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Abstract

Functional programmers have many things for which to thank the late David Turner: design deci-
sions he made in his languages SASL, KRC, and Miranda over the last 50 years are still influential
and inspirational now. In particular, Turner was a strong advocate of lazy evaluation and of list com-
prehensions. As an illustration of these techniques, he popularized a one-line recursive “sieve” to
generate the infinite list of prime numbers.

Turner called this algorithm The Sieve of Eratosthenes. In a lovely paper called “The Genuine
Sieve of Eratosthenes”, Melissa O’Neill argued that Turner’s program is not in fact a faithful imple-
mentation of the algorithm, and gave a detailed presentation using priority queues of the real thing.
She included a variation by Richard Bird, which uses only lists but makes clever use of circular pro-
gramming. Bird describes his circular program again in his textbook “Thinking Functionally with
Haskell”, and sets its proof of correctness as an exercise. In particular, why is this circular program
productive? Unfortunately, Bird’s hint for a solution is incorrect. So what should a proof look like?

One of the last projects Turner worked on was the notion of “Total Functional Programming”. He
observed that most programs are already structurally recursive or corecursive, therefore guaranteed
respectively terminating or productive; he conjectured that “with more practice we will find this is
always true”. We explore Bird’s circular Sieve of Eratosthenes as a challenge problem for Turner’s
Total Functional Programming.

1 Introduction

The late David Turner had great taste in language design and programming. In particular,
he was a strong advocate for lazy evaluation and list comprehensions. One example pro-
gram that he introduced in order to illustrate these techniques (Turner, 1976, 1982) is a
one-line recursive “sieve” to generate the infinite list of prime numbers:

primes :: [Integer]
primes = sieve [2 . .] where sieve (p : xs) = p : sieve [x | x← xs, x mod p � 0]
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2 J. Gibbons

That is, sieve takes a stream of candidate primes, initially the “plural” naturals (those
greater than one); the head p of this stream is a prime, and the subsequent primes are
obtained by removing all multiples of p from the candidates and sieving what remains. It’s
also a nice unfold (Gibbons & Jones, 1998; Meertens, 2004).

Turner called this algorithm “The Sieve of Eratosthenes”. Unfortunately, as O’Neill
(2009) observes, this nifty program is not in fact faithful to Eratosthenes. The problem is
that for each prime p, every remaining candidate is tested for divisibility by p. O’Neill calls
this algorithm “trial division”, and argues that the Genuine Sieve of Eratosthenes should
eliminate every multiple of p without reconsidering all the candidates in between. That
is, at most every other natural number should be tested when eliminating multiples of 2,
at most one in every three for multiples of 3, and so on. As an additional optimization,
it suffices to eliminate multiples of p starting with p2, since by that point all composite
numbers with a smaller nontrivial factor will already have been eliminated.

O’Neill’s paper presents a purely functional implementation of the Genuine Sieve of
Eratosthenes. The tricky bit is keeping track of all the eliminations when generating an
unbounded stream of primes, since obviously one can’t eliminate all the multiples of one
prime before moving on to the next prime. Her solution is to maintain a priority queue of
iterators. Indeed, the main argument of her paper is that functional programmers are often
too quick to use lists, when other data structures such as priority queues might be more
appropriate.

O’Neill’s functional pearl was published in the Journal of Functional Programming,
when Richard Bird was the handling editor for Functional Pearls. The paper includes an
epilogue that presents a purely list-based but circular implementation of the Genuine Sieve,
contributed by Bird during the editing process. Bird describes his circular program again
in his textbook “Thinking Functionally with Haskell” (Bird, 2014),∗ and sets as an exercise
its proof of correctness, specifically productivity. Unfortunately, Bird’s hint for a solution
is incorrect.

One of the last projects Turner worked on was the notion of “Total Functional
Programming” (Turner, 2004), “designed to exclude the possibility of non-termination”.
He observed that most programs are already structurally recursive or corecursive, therefore
guaranteed respectively terminating or productive; he conjectured that “with more practice
we will find this is always true”. But it seems that it is not always so easy. In particular,
Bird’s circular Sieve of Eratosthenes is apparently productive; but it is not clear how it
might fit within Turner’s vision for Total Functional Programming. In this paper, we take
on this challenge. What should Bird’s proof hint have said?

2 The Genuine Sieve, using lists

Bird’s program appears in Section 9.2 of his book (Bird, 2014), henceforth “TFWH”. It
deals with lists, but in this paper these will be infinite, sorted, duplicate-free streams, rep-
resenting infinite sets—in this case, sets of natural numbers. In particular, the program
involves no empty or partial lists, only properly infinite ones (but our proofs later will
have to deal with partial lists as well).

∗ JFP doesn’t list O’Neill’s paper as a Pearl, but this was a production error (Tranah, 2024).

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796824000194
Downloaded from https://www.cambridge.org/core. IP address: 18.191.198.142, on 12 Mar 2025 at 03:00:52, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796824000194
https://www.cambridge.org/core


Turner, Bird, Eratosthenes: An eternal burning thread 3

The prime numbers are what you get by eliminating the composite numbers from the
plural naturals, and the composite numbers are the proper multiples of the primes. So the
program is cleverly circular:

primes, composites :: [Integer]
primes = makeP composites
composites = makeC primes

where

makeP, makeC :: [Integer]→ [Integer]
makeP cs = 2 : ([3 . .] \\ cs)
makeC ps = mergeAll (map multiples ps)

For later convenience, we have slightly refactored the program as presented by Bird, nam-
ing the components makeP and makeC. In particular, primes is a fixpoint of makeP ·
makeC.

Here, (\\) is the obvious implementation of list difference of strictly increasing streams,
hence representing set difference:

(\\) :: Ord a⇒ [a]→ [a]→ [a]
(x : xs) \\ (y : ys)
| x < y = x : (xs \\ (y : ys))
| x y = xs \\ ys
| x > y = (x : xs) \\ ys

and multiples p generates the multiples of p starting with p2:

multiples p = [p× p, p× p+ p . .]

Thus, the composites are obtained by merging together the infinite stream of infinite
streams [[4, 6 . .], [9, 12 . .], [25, 30 . .], ...]. You might think that you could have defined
instead makeP cs = [2 . .] \\ cs, but this doesn’t work: this won’t compute the first prime
without first computing some composites, and you can’t compute any composites without
at least the first prime. So using this in the definition of primes would be unproductive.
Somewhat surprisingly, it suffices to “prime the pump” just with 2; everything else flows
freely from there.

Now for mergeAll, which represents the union of a set of sets. Here is the obvious
implementation of merge, which merges two strictly increasing streams into one, hence
representing set union:

merge :: Ord a⇒ [a]→ [a]→ [a]
merge (x : xs) (y : ys)
| x < y = x : (merge xs (y : ys))
| x y = x : merge xs ys
| x > y = y : merge (x : xs) ys

Then mergeAll is basically a stream fold with merge. You might think you could
define this simply by mergeAll (xs : xss) = merge xs (mergeAll xss), but again this would
be unproductive. After all, you can’t merge the infinite stream of sorted streams
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4 J. Gibbons

[[5, 6 . .], [4, 5 . .], [3, 4 . .], ...] into a single sorted stream: there is no least element with
which to start. Instead, we have to make the assumption that we have a sorted stream of
sorted streams; then the binary merge can exploit the fact that the head of the left stream is
the head of the result, without needing to examine the right stream. So, we define:

mergeAll :: Ord a⇒ [[a]]→ [a]
mergeAll (xs : xss) = xmerge xs (mergeAll xss)

xmerge :: Ord a⇒ [a]→ [a]→ [a]
xmerge (x : xs) ys = x : merge xs ys

This program is now productive, and primes yields the infinite sequence of prime numbers,
using the genuine algorithm of Eratosthenes.

Incidentally, although it is faithful, O’Neill (2009) points out that this program is not
asymptotically optimal. After all, it is basically simulating her priority queues using noth-
ing but ordered lists, incurring a logarithmic penalty. But that has no bearing on this
paper.

3 The Approx Lemma

Bird uses his circular program as an illustration of the Approx Lemma. Define

approx :: Int→ [a]→ [a]
approx (n+ 1) [ ] = [ ]
approx (n+ 1) (x : xs) = x : approx n xs

Then we have

Lemma 1 (Approx Lemma). For finite, partial, or infinite lists xs, ys,

(xs = ys)⇐⇒ (∀n ∈N . approx n xs = approx n ys)

Note that approx 0 xs is undefined; the function approx n preserves the outermost n con-
structors of a list, but then truncates anything deeper and replaces it with ⊥ (the undefined
value), returning a partial list if the input was longer. That is, the lemma states that two
lists are equal if (and of course only if) all their partial approximations agree.

So to prove that primes does indeed produce the prime numbers, it suffices to prove that

approx n primes = p1 : ... : pn :⊥
for all n, where pj is the jth prime (we take p1 = 2, counting the primes starting from one,
for consistency with TFWH). Bird therefore defines

prs n = approx n primes
crs n = makeC (prs n)

and claims that

prs n = approx n (makeP (crs n))

To prove the claim, he observes that it is necessary for crs n to be well defined at least
up to the first composite number greater than pn+1, because only then does crs n deliver
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Turner, Bird, Eratosthenes: An eternal burning thread 5

enough composite numbers to supply prs (n+ 1), which will in turn supply crs (n+ 1),
and so on. It is what Bird calls a “non-trivial result in Number Theory” that pn+1 < (pn)2,
which places an upper bound on the composites required: it therefore suffices that

crs n = c1 : ... : cm :⊥
where cj is the jth composite number (so c1 = 4) and cm = (pn)2. Completing the proof
is set as Exercise 9.I of TFWH, and Answer 9.I gives a hint about using induction to show
that crs (n+ 1) is the result of merging crs n with multiples pn+1.†

Unfortunately, the hint in Answer 9.I is at best unhelpful. For instance, it implies
that crs 2 (which equals 4 : 6 : 8 : 9 :⊥) could be constructed from crs 1 (which equals
4 :⊥) and multiples 3 (which equals [9, 12 . .]). But where do the 6 and 8 come from?
Nevertheless, the claim in Exercise 9.I is valid: the program is productive. What should
the hint for the proof have been?

4 Proving the Sieve of Eratosthenes correct

Here is a direct and non-recursive specification of the primes and composites:

(primesspec, compositesspec) = partition isPrime [2 . .]

divisors n = [d | d← [2 . . n], n mod d 0]
isPrime n = (divisors n [n])

By convention, 1 is considered neither prime nor composite (Sloane, 1999).
The interesting question is not really the elements of the lists, but productivity—that is,

not so much showing that primesspec is a fixed point of makeP ·makeC, but that it is the
least fixed point. So we state the following lemma without proof:

Lemma 2 (relating specification and implementation).

primesspec = makeP compositesspec

compositesspec = makeC primesspec

We will prove that primes = primesspec.

4.1 Approximations

We will need two variations on approx, using a predicate instead of a count for termination:

approxWhile, approxUntil :: (a→ Bool)→ [a]→ [a]
approxWhile p (x : xs) | p x = x : approxWhile p xs

| otherwise = ⊥
approxUntil p (x : xs) | p x = x :⊥

| otherwise = x : approxUntil p xs

† Incidentally, there is a typo in TFWH: the body of the chapter, the exercise, and its solution all have
“m = (pn)2” instead of “cm = (pn)2”.
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6 J. Gibbons

In words, approxWhile p xs gives the longest approximation to xs all of whose elements
satisfy p, and approxUntil p xs gives the shortest approximation to xs containing an element
satisfying p (or xs itself, if no element satisfies p). That is, approxUntil p stops with and
includes the first element that satisfies p, whereas approxWhile p stops with and excludes
the first element that fails to satisfy p. Our lists will be strictly increasing, and we will use
an upper bound for approxWhile and a lower bound for approxUntil; for example,

approxWhile (� 5) [1, 3 . .] = 1 : 3 : 5 :⊥
approxWhile (� 6) [1, 3 . .] = 1 : 3 : 5 :⊥
approxUntil (� 5) [1, 3 . .] = 1 : 3 : 5 :⊥
approxUntil (� 4) [1, 3 . .] = 1 : 3 : 5 :⊥

For integer x, we write “x ∈ xs” when x = xs !! n for some n, and say then that “xs is defined
at least as far as x”.

4.2 Properties of approximation

The two functions approxWhile and approx are related by:

Lemma 3 (introducing approxWhile). For strictly increasing, partial or infinite xs,

approx (n+ 1) xs = approxWhile (� (xs !! n)) xs

provided that xs is defined at least as far as xs !! n.

Moreover, approxWhile and approxUntil are related by:

Lemma 4 (approxWhile and approxUntil). For strictly increasing, partial or infinite xs
with x ∈ xs,

approxWhile (� x) xs = approxUntil (� x) xs

and approxWhile and set difference by:

Lemma 5 (approxWhile of difference). For strictly increasing, partial or infinite xs, ys with
y ∈ ys, x ∈ (xs \\ ys), and x < y,

approxWhile (� x) (xs \\ ys) = approxWhile (� x) (xs \\ approxWhile (� y) ys)

and mergeAll and approx by:

Lemma 6 (mergeAll and approx). For n � 0 and partial or infinite strictly increasing list
xss of properly infinite, strictly increasing lists, defined at least as far as xss !! n,

mergeAll (approx (n+ 1) xss) = approxUntil (� head (xss !! n)) (mergeAll xss)

Proof. By induction on n.
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Turner, Bird, Eratosthenes: An eternal burning thread 7

Base case. For n = 0, we have

mergeAll (approx (n+ 1) ((x : xs) : xss))
= [[ definition of approx ]]

mergeAll ((x : xs) :⊥)
= [[ definition of mergeAll, xmerge ]]

x : merge xs (mergeAll⊥)
= [[ definition of mergeAll, merge ]]

x :⊥
= [[ definition of approxUntil ]]

approxUntil (� x) (x : merge xs (mergeAll xss))
= [[ definition of mergeAll, xmerge ]]

approxUntil (� x) (mergeAll ((x : xs) : xss))

Inductive step. Let n � 0 and b = head (xss !! n) and assume as inductive hypothesis that

mergeAll (approx (n+ 1) xss) = approxUntil (� b) (mergeAll xss)

Note the following property of merge and approxUntil:

approxUntil (� b) (merge xs ys) = merge xs (approxUntil (� b) ys)

for infinite xs, ys with b ∈ ys, since merge becomes undefined as soon as either argument
does. Then we have

mergeAll (approx (n+ 2) ((x : xs) : xss))
= [[ definition of approx ]]

mergeAll ((x : xs) : approx (n+ 1) xss)
= [[ definition of mergeAll, xmerge ]]

x : merge xs (mergeAll (approx (n+ 1) xss))
= [[ inductive hypothesis ]]

x : merge xs (approxUntil (� b) (mergeAll xss))
= [[ observation above about merge and approxUntil ]]

x : approxUntil (� b) (merge xs (mergeAll xss))
= [[ definition of approxUntil, since x < head (xss !! n) = b ]]

approxUntil (� b) (x : merge xs (mergeAll xss))
= [[ definition of mergeAll, xmerge ]]

approxUntil (� b) (mergeAll ((x : xs) : xss))

4.3 Bertrand’s Postulate

Bird’s “non-trivial result in Number Theory” is Bertrand’s Postulate (Bertrand, 1845),
which states that pn+1 < 2× pn for n > 0. For our purposes, the weakening pn+1 < (pn)2

suffices; this is the key fact that makes Bird’s program productive. We encapsulate this in
the following proposition:
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8 J. Gibbons

Proposition 7 (number theory). For n � 0,

approx (n+ 1) primesspec

= approxWhile (� pn+1) (makeP (approxWhile (� (pn)2) compositesspec))

Informally, truncating the composites at (pn)2 provides enough input for makeP to generate
the primes at least as far as pn+1.

Proof of Proposition 7. For n � 1,

approx (n+ 1) primesspec

= [[ Lemma 3, and primesspec !! n = pn+1 ]]

approxWhile (� pn+1) primesspec

= [[ Lemma 2 ]]
approxWhile (� pn+1) ([2 . .] \\ compositesspec)

= [[ Lemma 5, with y = (pn)2 > pn+1 by Bertrand’s Postulate ]]
approxWhile (� pn+1) ([2 . .] \\ approxWhile (� (pn)2) compositesspec)

= [[ 2 is not composite ]]
approxWhile (� pn+1) (2 : ([3 . .] \\ approxWhile (� (pn)2) compositesspec))

= [[ definition of makeP ]]
approxWhile (� pn+1) (makeP (approxWhile (� (pn)2) compositesspec))

The step invoking Lemma 5 is not valid when n = 0, because p0 is undefined, and hence
so too is the set difference. Nevertheless, the overall proposition

approx 1 primesspec

= approxWhile (� 2) (makeP (approxWhile (�⊥2) compositesspec))

still holds in that case, both sides being equal to 2 :⊥.

4.4 Completing the proof

We prove the following result:

Proposition 8 (approximations). For all n,

approx n primes = approx n primesspec

approxWhile (� (pn)2) composites = approxWhile (� (pn)2) compositesspec

Proof. By induction on n.

Base case. When n = 0, both equations trivially hold, because approx 0 and p0 are
undefined. When n = 1, both equations hold by inspection.

Inductive step. We now consider the case n+ 1 with n > 0. Assume the inductive
hypothesis

approx n primes = approx n primesspec

approxWhile (� (pn)2) composites = approxWhile (� (pn)2) compositesspec
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Turner, Bird, Eratosthenes: An eternal burning thread 9

Note that the second equation implies that composites is defined at least as far as (pn)2.
Therefore, by Proposition 7, also makeP (approxWhile (� (pn)2) composites) is defined at
least as far as pn+1. We refer to these facts as “(pn)2 is present in composites” and “pn+1 is
present in primes” below. Then we have:

approx (n+ 1) primesspec

= [[ Proposition 7 (Bertrand’s Postulate) ]]
approxWhile (� pn+1) (makeP (approxWhile (� (pn)2) compositesspec))

= [[ inductive hypothesis ]]
approxWhile (� pn+1) (makeP (approxWhile (� (pn)2) composites))
= [[ definition of makeP; see (∗) below ]]

approxWhile (� pn+1) ([2 . .] \\ approxWhile (� (pn)2) composites)
= [[ Lemma 5, since (pn)2 is present in composites ]]

approxWhile (� pn+1) ([2 . .] \\ composites)
= [[ definition of makeP; see (∗) below ]]

approxWhile (� pn+1) (makeP composites)
= [[ definition of primes ]]

approxWhile (� pn+1) primes
= [[ Lemma 3, since pn+1 is present in primes ]]

approx (n+ 1) primes

For the two steps marked (∗), we switch freely between makeP cs = 2 : ([3 . .] \\ cs) and
[2 . .] \\ cs for different values of cs; this is sound, because in both cases cs is defined at
least as far as its head, namely 4.

This deals with the first equation. In particular, primes is defined at least as far as pn+1.
For the second equation, let b = (pn+1)2, so that

b = head (map multiples primesspec !! n) = head (map multiples primes !! n)

Then

approxUntil (� b) composites
= [[ definition of composites ]]

approxUntil (� b) (makeC primes)
= [[ definition of makeC ]]

approxUntil (� b) (mergeAll (map multiples primes))
= [[ Lemma 6, given that primes is defined at least as far as pn+1 ]]

mergeAll (approx (n+ 1) (map multiples primes))
= [[ naturality of approx ]]

mergeAll (map multiples (approx (n+ 1) primes))
= [[ first equation ]]

mergeAll (map multiples (approx (n+ 1) primesspec))

= [[ naturality of approx ]]
mergeAll (approx (n+ 1) (map multiples primesspec))

= [[ Lemma 6 ]]
approxUntil (� b) (mergeAll (map multiples primesspec))
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10 J. Gibbons

= [[ definition of makeC ]]
approxUntil (� b) (makeC primesspec)

= [[ Lemma 2 ]]
approxUntil (� b) compositesspec

In particular, b is in composites; therefore also

approxWhile (� b) composites = approxWhile (� b) compositesspec

by Lemma 4, dealing with the second equation too.

Finally, we have:

Theorem 9 (the primes program is correct).

primes = primesspec

Proof. A direct corollary of Proposition 8, by Lemma 1.

This completes the proof of correctness of Bird’s program.

5 Conclusion

Total Functional Programming: As discussed in the introduction, David Turner’s ambition
(Turner, 2004) was for future programming languages that were “designed to exclude the
possibility of non-termination”. He observed that most programs are already structurally
recursive or corecursive, therefore guaranteed respectively terminating or productive, and
conjectured that “with more practice we will find this is always true”. He explicitly admits
in that paper that “rewriting the well known sieve of Eratosthenes program [by which he
means trial division] in this discipline involves coding in some bound on the distance from
one prime to the next”. We have coded that bound by appeal to a weakening of Bertrand’s
Postulate (Proposition 7)—but Turner’s vision would require that appeal at least to be
acknowledged by the totality checker. One could go as far as full dependent types, in
which case the relevant assumption can be formally expressed as a theorem. But still, one
would either have to prove the theorem—a decidedly non-trivial matter (Théry, 2003)—or
accept it as an unverified axiom; Turner said that he was “interested in finding something
simpler” than full dependent types. Much as I find Turner’s vision for total functional
programming appealing, I fear that we are still some way off, even after 20 years of “more
practice”. However, I would be delighted to be shown to be unnecessarily pessimistic.

Trial division: Turner popularized the trial division algorithm in various publications;
I believe that the earliest of these is the SASL Manual. Interestingly, SASL changed
from eager semantics (Turner, 1975) to lazy semantics (Turner, 1976); the primes pro-
gram appears only in the later of those two documents, despite them both having the same
technical report number. (List comprehensions appeared with KRC (Turner, 1982), orig-
inally called “ZF expressions”, apparently being retrofitted to SASL the following year
(Turner, 1983); the 1976 primes program was written instead with a filter.) Turner (2020)
acknowledged that the program appeared in a famous paper by Kahn & MacQueen (1977):
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Turner, Bird, Eratosthenes: An eternal burning thread 11

Did I see a preprint of that in 1976? I don’t recall but it’s possible, in
which case my contribution was to express the idea using recursion and
lazy lists.

The program also appeared in papers about the dataflow language Lucid; for example,
Ashcroft & Wadge (1977) again attribute it to Kahn. Kahn & MacQueen (1977) in turn
credit it to McIlroy (1968). McIlroy (2014) records‡:

For examples in a talk at the Cambridge Computing Laboratory (1968)
I cooked up some interesting coroutine-based programs. One, a prime-
number sieve, became a classic, spread by word of mouth.

Turner (1976), Kahn & MacQueen (1977), and Wadge & Ashcroft (1985) call the trial
division algorithm “The Sieve of Eratosthenes”, but McIlroy (1968, 2014) does not.

Proofs about infinite lists: In developing this proof, we also considered an ApproxWhile
Lemma, analogous to the Approx Lemma (Lemma 1):

Lemma (ApproxWhile Lemma). For any infinite sequence b0 < b1 < ··· of integer
bounds, and two lists xs, ys of integers, whether finite, partial, or infinite,

(xs = ys)⇐⇒ (∀i . approxWhile (� bi) xs = approxWhile (� bi) ys)

But this is much less general: the elements must now be ordered; and moreover, the bounds
must grow without limit, so it doesn’t hold universally for rationals, or pairs, or strings.
Note that we used naturality of approx in the proof of Proposition 8; the corresponding
property of approxWhile is not so straightforward. Perhaps it is possible to phrase a proof
in terms solely of approxWhile without using approx? We have not pursued this further.

Bird’s exercise: What of TFWH (Bird, 2014)? This paper was prompted by a series of
ten emails from Francisco Lieberich (Lieberich, 2018) pointing out this and other errors
in the book. Recall that Bird’s hint towards the proof implies that crs 2 = 4 : 6 : 8 : 9 :⊥
can be obtained by merging crs 1 = 4 :⊥ and multiples 3 = [9, 12 . .]. In fact, a more
helpful hint that Bird could have given is that crs 2 can be constructed from crs 1 alone,
without needing multiples 3 at all: crs 2 = makeC (makeP (crs 1)). This doesn’t quite work
for higher values, because the right-hand side is too productive: makeC (makeP (crs 2))
yields the composites up to 49, whereas crs 3 needs composites only up to (p3)2 = 25. A
tighter but still sufficient condition is

crs (n+ 1) = makeC (approx (n+ 1) (makeP (crs n)))

I have added that observation to the errata for the book (Bird, 2014). Nevertheless, the
margin of TFWH is too narrow to contain the proof presented here, so I still have no
appropriate correction to apply.

‡ Turner was an undergraduate at Oxford before starting his DPhil there in 1969, so it seems unlikely that he
was present at McIlroy’s talk in Cambridge. I conjecture that Turner learnt of the program via someone who
did attend—perhaps Christopher Strachey, Turner’s original DPhil supervisor.
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