most notably in the Barents and
Kara Seas. Over the satellite era, the timing of this melt is trending
toward earlier onset (Bliss and Anderson, 2018). As melt occurs,
albedo is reduced over the melting snow and ice surfaces due to
the changing crystalline structure within the surface snowpack
(Maksimovich and Vihma, 2012). The reduced albedo, combined
with the seasonal return of shortwave radiation, supports an
ice-albedo warming feedback at the surface (Gorodetskaya and
Tremblay, 2013) and increases the total solar energy absorbed
by the ice–ocean system in the spring and summer months
(Stroeve and others, 2014). However, Maksimovich and Vihma
(2012) found that melt onset in the Arctic is triggered primarily
by changes in downwelling longwave radiation, with this flux
explaining up to 90% of the melt onset variance in some regions
of the central Arctic. Downwelling longwave fluxes were found to
be particularly important for melt onset in regions of the sea-ice
pack that melt earliest in the spring, with positive longwave
anomalies often caused by the remote transport of heat and mois-
ture fluxes to the Arctic (Mortin and others, 2016). While down-
welling longwave radiation is not necessarily caused by cloud
presence (e.g. enhanced downwelling longwave radiation and
melt onset can be triggered by warm air advection (Liu and
Schweiger, 2017)), increased cloud fraction during the early
spring months, when clouds are behaving as near black body
emitters (Shupe and Intrieri, 2004), can enhance downwelling
longwave radiation at the surface, initiating earlier and more wide-
spread melt.

We test the relationship between CERES-EBAF March LWd

and SMMR SSM/I day of melt onset over the 2000–2017 period,
computing the correlation for each gridpoint over the 18-year per-
iod. We find that significant correlations are limited to a few small
regions, mainly located near the perimeter of the analysis domain,
along the edges of the central Arctic basin (Fig. 5). It is worth not-
ing that only a small fraction of the central Arctic domain typic-
ally begins surficial melting in March and early April, as
calculated from average day of melt onset from the SMMR

Table 2. Univariate linear regression models with p-values <0.1, listed in order
of decreasing R2 values, and the bivariate regression model using the top two
predictors (bottom row)

Input variables R2 RMSE p-value

March LWd 0.49 1100 0.02
June–July CRELWd 0.34 1250 0.06
March CRELWd 0.30 1290 0.08
June CRELWd 0.29 1300 0.09
March LWd + June–July CRELWd 0.71 880 0.007

Also shown are root-mean-square errors (RMSE, in km3), and p-values.

Fig. 4. Comparison plot of observed seasonal ice volume loss (km3) and predicted
losses from the bivariate multilinear regression model (utilizing March LWd and
mean June/July CRELWd as predictor variables). Points falling above the black line
indicate that modeled values were larger than observed values. Observational uncer-
tainties are plotted along the horizontal axis.

Fig. 5. Confidence levels of the time correlations between day of melt onset and
March LWd over the 2000–2017 period across the IS/JPL domain. Colors correspond
to the confidence level, with regions in green denoting areas where the two variables
are correlated with the 95% confidence level. Regions that undergo melt onset in
March and April, calculated from average day of melt onset over the study period,
are indicated by black stippling.
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SSM/I brightness temperature product. We overlay these regions
with stippling in Figure 5. The concentrated region of early occur-
ring melt in the North Atlantic coincides with the largest region
of high correlations between March LWd and melt onset, suggest-
ing that regions with early melt onset are sensitive to variability in
early spring downwelling longwave radiation. This result is con-
sistent with those discussed in Mortin and others (2016), who
found that the presence of high moisture clouds, which enhance
the greenhouse effect, is crucial to early melt onset in the spring.

We note that radiative forcing in March may not be directly
related to the magnitude of melt, but could rather explain some
fraction of the interannual variability in ice growth/thickening
between March and April. While melt onset begins in March
over areas on the domain’s periphery, total ice volume integrated
over the study domain continues to increase from March to
April, when it reaches an annual maximum volume, as shown
both in the modeled PIOMAS and observed CS-2 ice volume
results (Fig. 3). Mean ice volume growth from March to April
over the 2000–2017 period, calculated from PIOMAS data, is
830 (±150) km3. Similarly, ice volume between March and April,
calculated from CS-2 over the 2011–2017 period, increases on
average by 945 (± 250) km3. We find a significant negative correl-
ation (R2 = 0.23, p = 0.045) between PIOMAS-derived ice volume
growth and CERES-EBAF March LWd. The correlation increases
when excluding ICESat observational years and using only CS-2-
derived volume changes (R2 = 0.45), but the relationship is not sig-
nificant to the 95th percentile due to the small sample size of CS-2
observations (n = 7; p = 0.09). These results suggest that enhanced
downwelling longwave radiation in March may reduce the rate of
sea-ice thickening (via mitigating surface heat losses) between
March and April over interior regions that have not yet undergone
surficial melt. Therefore, sea ice would be thinner leading into the
melt season. These findings are consistent with conclusions from
Maksimovich and Vihma (2012), who found that latent and sens-
ible heat fluxes play an important role in modulating the timing of
melt onset primarily through their ability to reduce the amount of
surface heat loss during the early spring. Similarly, Letterly and
others (2016) found that enhanced springtime LWd has implica-
tions for ice thickness that extends well into the main melt season
months through positive feedbacks.

Enhanced sensitivity to CRE during months of greatest ice
volume melt

In the absence of observational sea-ice thickness and volume data
from May through September, we use monthly PIOMAS esti-
mates to constrain the timing and magnitude of ice loss during
these months. Month-to-month reductions in ice volume over
the study domain typically occur from April–September, with
net gain occurring from March to April, and September to
October. The greatest volume losses occur from June to July
and from July to August, with an average volume reduction of
4400 and 2740 km3, respectively. The volume losses in June/July
dominate volume changes during the rest of the melt season;
thus, changes to the surface radiative budget during this period
can be expected to have more pronounced impacts on the magni-
tude of total seasonal ice volume losses than in other months.

June–July CRELWd is negatively correlated with seasonal vol-
ume losses, meaning that greater downwelling fluxes are associated
with decreased melt. This may suggest that the presence of clouds
during periods of peak solar insolation cools the surface by reflect-
ing downwelling shortwave radiation. This is further discussed in
Choi and others (2014), where variability in cloud cover during
June was found to have a large impact on the variability of the
absorbed solar radiation at the surface. However, we do not find
any significant correlations between shortwave variables during

this June–July period and ice volume losses in these months,
though only modeled volume changes from PIOMAS are available
for testing due to a lack of summertime ice volume observations.
Therefore, while variability in radiative fluxes in June/July have
the greatest potential to alter volume losses due to the large mag-
nitude of melt during these months, the specific mechanism link-
ing June–July CRELWd to ice volume reductions is less clear.

Impact of ice dynamics

In addition to the thermodynamic processes investigated here,
large-scale sea-ice dynamics are another component of interann-
ual variability in sea-ice volume losses. Sea-ice advection through
Fram Strait, the largest outlet for sea-ice transport, exported
217 km3 month−1 over the ICESat period (Spreen and others,
2009), or ∼1500 km3 over the 7-month melt season defined in
this study, which is >20% of the mean ICESat seasonal volume
losses. Anomalies in sea-ice velocity can impact late-season
sea-ice concentration (Smedsrud and others, 2017), and amplify
or dampen volumetric changes from radiative forcing alone.
Previous studies have analyzed the contribution of atmospheric
forcing on sea-ice extent (Rigor and others, 2002; Deser and
Teng, 2008; Wang and others, 2009). Interannual variability in
summer sea-ice extent has been linked to processes enhancing
transpolar drift, such as synoptic events (Zhang and others,
2008; Screen and others, 2011) and shifts in climate indices
such as the springtime Arctic Dipole (Zhang, 2015).

Here, we do not directly assess the contribution of dynamic
forcing to sea-ice volume losses but highlight two specific years,
one each with higher-than-predicted and lower-than-predicted
volume losses. We find that anomalous sea-ice advection patterns
in these years (2012 and 2013) heavily influenced net ice volume
losses, impacting the skill of the regression model. In 2013, CS-2
observed a minimum ice volume loss of 4180 km3, something of
an outlier in the time series (see Fig. 3) that has also been noted in
previous study (Tilling and others, 2015). The lowest March LWd

during observational years also occurred in 2013, which is
reflected in the low predicted volume losses from the 1-variable
model. We would expect lower volume losses in years with
reduced March LWd because there is less longwave energy avail-
able to warm the surface, and thus greater volume increases in
the central Arctic from March to April. Indeed, volume growth
from March to April in 2013 (1160 km3) was well above the
CS-2 average of 945 (±250) km3.

2013 is also the most poorly-predicted year by the to p-rated
univariate regression model and the third-worst for the bivariate
regression model (Table 3). While high values of June-July
CRELWd (i.e. net surface cooling) resulted in the 2-variable
model predicting only 5220 km3 of seasonal ice loss, this value
was still well above the observed loss of 4180 km3 (Table 2).
One explanation for the anomalously low ice melt in 2013 com-
pared to the prediction by the multilinear regression model is the
anomalous large scale advection pattern that year. Tilling and
others (2015) show that low melt in 2013 was due to the retention
of thick sea-ice northwest of Greenland. We similarly show that
anomalous advection patterns likely played a role in retaining
thicker ice in the central Arctic basin. Our analyses of
PIOMAS-modeled sea-ice advection climatology show that dur-
ing a typical June, anticyclonic flow in the Beaufort Sea feeds
into the transpolar drift, leading to export through Fram Strait
(Fig. 6a). However, in 2013, a strong cyclonic pattern dominated
sea-ice advection in the central Arctic, reducing the ice loss
through Fram Strait (Fig. 6b).

The bivariate regression model shows errors greater than σ in
two other years, 2004 and 2012 (Fig. 4), which are also associated
with the second and third largest errors of the univariate model.
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2004 does not show obvious springtime anomalous advection pat-
terns like 2013, and the timing of volume change anomalies is
particularly challenging to identify due to the limited temporal
data availability during the ICESat era. Ice loss in 2012, however,
is well documented as the result of a strong late summer cyclone
over the central Arctic (Parkinson and Comiso, 2013; Petty and
others, 2018). Through June, monthly volume changes during
2012 were near average, but transitioned to ice advection patterns
favoring ice export in July (Fig. 6). Anomalously high volume
losses in July due to enhanced export through the Fram Strait,
paired with a strong cyclone in August 2012 (Parkinson and

Comiso, 2013), likely contributed to higher-than-predicted ice
volume losses. Finally, we note that in addition to the dynamic
processes discussed here, other thermodynamic components
likely also impact sea-ice loss. In the case of 2012, for example,
a strong August cyclone also brought moisture and warm near-
surface air temperatures to affected sea-ice regions, which com-
pounds dynamic ice export and divergence (Parkinson and
Comiso, 2013).

Conclusions

We find that large-scale monthly average radiative components
can serve as predictive tools for estimating the total seasonal ice
volume loss from March–October. Specifically, March LWd and
June–July CRELWd jointly can account for >70% of the observed
volume loss variability. These variables are successful predictors
because of their impact on the timing of melt onset, which begins
in March, and on the period of highest melt rates in June and July.
Our results are similar to those of Kapsch and others (2016), who
found that springtime downwelling longwave radiation signifi-
cantly impacted September sea-ice extent. They further noted
that downwelling longwave radiation in June and July is import-
ant because much of the surface is at or near the melting point,
and radiative anomalies can therefore impart a more rapid reduc-
tion in the ice surface albedo through the formation and expan-
sion of melt ponds. The two radiative fluxes identified here as
most highly correlated with ice volume loss, and the respective
sign of their relationship to sea-ice volume loss, are also in general
agreement with a localized study of cloud impact on sea ice near
Barrow, AK (Cox and others, 2016), which found that a combin-
ation of positive longwave cloud anomalies in the early spring, fol-
lowed by a later transition to negative longwave anomalies in early
summer, are associated with low sea ice (high melt) years. Huang
and others (2019) find that downwelling longwave radiation in
April and June is most closely correlated with September sea-ice
extent, with other studies attributing favorable summer sea-ice
melt conditions (enhanced downwelling longwave radiation
resulting from heat and moisture fluxes in the lower atmosphere)
to, in part, teleconnections with Pacific sea surface temperatures
(Baxter and others, 2019; Ding and others, 2019; Bonan and
Blanchard-Wrigglesworth, 2020). We find that March conditions
are more important than those in April for seasonal sea-ice devel-
opment. Note, however, that our focus is on volumetric, rather
than areal, changes in sea ice. Enhanced downwelling longwave
radiation suppresses ice thickening over a domain that is typically
100% ice covered in March, and therefore has a less direct impact
on sea-ice extent. Our regression results suggest that seasonal ice
volume changes are largely insensitive to variability in shortwave
fluxes, with a lack of any significant correlations between the
monthly downwelling shortwave fluxes and net volume losses.
This is consistent with conclusions by Kapsch and others
(2016), who argued that high surface albedo in the spring, par-
ticularly over the central Arctic Basin as used in this study,
reduces the impact of interannual variability in downwelling
shortwave radiation.

Radiative fluxes and thermodynamic properties near the
sea-ice surface, however, are only one component of seasonal
sea-ice evolution. Strong advection anomalies can overshadow
the impact of radiative fluxes on seasonal ice volume loss, as
was the case in 2013 and likely in 2012, by changing the level
of sea-ice export from the Arctic. Our model poorly predicted
ice volume losses in 2013, a season which has also proved challen-
ging for other statistical, thermodynamic-based models due to the
anomalous dynamic patterns (Ionita and others, 2019), as well as
for the complex PIOMAS model. The active role of sea-ice advec-
tion in modulating changes in sea-ice volume, and its dependency

Table 3. Observed and predicted sea-ice volume loss from the top univariate
and from the bivariate (March LWd + June–July CRELWd ) regression models

Univariate model (March LWd) Bivariate model

Year Observed Predicted Residual Observed Predicted Residual

2004 5010 (3830) 6240 1230 5010 6310 1300
2005 7320 (6550) 6200 −1120 7320 6960 −360
2006 6710 (6050) 6980 270 6710 6080 −630
2007 8310 (7510) 7100 −1210 8310 8120 −190
2011 9140 9030 110 9140 9810 670
2012 7390 6170 −1220 7390 6260 −1130
2013 4180 5780 1600 4180 5220 1040
2014 8420 8980 560 8420 7970 −450
2015 8260 7400 −860 8260 7780 −480
2016 7600 7250 −350 7600 7140 −460
2017 6750 7940 1190 6750 7440 690

Actual sea-ice volume loss, predicted volume loss and residuals are in units of km3.
ICESat-derived volumes prior to the bias corrections discussed in the ‘Methods’ section are
given in parentheses. The three largest residuals for each model are highlighted in bold.

Fig. 6. (a) Mean sea-ice velocity (in km d−1) during the month of July, calculated from
PIOMAS data over the 2000–2017 period. (b) Ice velocities during July 2012. The vel-
ocity patterns favor enhanced ice export through the Fram Strait relative to the aver-
age. (c) Mean sea-ice velocity (in km d−1) during the month of June, calculated from
PIOMAS data over the 2000–2017 period. Mean velocities resemble anticyclonic flow
and favor ice export through the Fram Strait. (d) Ice velocities during June 2013. The
strong cyclonic pattern in the central Arctic reduced ice export through the Fram
Strait. Note that the color bar is scaled by 2 for ice velocities in (c) and (d).
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on weather conditions, remains a challenge for sea-ice forecasts.
During dynamically typical years, however, we show that down-
welling longwave fluxes in March combined with cloud radiative
forcing in June and July play an important role in the interannual
variability in sea-ice volume loss in the central Arctic Basin.
Previous studies (Kapsch and others, 2014) show that statistical
models have the potential to predict September sea-ice conditions
with comparable skill to coupled ice–ocean models over large
domains. Knowledge of these specific radiative fluxes, along
with careful consideration of patterns of ice motion, can form
the basis of fall Arctic sea-ice volume predictions.
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