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Abstract
We present a microfluidic method to measure the elastic properties of a population of microcapsules (liquid
drops enclosed by a thin hyperelastic membrane). The method is based on the observation of flowing capsules
in a cylindrical capillary tube and an automatic inverse analysis of the deformed profiles. The latter requires
results from a full numerical model of the fluid–structure interaction accounting for nonlinear membrane elastic
properties. For ease of use, we provide them under the form of databases, when the initially spherical capsule has a
membrane governed by a neo-Hookean or a general Hooke’s law with different surface Poisson ratios. Ultimately,
the microfluidic method yields information on the type of elastic constitutive law that governs the capsule wall
material together with the value of the elastic parameters. The method is applied to a population of ovalbumin
microcapsules and is validated by means of independent experiments of the same capsules subjected to a different
flow in a microrheological device. This is of great interest for quality control purposes, as small samples of capsule
suspensions can be diverted to a measuring test section and mechanically tested with a 10 % precision using an
automated process.

Impact Statement
Encapsulation consists in enclosing a substance inside a membrane in order to protect it and control the
exchanges with the environment. Recent innovative applications use capsules containing active principles,
fragrances, flavours, phase change materials or organ cells. A microfluidic methodology is presented to
measure the membrane elastic properties of microcapsules with a liquid core. The method is based on an
inverse analysis of the deformed profiles of capsules flowing in a capillary tube. A fluid–structure numerical
model that accounts for nonlinear large deformations of the capsule wall, corresponding to a strain-hardening
or -softening material behaviour, provides the database for the inverse analysis. The method is applied
to artificial microcapsules with a cross-linked ovalbumin membrane and is validated by comparison with
measures in a microrheological device. The advantage of the microfluidic method is that it is simple to
implement and can be automatized for on-line measurements.
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1. Introduction

Encapsulation consists of enclosing some internal substance inside a membrane in order to control the
exchanges between the environment and the internal medium. The capsule contents are thus prevented
from dispersing or degrading and can eventually be released where and when needed. Capsules are
found in nature in the form of cells, bacteria, seeds and eggs. For example, a red blood cell (RBC) is
a natural capsule that transports haemoglobin, allows oxygen and carbon dioxide exchanges through
the membrane, but withstands the hydrodynamic stresses prevalent in blood circulation. In industry,
applications of small-scale encapsulation have become ubiquitous. Classical examples are found in
cosmetics or food industry for fragrance or flavour protection (Gibbs, Kermasha, Alli, & Mulligan,
1999; Miyazawa, Yajima, Kaneda, & Yanaki, 2000; Zuidam & Nedovic, 2010) but also in energy
storage with phase change materials encapsulated in microcarriers (Zhao & Zhang, 2011). In medicine,
new treatment techniques are being developed, such as liposome encapsulation of fragile mRNA for
vaccine applications (Kowalski, Rudra, Miao, & Anderson, 2019) or the development of new-generation
bioartificial organs where xenogeneic cells (e.g. pancreas cells for diabetic patients) are encapsulated to
prevent rejection reactions (Espona-Noguera et al., 2019). Microencapsulation thus offers a tremendous
potential in the process engineering world, but many scientific challenges remain to be tackled, especially
on the engineering and physical aspects.

Encapsulated objects exist with a wide range of size (from nanometric to millimetric), shape and
mechanical property (from solid to highly deformable particles). In this paper, we will focus on proto-
typical initially spherical capsules, i.e. liquid droplets enclosed by a thin elastic membrane, which are
widely used in industry. We exclude solid beads, as well as vesicles, which are enclosed by a lipid bi-
layer with fluid membrane properties. In most applications, capsules are suspended in a carrying fluid.
When the suspension is flowing, the particles are subjected to large deformations under the hydrody-
namic stresses, which may lead to the membrane buckling and wrinkling and even to breakup. The
motion of a microcapsule in a flowing fluid thus constitutes a formidable problem of fluid–structure
interactions in the domain where the fluid stresses are mostly due to viscous and pressure effects and
where the structure is undergoing large deformation. A crucial issue is thus the constitutive behaviour
of the wall material. Specifically, a neo-Hookean (NH) constitutive law is typically used to model walls
with a strain-softening behaviour, as exhibited by polymer membranes with rubber-like elasticity. For
membranes with a network of strong covalent bonds, the strain-hardening behaviour is often modelled
by a Skalak (SK) law, which was initially designed to represent the mechanical behaviour of the bi-
layer membrane of the RBC (Skalak, Tozeren, Zarda, & Chien, 1973). However, for artificial capsules,
the generalized Hooke’s law (GH), which corresponds to the thin membrane limit of a homogeneous
three-dimensional law, constitutes an interesting alternative to the SK law. Indeed, the GH law assumes
a linear relation between the stress and the deformation in the reference undeformed configuration, but
exhibits a nonlinear strain-hardening behaviour under large deformation. Furthermore, it can account
for variable degrees of wall area distensibility.

Experimentally, the measurement of the wall mechanical properties is difficult because capsules are
small and fragile. For biological cells such as RBCs with a very deformable lipid bi-layer membrane,
micropipette aspiration (Heinrich & Rawicz, 2005) or optical tweezers (Avsievich, Zhu, Popov, Bykov, &
Meglinski, 2020) have been proposed. Those methods are not adapted to measure artificial microcapsules
with a size ranging from a few tens of micrometres to a millimetre, because the deforming forces that
are applied are a few pN. If this force level is sufficient to substantially deform cells, it is much too
low to have any measurable effect on capsules. Correspondingly, different techniques to test capsules
have been proposed over the years, such as compression between two parallel plates for millimetre-size
particles (Carin, Barthès-Biesel, Edwards-Lévy, Postel, & Andrei, 2003; Risso & Carin, 2004), atomic
force indentation (de Loubens et al., 2014; Fery & Weinkamer, 2007), deformation in a simple shear
flow created in a counter-rotating Couette viscometer (Chang & Olbricht, 1993b; Koleva & Rehage,
2012; Rehage, Husmann, & Walter, 2002; Walter, Rehage, & Leonhard, 2000) or in a planar hyperbolic
flow (Barthès-Biesel, 1991; Chang & Olbricht, 1993a; de Loubens et al., 2014). Those techniques are
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powerful, but require a sophisticated (and often expensive) set-up. Another drawback is that they are all
off line and are difficult to automatize.

Another method consists of flowing individual capsules in a microchannel (with circular or square
cross-section) and measuring their velocity and deformed profiles by means of video microscopy.
Depending on the flow conditions, an initially spherical capsule can take a parachute or slug shape when
its diameter is of the same order as the channel cross-dimension. The velocity and deformed profile of
each capsule are then compared with the corresponding quantities computed by a full numerical model
of the capsule in flow: this inverse analysis yields a value of the shear elastic modulus of the enclosing
wall (Chu et al., 2011; Gubspun et al., 2016; Hu, Sévénié, Salsac, Leclerc, & Barthès-Biesel, 2013;
Lefebvre, Leclerc, Barthès-Biesel, Walter, & Edwards-Lévy, 2008). The advantage of the technique is
that it is straightforward, can be automated (Quesada, Dupont, Villon, & Salsac, 2020) and may thus yield
statistical results for a population. However, up to now, the modulus values thus obtained have mostly
been used in a relative sense to analyse the effect of a specific parameter (membrane polymerization
conditions, capsules size) on the mechanical properties of a given capsule population. The modulus
values have never been compared with those measured with another independent experiment (e.g.
capsule in shear flow).

It is the aim of this paper to provide a robust methodology for the assessment of the mechanical
properties of a microcapsule wall, based on an inverse analysis of microchannel flow measurements.
In particular, we will make a full numerical study of the motion and deformation of initially spherical
capsules with a GH wall when they flow in a cylindrical tube. This will allow us to evaluate the importance
of the resistance to area dilation. In order to facilitate the inverse analysis, the results will be gathered in
plots of the main deformation and motion parameters as functions of the confinement and flow strength.
As an illustration, the methodology will be applied to evaluate the wall shear elastic modulus of artificial
microcapsules with a reticulated ovalbumin membrane. We will show that changing the assumptions
made regarding the wall constitutive behaviour leads to different evolution of the shear modulus with
the deformation level: this allows us to assess the type of rheological behaviour of the capsule wall,
i.e. strain hardening or softening. A further novelty of this study is the validation of the microchannel
results by means of a comparison with those obtained from microrheometric measurements on the same
capsules in a counter-rotating Couette device.

In § 2, we outline the fluid–structure interactions problem and its numerical solution. In § 3, we
provide new results on the tube flow of a capsule with a GH membrane, such as deformed profiles and
plots of the relevant parameters as functions of confinement, flow strength and wall Poisson ratio. We
also compare the results with those obtained with different wall constitutive laws (SK and NH). In § 4, we
describe the fabrication of the microcapsules, how they are tested in microfluidics and microrheometry
devices and how mechanical properties are identified from captured images of their deformed shape at
steady state in both cases. We then apply the two methods to a capsule population and discuss their
ability to predict the membrane elastic behaviour. Section 5 is dedicated to concluding remarks.

2. Deformation of a spherical capsule in flow: model

We consider an initially spherical capsule (radius 𝑎) which is filled with an internal liquid (density 𝜌,
viscosity 𝜇) and enclosed by a thin hyperelastic isotropic membrane (surface shear modulus 𝐺𝑠, area
dilation modulus 𝐾𝑠). This capsule is freely suspended in another incompressible Newtonian liquid
(density 𝜌, viscosity 𝜇), subjected to flow. Details of the analysis can be found in the review paper of
Barthès-Biesel (2016) and the references therein.

2.1. Membrane mechanics

As the viscous forces exerted by the fluid lead to large shape distortions of the particle, care must be
taken in the modelling of the wall mechanics. Correspondingly, the position of the membrane material
points is denoted 𝑿 in the undeformed reference state and 𝒙(𝑿, 𝑡) in the deformed configuration at
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time 𝑡. The local deformation of the membrane surface is measured by the Green–Lagrange strain tensor
𝒆 = 1

2 (𝑭
𝑇 · 𝑭 − 𝑰), where 𝑭 = 𝜕𝒙/𝜕𝑿 is the gradient of the transformation and 𝑰 the identity tensor.

Two invariants of 𝒆 can be defined as

𝐼1 = tr(𝑭𝑇 · 𝑭) − 2 = 𝜆2
1 + 𝜆

2
2 − 2, 𝐼2 = det(𝑭𝑇 · 𝑭) − 1 = 𝜆2

1𝜆
2
2 − 1, (2.1a,b)

where 𝜆1 and 𝜆2 represent the in-plane principal extension ratios. Invariant 𝐼1 measures the shear
deformation, whereas 𝐼2 measures the local surface dilation. Since the membrane is infinitely thin, the
three-dimensional stresses in the membrane are replaced by Cauchy tensions (forces per unit arclength
of deformed surface). The Cauchy tension tensor 𝝈 depends on a strain energy function 𝑤𝑠 (𝐼1, 𝐼2) per
unit undeformed surface area

𝝈 =
1

𝜆1𝜆2
𝑭 · 𝜕𝑤𝑠

𝜕𝒆
· 𝑭𝑇 . (2.2)

Several constitutive laws with constant material coefficients have been proposed to govern the
energy–deformation relationships. They are usually derived from classical three-dimensional laws in
the limit where the initial thickness ℎ of the capsule wall tends to zero. The surface shear modulus is
then related to the usual three-dimensional shear modulus 𝐺 by

𝐺𝑠 = ℎ𝐺. (2.3)

The simplest law, for isotropic and hyperelastic materials, is the GH law, in which 𝑤𝑠 is a quadratic
function of 𝒆

𝑤𝐺𝐻
𝑠 = 𝐺𝑠

(
tr(𝒆2) +

𝜈𝑠
1 − 𝜈𝑠

[tr(𝒆)]2
)
=
𝐺𝑠

4

(
2𝐼1 − 2𝐼2 +

1
1 − 𝜈𝑠

𝐼2
1

)
, (2.4)

where tr(𝒆) denotes the trace of 𝒆 and −1 < 𝜈𝑠 < 1 is a surface Poisson ratio. The area dilation modulus
is then 𝐾𝑠 = 𝐺𝑠 (1 + 𝜈𝑠)/(1 − 𝜈𝑠), which implies that 𝜈𝑠 → 1 corresponds to an area incompressible
membrane. Note that 𝝈 is a linear function of 𝒆 for small deformation (𝑭 � 𝑰), but becomes a nonlinear
function of 𝒆 for large deformation, with a strain-hardening type behaviour.

The two-dimensional form of the NH law, classically used to describe volume-incompressible rubber-
like materials, is given by

𝑤NH
𝑠 =

𝐺𝑠

2

(
𝐼1 − 1 +

1
𝐼2 + 1

)
. (2.5)

Because of the hypothesis of volume incompressibility, area dilation is balanced by membrane thinning
so that𝐾𝑠 = 3𝐺𝑠. Under large deformation, the Cauchy tensions exhibit a strain-softening type behaviour.

In order to describe anisotropic biological bi-layers (such as the RBC membrane), Skalak et al. (1973)
proposed a purely two-dimensional law (SK) with independent surface shear and area dilation modulus

𝑤SK
𝑠 =

𝐺𝑠

4
[
(𝐼2

1 + 2𝐼1 − 2𝐼2) + 𝐶𝐼2
2
]
. (2.6)

The area dilation modulus is 𝐾𝑠 = (1 + 2𝐶)𝐺𝑠, in which the dimensionless parameter 𝐶 regulates the
resistance to area dilation. Under large deformation, the Cauchy tensions exhibit a strain-hardening type
behaviour, that becomes more pronounced as 𝐶 increases.

For 𝐶 = 1 and 𝜈𝑠 = 0.5, corresponding to 𝐾𝑠 = 3𝐺𝑠, the three NH, GH, SK laws have the same
small-deformation behaviour, but predict different material responses for large strains (Barthès-Biesel,
Diaz, & Dhenin, 2002; Lac, Barthès-Biesel, Pelekasis, & Tsamopoulos, 2004).

When the inertia of the capsule membrane is neglected, the local equilibrium equation of the
membrane reads

∇𝑠 · 𝝈 + 𝒒 = 0, (2.7)
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where ∇𝑠 is the surface gradient and 𝒒 is the load, i.e. the external force per unit area of deformed
capsule surface 𝐶𝑡 at time 𝑡. A no-slip condition is also imposed at the capsule wall

𝒗(𝒙, 𝑡) = 𝜕𝒙(𝑿, 𝑡)/𝜕𝑡 𝒙 ∈ 𝐶𝑡 , (2.8)

where 𝒗(𝒙, 𝑡) is the velocity of the internal and external fluids on the capsule deformed surface.

2.2. Fluid–structure coupling and numerical method

The flows of the internal and external liquids are governed by the Stokes equations, subjected to no-slip
conditions on the capsule wall and on the flow domain outer boundary 𝐵. The velocity of the capsule
wall is given by an integral equation (Pozrikidis, 2005)

𝒗(𝒙) = 𝒗∞(𝒙) −
1

8𝜋𝜇

[∫
𝐶𝑡

𝑱 · 𝒒 d𝑆(𝒚) +
∫
𝐵

𝑱 · 𝒇 + d𝑆(𝒚)
]
, 𝒙 ∈ 𝐶𝑡 , (2.9)

where 𝒗∞(𝒙) is the unperturbed flow velocity in the absence of a capsule. The force 𝒒 on the membrane
is determined from the mechanics of the capsule wall (equation (2.7)). The additional friction force on
the domain boundaries 𝒇 + must be computed as part of the solution (Hu, Salsac, & Barthès-Biesel,
2012). The Green’s function 𝑱 is defined as

𝑱 =
1

| |𝒙 − 𝒚 | |
𝑰 +

(𝒙 − 𝒚) ⊗ (𝒙 − 𝒚)

| |𝒙 − 𝒚 | |3
. (2.10)

The problem is governed by the following non-dimensional parameters:

• The size ratio 𝑎/𝑙, where 𝑙 is the flow characteristic length.
• The membrane capillary number 𝐶𝑎𝑠 = 𝜇𝑉/𝐺𝑠, where 𝑉 is the flow characteristic velocity.
• The ratio between dilation and shear modulus 𝐾𝑠/𝐺𝑠.

We solve this fluid–structure problem by coupling the boundary integral method (BIM) to calculate
the flow field, to the finite element method (FEM) to calculate the force exerted by the membrane on
the fluid (Hu et al., 2012; Walter, Salsac, Barthès-Biesel, & Le Tallec, 2010). Triangular 𝑃1 elements
are used to discretize all the boundaries. There are 5120 𝑃1 elements and 2562 nodes on the capsule
membrane, corresponding to a characteristic element sizeΔℎ𝑐/𝑙 = 0.07. At each time step, the boundary
integral equation (2.9) is solved to yield the velocity of the membrane. A second-order Runge–Kutta
method is then used to integrate equation (2.8) and obtain the new deformed position of the membrane
material points. This information is sent to the FEM solid solver to compute the load 𝒒, which is then
sent to the fluid solver to repeat the process. The explicit nature of the time integration implies very small
time steps for the scheme to be stable. Here, we use a time step Δ𝑡𝑉/𝑙 = 5 × 10−4, which guarantees
stability. All the reported results pertain to a steady state, for which the surface area of the capsule
varies by less than 10−3 × (4𝜋𝑎2) over a non-dimensional time 𝑡𝑉/𝑙 = 1. The precision of the numerical
scheme has been shown to be 𝑂 (Δℎ𝑐/𝑙)2 when 𝑃1 elements are used (Dupont, Salsac, Barthès-Biesel,
Vidrascu, & Le Tallec, 2015; Walter et al., 2010).

3. Numerical prediction of the capsule deformed shape

3.1. Deformation of a capsule flowing in a cylindrical tube

We first consider the case where a closely fitting capsule is subjected to a bounded Poiseuille flow with
mean velocity 𝑉 , created in a straight channel with a circular cross-section of radius 𝑙 (figure 1a). We
seek the steady motion and deformation of a centred capsule. Since there is a liquid film around the
capsule (figure 1b), its velocity 𝑣𝑐 is different from 𝑉 and must be computed as part of the solution.
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Figure 1. Schematic illustration of an initially spherical capsule (contour 𝐶0) subjected to Poiseuille
flow in a cylindrical channel with radius 𝑙 (a). Typical lengths characterizing the capsule deformation
(contour 𝐶𝑡 at time 𝑡): 𝐿𝑧 , 𝐿𝑝 in the channel (b) and 𝐿1, 𝐿2 in an unbounded simple shear flow (c).

Presently, results are available for capsules with a NH or SK membrane flowing in circular (Hu et al.,
2012; Lefebvre & Barthès-Biesel, 2007; Pozrikidis, 2005) or square section tubes (Hu et al., 2013;
Kuriakose & Dimitrakopoulos, 2011). In this section, we provide new results for capsules with a GH
membrane law.

The capsule centre 𝑂 is initially located on the channel axis, in the middle of the tube (total length
20 𝑙) and is moved back there at each time step. The flow domain boundary 𝐵 consists of the channel wall
and of the entrance 𝑆𝑖𝑛 and exit 𝑆𝑜𝑢𝑡 sections. On the channel wall, no-slip conditions are enforced. The
entrance and exit sections are far enough from the capsule for undisturbed Poiseuille flow conditions to
prevail

𝒗∞ = 2𝑉 [1 − (𝑥2 + 𝑦2)/𝑙2]𝒆𝑧 . (3.1)

The coupled BIM–FEM solver is used, where the characteristic dimension of the channel boundary
elements is Δℎ𝑤/𝑙 = 0.14, except in a central part with length 2 𝑙, where a refined mesh is used with
Δℎ𝑤/𝑙 = 0.07. For 𝑎/𝑙 ≥ 0.9, we pre-deform the capsule into an ellipsoid that can fit inside the channel
and we then follow the same procedure, while accounting for the induced pre-deformation stresses.

For a specific membrane law, the problem solution yields the capsule deformed profile and velocity
𝑣𝑐/𝑉 for given values of 𝑎/𝑙 and𝐶𝑎𝑠 . The overall capsule deformation is quantified with two parameters:
the total length 𝐿𝑧/𝑙 and the parachute depth 𝐿𝑝/𝑙 that are easy to measure experimentally (figure 1b).

3.1.1. Capsule with a GH membrane
The combined effects of 𝐶𝑎𝑠 and of 𝜈𝑠 on the deformed profiles of the capsule are shown in figure 2.
The results are similar to those reported previously for other membrane laws. The capsule length 𝐿𝑧

increases with flow strength. A parachute always forms for confinement ratios up to 0.9, with depth
𝐿𝑝 increasing with 𝐶𝑎𝑠. For higher confinements 𝑎/𝑙 > 0.9, the parachute forms only when the flow
strength exceeds a critical value 𝐶𝑎𝑠𝑐 , which increases with 𝑎/𝑙: specifically 𝐶𝑎𝑠𝑐 increases from 0.03
to 0.06 when 𝑎/𝑙 increases from 1 to 1.1.

The new results in figure 2 pertain to the effect of the membrane dilation modulus as measured by
𝜈𝑠. We first note that 𝜈𝑠 has no effect on the front profile of the capsule for given values of 𝑎/𝑙 and 𝐶𝑎𝑠 .
The same remark applies to the global capsule profile for small flow strength (e.g. 𝐶𝑎𝑠 = 0.01) and thus
moderate deformation (figure 2a). Any influence of 𝜈𝑠 occurs at the rear of the capsule: the main effect
of a reduced resistance to dilation is an increase of the parachute depth (figure 2b,c), resulting in a sharp
parachute edge at high flow strength (figure 2c). When such a sharp edge appears, the capsule is near
the transition to continuous elongation, where it cannot reach a steady shape.

The plots in figure 3a,b give the evolution of the two lengths 𝐿𝑧 and 𝐿𝑝 (characterizing the capsule
deformation) with the confinement ratio 𝑎/𝑙 and capillary number 𝐶𝑎𝑠. Note that the capsule velocity
𝑣𝑐 is larger than the average flow velocity 𝑉 , due to the film around the capsule (figure 3c). The ratio
𝑣𝑐/𝑉 decreases from 2 for zero size capsules (that would travel with the maximum fluid velocity) to
almost unity for very large capsules (that would travel with almost the average fluid velocity).
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Figure 2. Tube flow: effect of flow strength and surface Poisson ratio 𝜈𝑠 on the steady-state capsule
profile in the 𝑦𝑧-plane. (a) 𝐶𝑎𝑠 = 0.01; (b) 𝐶𝑎𝑠 = 0.07; (c) 𝐶𝑎𝑠 = 0.15.

3.1.2. Effect of constitutive laws on capsule deformation
The effect of the membrane constitutive laws on capsule deformation for 𝐾𝑠 = 3𝐺𝑠 is shown in figure 4
for different confinement ratios and flow strengths. For low flow strength (𝐶𝑎𝑠 = 0.07) and low size ratio
(e.g. 𝑎/𝑙 = 0.8), the capsule deformation is small and the three laws almost predict the same profile, as
expected. As we increase 𝑎/𝑙, while keeping𝐶𝑎𝑠 = 0.07, the stresses in the capsule membrane increase:
as a consequence, a capsule with a strain-softening NH membrane deforms more than capsules with
strain-hardening SK or GH membranes (figure 4a). Eventually, the large (𝑎/𝑙 = 1.1) NH capsule does
not reach steady state and undergoes continuous elongation (like the capsules with a GH law and
𝜈𝑠 < 0.5). As the flow strength increases (figure 4b), continuous elongation of NH capsule occurs for
lower confinement ratios, specifically for 𝑎/𝑙 ≥ 0.85 when 𝐶𝑎𝑠 = 0.15 (Hu et al., 2013). By contrast,
capsules with a strain-hardening membrane can always reach a steady state. The difference between the
SK or GH membranes is very small, and occurs at the rear of the capsule for large confinement ratios,
only. The plots of the characteristic lengths and velocity ratio as functions of 𝑎/𝑙 and 𝐶𝑎𝑠 are shown in
figure 5 for strain-softening and strain-hardening membranes (where SK results have been eliminated,
as they were very close to the GH ones). All the points in figure 5 correspond to steady situations.

The plots in figures 3 and 5 can be used to perform the inverse analysis of the experimental profiles:
from the measured values of the lengths 𝐿𝑧 and 𝐿𝑝 , we can deduce the size ratio 𝑎/𝑙 and capillary
number 𝐶𝑎𝑠 for a given membrane law. In practice it is easy to measure 𝑣𝑐 , but difficult to control 𝑉 :
the plots giving 𝑣𝑐/𝑉 as a function of 𝑎/𝑙 and 𝐶𝑎𝑠 are thus essential for the final determination of the
membrane shear elastic modulus 𝐺𝑠 = (𝜇𝑣𝑐/𝐶𝑎𝑠)(𝑉/𝑣𝑐), where 𝜇 is the suspending fluid viscosity,
which is supposedly known. From the experimental point of view, the plots in figures 3 and 5 indicate
clearly that the inverse analysis can be performed with precision only if the capsule deformation is
significant enough for a parachute to form, i.e. for values of 𝐶𝑎𝑠 > 0.05. Depending on their size and
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Figure 3. Tube flow: plots of the (a) capsule total length 𝐿𝑧 , (b) parachute depth 𝐿𝑝 and (c) centre of
mass velocity 𝑣𝑐 as a function of 𝐶𝑎𝑠 and 𝜈𝑠. Same colour/line style code as in figure 2; the symbols
refer to different size ratios as shown in (b).
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Figure 6. Simple shear flow: plots of the (a) capsule deformation in the shear plane and (b) profile
semi-axis 𝐿3 along the vorticity direction for NH and GH laws.

composition, microcapsules can have a shear modulus that varies between ∼0.05 and 1 N m−1 (Gubspun
et al., 2016). They can be observed without too much blurriness only if their velocity is no more than a
few mm s−1. This means that the fluid viscosity must be large (of order 1 Pa s) and that a high pressure
is thus necessary to flow the suspension in a small diameter capillary tube. Typical experiments with
the corresponding inverse analysis are described in § 4.2.

3.2. Deformation of a capsule in a simple shear flow

The deformation of a spherical capsule in a simple shear flow is well documented (see the review by
Barthès-Biesel (2016) and the references therein). The influence of different membrane laws (NH, SK)
has been studied, except for the case where the capsule wall is governed by a GH law with different values
of the surface Poisson ratio. It is thus one aim of this paper to fill this void and provide a full database for
this situation. We now consider the case where the capsule is freely suspended in an unbounded simple
shear flow with undisturbed velocity given by

𝒗∞ = 
𝛾𝑦𝒆𝑧 , (3.2)

where 
𝛾 is the shear rate. The flow problem is governed by equation (2.9), where the boundary 𝐵 is taken
far enough from the capsule centre for the perturbation 𝒇 + to be negligible. As a consequence, only
the first integral remains in equation (2.9). The only problem parameters are then the capillary number,
now defined as 𝐶𝑎𝑠 = 𝜇 
𝛾𝑎/𝐺𝑠, and the ratio 𝐾𝑠/𝐺𝑠. For a given membrane law, the model provides
the deformed profile of the capsule as a function of 𝐶𝑎𝑠 . As the deformed capsule is approximately
ellipsoidal, we determine its ellipsoid of inertia which has semi-principal axes 𝐿1, 𝐿2 in the shear plane
(figure 1c) and 𝐿3 in the vorticity direction. The deformation in the shear plane is then quantified by the
Taylor parameter 𝐷12 = |𝐿1 − 𝐿2 |/(𝐿1 + 𝐿2). Results for 𝐷12 are available in the case 𝐾𝑠/𝐺𝑠 = 3 for
NH, SK and GH membranes (Dupont et al., 2015; Lac & Barthès-Biesel, 2005; Walter et al., 2010), and
𝐿3 is never given, although it is necessary to determine the deformed capsule volume. New results for
GH and NH membranes are thus presented in figure 6, where the relation between 𝐷12 and 𝐶𝑎𝑠 is given
as well as the evolution of 𝐿3 with 𝐷12. For a GH membrane, the effect of decreasing 𝜈𝑠, i.e. the dilation
modulus, is to increase the deformation for the same flow strength. For 𝜈𝑠 = 0, the capsule undergoes
continuous elongation and eventually ruptures for 𝐶𝑎𝑠 � 0.4. The same phenomenon appears around
𝐶𝑎𝑠 = 1 and 𝐷12 � 0.6, for a NH membrane.

The plots of figure 6 are simple to use: for a given membrane law, the value of deformation 𝐷12
yields the value of 𝐿3 and 𝐶𝑎𝑠. Knowing 𝐿3, 𝐿1 and 𝐿2, it is easy to compute the volume of the capsule
and its initial radius 𝑎. The elastic modulus 𝐺𝑠 is obtained from 𝐶𝑎𝑠 , knowing the values of 
𝛾 and 𝜇,
both given by the shear apparatus.
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Figure 7. (a) Microfluidic set-up; (b) microrheometry set-up. All lengths are in 𝜇𝑚; PDMS,
polydimethylsiloxane.

4. Experimental observation of capsule deformation and identification of the wall mechanical
properties

4.1. Capsule fabrication

Microcapsules are fabricated by means of interfacial polymerization with cross-linking reactions
(Edwards-Lévy, Andry, & Lévy, 1993). Specifically, 1 ml of an aqueous solution, consisting of
10 % (w/v) ovalbumin (Sigma) dissolved in phosphate buffer (pH 7.4, Sigma), is dispersed in 10 ml of
vegetable oil (ISIO 4, Lesieur) at a stirring speed of 2400 r.p.m. in a laboratory vortex (Heidolph Top-
Mix 94323) for 10 s. Then, 10 ml of vegetable oil containing 2.5 % (w/v) terephthaloyl chloride (Sigma)
is added to the emulsion. Interfacial reticulation is allowed to develop at rest for 15 min. The suspension
is then centrifugated at 800 r.p.m. for 1 min. The supernatant is removed and replaced by vegetable oil
containing 2 % (v/v) Tween 20 (Sigma). The pellet is manually resuspended in this mixture by gentle
successive aspirations and ejections from a pipette tip. After this first washing step, the suspension is
centrifugated at 800 r.p.m. for 1 min. The supernatant is then removed and replaced by a 2 % (v/v) solu-
tion of Tween 20 diluted in distilled water. The same resuspension procedure as in oil–Tween 20 mixture
is used. This second washing step is followed by three rinsing stages, each one consisting of gently
suspending the capsules in distilled water, centrifugating the suspension and resuspending the pellet in
clean distilled water. This procedure yields quasi-spherical deformable capsules with radii ranging from
a few tens up to a few hundreds of microns. The suspension is filtered through a 100 µm sieve in order to
narrow the size range. The capsules are resuspended in glycerol for deformation experiment purposes.
We have verified that there is no shape alteration and no apparent fluid exchanges across the membrane
for at least 3 h, which is the maximum duration of an experiment, after which the capsules are discarded.

4.2. Identification of wall elasticity by flowing microcapsules in a microfluidic cylindrical capillary

The microfluidic flow system, shown in figure 7a, consists of a straight 28 mm long cylindrical capillary
tube with an internal diameter 2𝑙 = 75 µm (Capillary tube 1), embedded in another tube (Capillary
tube 2), which is immersed in polydimethylsiloxane (Sylgard 184, Dow Corning) to eliminate optical
distortions (Lefebvre et al., 2008). Just prior to an experiment, 500 µl of filtered capsule pellet is
suspended in 12 ml glycerol (Sigma). The capsule suspension, which has a viscosity of 𝜇 = 0.92 Pa s
at 20 ◦C, is injected into the microchannel by means of a pressure controller (EZ-Flow, Fluigent).
Pressure values range from 800 to 1500 mbar, which provide capsule velocities from 0.8 to 6 mm s−1.
Image acquisitions of individual capsules flowing in the tube are performed with a fast camera (Fastcam
MINI AX50, Photron) at frequencies 𝑓 ranging from 2000 to 6000 Hz and an exposition time 1/ 𝑓 . The
camera is mounted on a DMI8 microscope (Leica) with a × 40 magnification and 0.6 numerical aperture
objective.
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Figure 8. (a,d) Experimental image of the capsule in a cylindrical tube (diameter 75 𝜇𝑚) with extracted
contour (full line); (b,e) two potential fits of the extracted profiles using a NH law; (c,f) profile fits with
different membrane laws. The parameters of the different fits are gathered in table 1.

Recordings are performed at least 5 mm downstream of the inlet to ensure that the capsule has reached
its steady state. The capsule contours are manually extracted from the experimental images using ImageJ
(NIH, USA). The capsule mid-surface and channel wall are assumed to be located in the middle of the
corresponding dark contour lines (figure 8), leading to an error of ±1 pixel on the extracted contour
points and to an error of order ±2 % on the extracted lengths 𝐿exp

𝑧 and 𝐿exp
𝑝 . The capsule velocity 𝑣exp

𝑐 is
determined by manually measuring the displacement of the capsule front between the first and last of
10 successive images and dividing it by the corresponding time duration. The error on 𝑣exp

𝑐 is also of
order ±2 %.

The inverse analysis strategy consists of identifying the mechanical properties from the experi-
mental deformed profiles using the data-driven automatic procedure of Quesada et al. (2020). The
databases contain the predicted steady-state values of 𝐿𝑧 and 𝐿𝑝 as functions of parameters 𝐶𝑎𝑠
and 𝑎/𝑙 for the different constitutive laws (NH, GH 𝜈𝑠 = 0.5, 0.2, 0) corresponding to figures 3
and 5. For a given constitutive law, we project the experimental values 𝐿exp

𝑧 and 𝐿exp
𝑝 onto the (𝐿𝑧 ,

𝐿𝑧 − 𝐿𝑝) hypersurface that contains all the admissible solutions. The corresponding 𝐶𝑎𝑠 and 𝑎/𝑙
values are identified by means of diffuse approximation. This approximation uses a local weighted
least squares fitting that is valid in a small neighbourhood around the point (𝐿exp

𝑧 , 𝐿exp
𝑧 − 𝐿exp

𝑝 )
and containing 14 neighbours of the database. Knowing the length–parameter relationship for the
14 data points, we deduce the values of 𝐶𝑎fit

𝑠 and (𝑎/𝑙)fit for the measured lengths by solving an inverse
problem. The surface representing 𝑣𝑐/𝑉 as a function of 𝑎/𝑙 and 𝐶𝑎𝑠 is decomposed into triangles with
vertices on the database points. The point {𝐶𝑎fit

𝑠 , (𝑎/𝑙)
fit} corresponds to one triangle of the velocity

surface and the ratio (𝑣𝑐/𝑉)
fit is the distance weighted average of the values of 𝑣𝑐/𝑉 on the three vertices

(Delaunay triangulation procedure). The membrane shear modulus 𝐺𝑠 is then

𝐺𝑠 =
𝜇𝑣exp

𝑐

𝐶𝑎fit
𝑠

(
𝑉

𝑣𝑐

) fit

. (4.1)
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As a check, we compute the numerical deformed profile of the capsule, corresponding to the values
{𝐶𝑎fit

𝑠 , (𝑎/𝑙)
fit} and compare it with the experimental profile. The modified (i.e. mean) Hausdorff

distance 𝐻/𝑎 between the two profiles gives an estimate of the precision of the inverse analysis. Any
capsule that cannot be fitted with 𝐻/𝑎 ≤ 0.06 is discarded. We also discard non-symmetrical profiles
which cannot be analysed with the model.

For a given law, different fits are obtained using the values 𝐿exp
𝑧 , 𝐿exp

𝑝 (Fit 1), decreasing/increasing
𝐿exp
𝑧 (and thus 𝐿exp

𝑝 ) by 2 % (Fit 2/Fit 3, respectively) and finally, decreasing/increasing 𝐿exp
𝑝 by 2 % while

keeping 𝐿exp
𝑧 constant (Fit 4/Fit 5, respectively). This procedure allows us to evaluate the sensitivity of

the inverse analysis to experimental error. It also allows us to compute a mean value and deviation for
𝐺𝑠. As an example, we consider two deformed profiles (figure 8a,d) and the resulting inverse analysis
fits with a NH law (figure 8b,e showing only Fits 2 and 3 for clarity). The corresponding fit values
are gathered in table 1. For the smaller capsule (𝑎/𝑙 � 0.9), the five fits are equally good in terms of
Hausdorff distance, but lead to a 27 % dispersion of shear modulus values (𝐺𝑠 = 0.048 ± 0.0013 N m−1):
this dispersion is mostly due to the fact that, for capsules smaller than the tube radius (𝑎/𝑙 ≤ 0.9), the
lengths 𝐿𝑧 or 𝐿𝑝 do not vary much with 𝐶𝑎𝑠 (figure 5) thus a small variation of 𝐿𝑧 leads to a large
variation of 𝐶𝑎𝑠. For the larger capsule (𝑎/𝑙 � 1), the Hausdorff distance is near the acceptable limit of
0.06𝑎 (except for Fit 4 which is discarded), mainly, because the tips are not fitted very well. However,
the capsule being large, the dispersion is only 13 % on the shear modulus values (𝐺𝑠 = 0.039 ±

0.0005 N m−1). This shows that an absolute value of the precision of the inverse analysis procedure
cannot be evaluated with a single parameter such as 𝐻/𝑎 as it depends on the quality of the fit and also
on the capsule size and deformation level. The same procedure can be applied to fit the profile with
other membrane laws as shown in figure 8c,f where only the results of Fit 2 are shown. Of course, the
values of 𝐺𝑠 depend on the law as shown in table 1.

4.3. Identification of wall elasticity using microrheometry

We now use a microrheometric device to determine the capsule membrane properties by subjecting
the particles to a simple shear flow. A 10 ml volume of a capsule suspension in glycerol (volume
concentration 0.5 %) is placed in a counter-rotating Couette viscometer (MCR 702, Anton Paar). The
viscometer consists of a transparent cup and an opaque inner cylinder with a 1 mm gap (figure 7b). A 45◦
mirror, located under the cup, allows us to observe the capsules in the shear plane by means of a camera
(model LM165M, Lumenera) with a × 5 magnification and 0.14 numerical aperture objective, operating
at 32 frames s−1. The camera is focused on the mid-plane of the gap, where the flow velocity is zero.
We only record the capsules that are stationary and appear clearly in the observation window (which is
easier to say than to do). During an experiment, the shear rate 
𝛾 is kept constant for a typical duration
of 10 min and is progressively increased. The contour of the deformed capsules is extracted manually
with ImageJ. A least squares fit of the contour with an ellipse yields the values of the semi-axes 𝐿1 and
𝐿2 (figure 9). Note that the pictures are not as sharp as those obtained with the microfluidic set-up, due
to inferior performance of the camera included in the device and to the fact that it is challenging to keep
the capsule steady. The fuzziness of the profile leads to an error of ±20 % on 𝐷12. Correspondingly, it
is unreasonable to try to analyse capsules with 𝐷12 < 0.35.

The inverse analysis is straightforward, because the deformation of the capsule depends on only
one parameter, 𝐶𝑎𝑠 . For a given law and shear rate 
𝛾, the measured semi-axes 𝐿1 and 𝐿2 yield the
deformation 𝐷12 from which we deduce 𝐶𝑎𝑠 and 𝐿3/𝑎 using the plots in figure 6. The capsule radius
is thus 𝑎 =

√
𝐿1𝐿2𝐿3/𝑎 and the shear modulus is 𝐺𝑠 = 𝜇 
𝛾𝑎/𝐶𝑎𝑠 . The capsule presented in figure 9 is

subjected to a 350 s−1 shear rate in a fluid with viscosity 0.756 Pa s. The radius is 𝑎 = 45 µm and the
deformation 𝐷12 = 0.38 provides a value of shear elastic modulus equal to 𝐺𝑠 = 0.044 N m−1 for a NH
membrane and to 0.024 or 0.038 N m−1 for a GH membrane with 𝜈𝑠 = 0.5 or 0.2, respectively.
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Table 1. Size ratio 𝑎/𝑙, surface capillary number 𝐶𝑎𝑠 , surface shear modulus 𝐺𝑠 and non-dimensional modified Hausdorff distance 𝐻/𝑎 corresponding
to the different profile fits of figure 8. The NH and GH (𝜈𝑠 = 0.2, 0.5) results correspond to Fit 1

Fit 2 Fit 3 Fit 4 Fit 5 GH law GH law
Fit 1 𝐿exp

𝑧 − 2 % 𝐿exp
𝑧 + 2 % 𝐿exp

𝑝 − 2 % 𝐿exp
𝑝 + 2 % NH law (𝜈𝑠 = 0.2) (𝜈𝑠 = 0.5)

Figure 8b Figure 8c

𝑎/𝑙 0.88 0.89 0.88 0.90 0.87 0.90 0.91 0.89
𝐶𝑎𝑠 0.06 0.04 0.07 0.05 0.07 0.05 0.04 0.07
𝐺𝑠 (N m−1) 0.044 0.067 0.037 0.053 0.037 0.053 0.071 0.035
𝐻/𝑎 (%) 1.9 1.6 2.7 1.6 3.1 1.6 2.0 1.9

Figure 8e Figure 8f

𝑎/𝑙 0.98 0.99 0.97 0.99 0.96 0.99 1.02 1.01
𝐶𝑎𝑠 0.08 0.07 0.09 0.07 0.09 0.07 0.08 0.13
𝐺𝑠 (N m−1) 0.037 0.043 0.033 0.043 0.033 0.043 0.036 0.022
𝐻/𝑎 (%) 5.1 4.5 5.9 3.4 7.0 3.4 2.4 2.4
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(a) (b)

Figure 9. Experimental image of the capsule in a simple shear flow with extracted contour. The scale
indicates 75 𝜇𝑚.
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Figure 10. Plots of surface shear modulus 𝐺𝑠 as a function of capsule mean deformation 𝛬. Symbols
represent the constitutive law. The lines show a linear best fit for the corresponding points. The shaded
areas correspond to the mean value 𝐺𝑠 ± 25 % obtained with microrheometry.

4.4. Characterization of a capsule population

As we measure a capsule suspension in both set-ups, we can have results on a population. In order
to compare the values of 𝐺𝑠 obtained with different membrane laws, it is convenient to use the mean
profile elongation Λ = 𝑝/2𝜋𝑎 where 𝑝 is the perimeter of the capsule deformed profile in the 𝑦𝑧-plane.
The nonlinear constitutive law, which is appropriate to model the capsule membrane, is the one that
yields the same constant value of 𝐺𝑠 for any deformation level Λ. Note that all laws should lead to the
same small deformation value of 𝐺𝑠, since they are then equivalent.

The results from the microfluidic device are shown in figure 10, where the values of 𝐺𝑠, obtained
from the analysis of different deformed capsules with an estimated radius in the range 32–47 µm, are
plotted as a function of Λ for three different membrane laws (NH and GH with 𝜈𝑠 = 0.5 or 0.2). The
error bars correspond to the dispersion of the five fits. As explained earlier, they are larger for small
deformation and/or small𝐶𝑎𝑠 . In order to visualize the trend of the data, a best fit of𝐺𝑠 values obtained
with each law, is also shown.

The values of 𝐺𝑠 obtained with NH law are approximately constant with a mean value 𝐺𝑠 =
0.043 ± 0.004 N m−1. This indicates that the NH law is a good candidate to model the ovalbumin
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Figure 11. (a–c): successive profiles of a capsule showing continuous elongation in a square section
channel (100×100 𝜇𝑚2, 𝑎 = 50 𝜇m,𝑉𝑐 ∼ 23 mm s−1, 𝜇 = 0.92 Pa s). The capsule has travelled approx-
imately 200 𝜇𝑚 between two successive profiles and is clearly undergoing break-up in the last picture.
Images taken by E. Hasiak.

membrane of the capsules. The results obtained with GH (𝜈𝑠 = 0.5) law are in the same range as the
results for NH law for small deformation (Λ = 1.06), as expected. However, the values of 𝐺𝑠 tend to
decrease with increasing deformation: this means that the strain-hardening GH law is not fit to model the
membrane behaviour under large deformation, since the parameter𝐺𝑠 must be decreased as deformation
increases. The larger dispersion of the NH values of 𝐺𝑠 compared with that of the GH ones is linked to
the fact that the values of 𝐶𝑎𝑠 are larger for the GH analysis than for the NH one.

Furthermore, it is possible to verify if, indeed, the capsule membrane is shear-softening. This is done
by increasing the flow strength until a continuous elongation regime is reached. The set-up described
in figure 7a did not allow for high enough flow velocity to reach this regime. However, as a proof of
concept, we have flowed the same capsules in a slightly different microfluidic system consisting of a
square section (100 × 100 µm2) channel. Continuous elongation of a capsule is then observed under
high flow velocity, as shown in figure 11.

When we use the GH law with 𝜈𝑠 = 0.2, it it difficult to fit the experimental profiles with the same
values of 𝑎/𝑙 as those used for the NH or GH (𝜈𝑠 = 0.5) fits: the size ratio has to be increased by
10 % to 15 %. This leads to values 𝐶𝑎𝑠 that are smaller than those obtained with the other fits and
consequently to larger values of 𝐺𝑠, as can be noted in figure 10. The significant decrease of 𝐺𝑠 with
deformation and the dispersion of the fit results using the GH (𝜈𝑠 = 0.2) law indicate that 𝜈𝑠 = 0.2 is
not appropriate to model capsules with an ovalbumin membrane. Gubspun et al. (2017) conducted pore
flow experiments on capsules with a reticulated human serum albumin membrane (thus very similar to
the present capsules with an ovalbumin membrane) and provide deformed profiles with their respective
size ratios 𝑎/𝑙 and𝐶𝑎𝑠 values obtained assuming a GH membrane with 𝜈𝑠 = 0.4. We have tried to fit the
published profiles with the same law and with the indicated parameter values without success. This may
indicate that the GH law with values of 𝜈𝑠 < 0.5 is not very appropriate to model this type of capsule.

When we analyse the microrheometric measurements, it is not possible to give a trend of the
values of 𝐺𝑠 with Λ because of the fairly large error on 𝐷12. We have measured 25 capsules
with a radius between 30 and 46 µm subjected to deformation levels 0.35< 𝐷12 < 0.5. There is a
definite effect of the membrane constitutive law because the deformation is fairly large. Correspond-
ingly, the mean value of the shear modulus depends on the law: it is found to be 𝐺𝑠 = 0.039 ±

0.01 N m−1 for NH law, 𝐺𝑠 = 0.021 ± 0.007 N m−1 for GH (𝜈𝑠 = 0.5) and 𝐺𝑠 = 0.033 ± 0.01 N m−1

for GH (𝜈𝑠 = 0.2), all with a standard deviation of ±25 %. This large deviation is mostly linked to
the error in the measurement of 𝐷12. Another source of error is also due to the fact that the inverse
analysis uses deformation curves obtained for a viscosity ratio equal to unity between the internal and
external liquids, whereas this ratio is much smaller than 1 in the experiments. However, Foessel, Walter,
Salsac and Barthès-Biesel (2011) showed that the influence of this viscosity ratio is very small and does
not modify significantly the relationship between 𝐷12 and 𝐶𝑎𝑠, up to 𝐷12 � 0.5. This is why we have
discarded results with deformation larger than 0.5.
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Altogether, the microrheometric 𝐺𝑠 values, shown as shaded areas in figure 10, overlap well with
the results obtained with the microfluidic tube for large deformation. This is clear for the NH law, for
which 𝐺𝑠 is found to have the nearly constant value 0.043 ± 0.004 N m−1 by microfluidics or 0.039 ±

0.01 N m−1 by microrheometry. In the case of GH (𝜈𝑠 = 0.5) law, this conclusion applies for the range
of values of 𝐺𝑠 obtained for large deformation (Λ > 1.10) i.e. 0.027 ∼ 0.015 N m−1 by microfluidics
and 0.021 ± 0.007 N m−1 by microrheometry.

This validates the microfluidic approach to measure microcapsule properties.

5. Conclusion

The main objective of this paper was to propose a microfluidic methodology to measure the elastic
properties of a population of microcapsules. Why this method? Because the operating principle is
simple and the experimental set-up fairly inexpensive, apart from the visualization devices (microscope
and high-speed camera), which are indispensable to any dynamic micro-apparatus. The method is based
on the observation of flowing capsules in a cylindrical capillary tube and an inverse analysis of the
deformed profiles. The latter requires a full numerical model of the fluid–structure interaction, that
accounts for nonlinear membrane elastic properties, which we provide under the form of databases for
an initially spherical capsule with a membrane governed by a NH or general Hooke’s law with different
surface Poisson ratios. We also detail how the inverse analysis can be automated to provide information
on the type of elastic constitutive law that governs the capsule wall material together with the value of the
corresponding elastic parameters. This is possible because the confinement imposed by the microfluidic
configuration allows for large deformation of the capsule membrane. Note that a microfluidic method,
based on a similar inverse analysis adapted to the specific case of RBCs, has been proposed to analyse
automatically large cell populations (Saadat et al., 2020). The shape characterization is different from
the one presented here, as it had to be adapted to smaller, discoidal particles.

Another microrheological method is used where the capsules are subjected to a simple shear flow
in a counter-rotating Couette device. The method consists in capturing the deformed profile of those
capsules with their centre of mass in the zero velocity plane, which is somewhat tricky to perform. The
necessary databases for the inverse analysis are also provided for an initially spherical capsule with a
membrane governed by a NH or general Hooke’s law with different surface Poisson ratios.

We validate the two methods by confronting the results obtained with either one on a population of
artificial capsules with cross-linked ovalbumin membrane. We test three types of membrane laws, to
find for which constant values of 𝐺𝑠 are obtained: a strain-softening NH law and two strain-hardening
GH laws with dilation to shear ratios 𝐾𝑠/𝐺𝑠 = 3 or 1.5 (𝜈𝑠 = 0.5 or 0.2). The microfluidic method
predicts that the membrane shear modulus𝐺𝑠 is approximately constant for a NH law: this indicates that
this constitutive law is appropriate to model the mechanical behaviour of the ovalbumin membrane. In
contrast, the values of𝐺𝑠 decrease with deformation for GH (𝜈𝑠 = 0.5) law and exhibit much dispersion
for GH (𝜈𝑠 = 0.2) law. With the microrheometric method, there is too much experimental uncertainty to
decide which law is best adapted to describe the constitutive behaviour of the membrane material. On
average though, the high-deformation values of the membrane shear elastic modulus are the same with
the two methods for any given law: this validates the microfluidic methodology. A further potentiality of
the microfluidic methodology is that once 𝐺𝑠 is known, it is possible in principle to check if the capsule
membrane is strain-softening (NH law) or strain-hardening (GH law). This can be done by increasing
the flow rate to exceed the critical value of 𝐶𝑎𝑠 past which continuous elongation occurs when the
membrane is strain-softening. If continuous elongation is observed, the NH law is a good candidate to
model the wall behaviour. If not, the wall is then strain hardening and the GH law should serve as a
good approximation.

The feasibility study on artificial ovalbumin capsules allows us to define the optimal conditions to
diminish the impact of inherent uncertainties. For the microfluidic method to be precise, the capsule
global deformation should be large enough, i.e. the elongation ratio Λ of the perimeter of the observed
profiles should be larger than 1.05. Furthermore, the size ratio between the capsule and the tube radii,
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should not be smaller than 0.9: indeed, for smaller ratios, the deformation does not vary much with
flow strength, thus leading to large errors in the determination of the latter. Note that the capsule must
be transparent enough to allow measurement of the penetration length of the parachute, which is an
essential feature of the deformation. Consequently, the microfluidic method will not work on opaque
capsules, whereas the rheometric method would still be pertinent.

Potentially, the great strength of this technique is that it allows us to determine the type of membrane
constitutive behaviour: strain hardening or softening. This is very important as, under given flow stress,
strain-softening capsules may be more prone to deformation induced damage than strain-hardening ones.
Furthermore, the microfluidic method is well adapted for quality control, as it allows small batches of a
capsule suspension to be diverted from a production line to a measuring test section. Of course, images
and their contours should be acquired automatically, as done by Minetti, Podgorski, Coupier and Dubois
(2014) or Saadat et al. (2020), and post-treated automatically as explained in this paper.
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