Summer Meeting hosted by the Irish Section, 16–19 July 2012, Translational nutrition: integrating research, practice and policy

The relationship between body composition and vitamin E status in females aged 18-40 years

A. Mullee, M. S. Mulhern, J. M. W. Wallace and J. J. Strain

Northern Ireland Centre for Food and Health (NICHE), University of Ulster, Coleraine BT52 1SA, UK

Obesity is an independent risk factor and a major contributor to morbidity and mortality in the general population⁽¹⁾. The condition is associated with alterations in both lipid metabolism and adipose tissue distribution⁽²⁾, which may affect plasma concentrations of the fat soluble vitamin E. Vitamin E, found in the diet in the form of four tocopherols (α -, β -, γ - and δ -) four tocotrienols (α -, β -, γ - and δ -), is an important antioxidant. Previous studies investigating the relationship between α -tocopherol, and % body fat have shown conflicting results, one study finding a positive correlation⁽³⁾ and the other no significant correlation⁽⁴⁾. The aim of this study was to determine whether plasma α - and γ -tocopherol concentrations were associated with measures of adiposity in apparently healthy females between 18 and 40 years of age.

A total of 32 normal weight (BMI 18.5–24.9 kg/m²) and 22 overweight/obese (BMI 25–39 kg/m²) volunteers participated in the study. Plasma α - and γ -tocopherol were measured by HPLC (Waters Ltd, Dublin, Ireland). Serum lipids were measured using standard commercial kits. Body composition was analysed using BodPod[®] by air displacement plethysmography.

	Normal $(n = 32)$		Overweight/obese $(n = 22)$	
	Mean	SD	Mean	SD
α-tocopherol (µmol/l)	23.98	3.51	23.91	5.02
α-tocopherol/cholesterol (µmol/mmol)	5.24	0.49	5.17	0.63
γ -tocopherol (μ mol/l) ^{?ψ}	1.57	1.36-1.86	1.53	1.19-2.30
γ -tocopherol/cholesterol (µmol/mmol) ^{ψ}	0.37	0.27-0.49	0.37	0.27-0.43
Percent fat (%)	26.3	6.62	35.9	4.27**
Fat mass $(kg)^{??\psi}$	14.9	12.7-19.7	26	23.4-27.8**
Fat free mass (kg)	44.1	4.72	48.1	5.05*
Fat mass index (kg/m ²) ^{\psi}	5.76	4.69-7.12	9.53	8.89-10.42

^wResults expressed as medians and IQR.

Mean values were significantly different from those of normal weight.

*P = 0.001; **P = 0.001 from independent samples T-tests.

There were no significant differences in plasma α - and γ -tocopherol and lipid concentrations between the normal weight and the overweight obese groups. No significant correlations were found between plasma tocopherol status and measures of adiposity. In conclusion, vitamin E status does not appear to be affected by increased adiposity in females with a BMI of $25-39 \text{ kg/m}^2$ compared to normal weight females. Due to a limited sample size, further research is warranted to investigate if obesity affects vitamin E status.

- 1. Whitlock G, Lewington S, Sherliker P et al. (2009) Lancet 373, 1083-1096.
- Kissebah AH, Vydelingum N, Murray R et al. (1982) J Clin Endocrinol Metab 54, 254–260. Grolier P, Boirie Y, Levadoux E et al. (2000) Br J Nutr 84, 711–716. 2.
- 3.
- 4. Wallstrom P, Wirfalt E, Lahmann PH et al. (2001) Am J Clin Nutr 73, 777-785.