Dissociation of methionine synthetase (EC 2.1.1.13) activity and impairment of DNA synthesis in fruit bats (*Rousettus aegyptiacus*) with nitrous oxide-induced vitamin B_{12} deficiency

BY SUSAN V. VAN TONDER, ANGELA RUCK, J. VAN DER WESTHUYZEN, F. FERNANDES-COSTA* AND J. METZ

Department of Haematology, School of Pathology of the South African Institute for Medical Research, PO Box 1038, Johannesburg 2000, South Africa and the University of the Witwatersrand, Johannesburg, South Africa

(Received 2 July 1985 – Accepted 9 August 1985)

1. The effect of methylcobalamin inactivation by the anaesthetic gas nitrous oxide on the activity of the cobalamin-dependent methionine synthetase (5-methyltetrahydrofolate homocysteine methyltransferase; EC 2.1.1.13) reaction, and on DNA synthesis, in the fruit bat *Rousettus aegyptiacus*, was examined.

2. Methionine synthetase activity in the liver of bats exposed to N_2O -oxygen (50: 50, v/v) for 90 min/d averaged 32% of that of controls after 4 d of exposure and only 5% after 12-14 weeks of exposure.

3. DNA synthesis in the bone marrow, as reflected by the deoxyuridine suppression test, was unaffected by 4 d of exposure to N_2O and only minimally affected after 5–10 weeks of exposure.

4. These results suggest that DNA synthesis in the fruit bat is unusually resistant to inhibition of methionine synthetase and imply the existence of a non-methylated circulating folate pool in this species.

Nitrous oxide oxidizes active reduced cob(I)alamin to inactive cob(III)alamin (Banks *et al.* 1968). Exposure to the gas results in inhibition of one of the mammalian vitamin B_{12} -dependent enzymes, methionine synthetase (5-methyltetrahydrofolate homocysteine methyltransferase; *EC* 2.1.1.13) (Deacon *et al.* 1978), which requires methylcobalmin as cofactor. In humans (Amess *et al.* 1978), monkeys (Dinn *et al.* 1978) and rats (Deacon *et al.* 1980*a, b*) the inhibition of methionine synthetase induced by short-term exposure to N_2O is accompanied by abnormal *de novo* synthesis of DNA, as demonstrated by the deoxyuridine (dU) suppression test (Killman, 1964; Metz *et al.* 1968). It is probable that inhibition of methionine synthetase is related directly to abnormal DNA synthesis (Herbert & Zalusky, 1962; Noronha & Silverman, 1962; reviewed by Das & Herbert, 1976). Prolonged exposure to N_2O also depletes the animal's vitamin B_{12} stores (Kondo *et al.* 1981; van der Westhuyzen *et al.* 1982).

In the fruit bat (*Rousettus aegyptiacus*) deprived of dietary vitamin B_{12} , severe deficiency of the vitamin ensues (Green *et al.* 1975) but, in contrast to man and other animals, DNA synthesis remains unaffected as shown by a normal dU suppression test (Miller *et al.* 1980). This unexpected observation led to the present study of the dU suppression test in fruit bats exposed to N₂O, for the degree of inhibition by N₂O of the methylcobalamin-dependent methionine synthetase reaction may be greater than that associated with dietary vitamin B₁₂ deprivation since, in the latter situation, some metabolically-active coenzyme is likely always to be present.

The results indicate that short-term exposure to N_2O caused severe inhibition of methionine synthetase activity without affecting DNA synthesis. With long-term exposure, methionine synthetase activity fell to almost undetectable levels, yet the effect on DNA synthesis was minimal.

SUSAN V. VAN TONDER AND OTHERS

MATERIALS AND METHODS Experimental animals

Fruit bats (*Rousettus aegyptiacus*) were captured in the wild and maintained on a pest-free, all-fruit diet (Green *et al.* 1975; van Tonder *et al.* 1975), supplemented with an oral vitamin B_{12} -free multivitamin preparation ('Abidec'; Parke Davis) to prevent the development of deficiency of other vitamins (van der Westhuyzen *et al.* 1982).

Experimental procedure

Bats were exposed in a chamber to an atmosphere of N_2O -oxygen (50: 50, v/v) for 90 min daily. During exposure, levels of carbon dioxide and water vapour were controlled. Both short-term (4 d) and long-term (5–14 weeks) exposures were studied. At the end of the experiment, bats were killed by exsanguination via cardiac puncture and the liver removed immediately after death and stored on ice. Bone marrow was removed from the long bones and placed in ice-cold Hanks balanced salt solution (without pH indicator). Paired control and N_2O -exposed bats were killed at the same time. The dU suppression test on marrow, and methionine synthetase assay on liver, were carried out immediately after the death of the animals.

Methionine synthetase assay

Methionine synthetase activity in the liver was assayed by the method of Taylor & Wiessbach (1971) in which the rate of formation of [14C]methionine from homocysteine in the presence of [14C]methyltetrahydrofolate and S-adenosylmethionine is measured. All assays were performed in triplicate. The [14C]methyltetrahydrofolate was obtained from Amersham International (Amersham, Bucks, UK), L-homocysteine from Sigma Chemical Co. (Poole, Dorset, UK) and S-adenosylmethionine from Boehringer Mannheim.

dU suppression test

The dU suppression test was performed on bone marrow cells as described previously (Metz *et al.* 1968; Miller *et al.* 1980). dU, which is incubated with the cell suspension in the first part of the test, is normally converted into thymidine in a folate-requiring step and incorporated into DNA. Vitamin B_{12} coenzyme activity is assayed indirectly, since in the methionine synthetase reaction it is required for the conversion of the circulating form of folate (methyltetrahydrofolate) into the form involved in thymidine synthesis (5,10-methylenetetrahydrofolate). In the second part of the test, preformed [³H]thymidine is added to the cell suspension so that any requirements for DNA synthesis not met by synthesis from dU is met by incorporation of [³H]thymidine. The result is expressed as:

 $\frac{[^{3}H]thymidine uptake after dU}{[^{3}H]thymidine uptake alone} \times 100.$

Normal human marrow meets more than 90% of its thymidine requirements from dU so that less than 10% [³H]thymidine is utilized. Abnormal values (> 10%) are obtained in cobalamin deficiency (Metz *et al.* 1968).

Statistical analyses

Statistical evaluation was carried out using Student's *t*-test (two-tailed). The level of significance was chosen as P < 0.05. Results are expressed as means with their standard errors.

Table 1. Methionine synthetase (5-methyltetrahydrofolate homocysteine methyltransferase; EC 2.1.1.13) activity in the liver of control and nitrous oxide-exposed fruit bats (Rousettus aegyptiacus)

		Enzyme activity			
Group	nmol/ł	nmol/h per	mg protein	Demonstratio	
	n	n Mean SE of control			
Control	6	3.9	0.8	100	
N ₂ O 4 d 12-14 weeks	7 3	1·3* 0·4*	0-5 0-1	32 5	

(Mean	values	with	their	standard	errors)
-------	--------	------	-------	----------	---------

Mean value was significantly different from control value: * P < 0.02.

 Table 2. Results of the deoxyuridine (dU) suppression test with marrow cells of normal and nitrous oxide-exposed fruit bats (Rousettus aegyptiacus)

 (Mean values with their standard errors)

(Mean	values	with	tneir	stanoaro	errors)	

Group		$\frac{\text{Counts with } dU + [^{3}H] \text{thymidine}}{\text{counts with } [^{3}H] \text{thymidine alone}} \times 100$								
	n	dU alone			dU+PGA			dU+cyanocobalamin		
		Mean	SE	Range	Mean	SE	Range	Mean	SE	Range
Control	6	1.5	0.3	0.9-3.1	1.3	0.3	0-8-2-9	1.3	0-2	0.7-2.5
N ₂ O 4 d	5	1.4	0.3	0.7-2.0	1.2	0.4	0.6-2.0	1.4	0.4	0.5-2.4
5-10 weeks	10	4.4*	1.0	0.9-10.5	2.7	0.6	· 0·8-7·0	3.4	0.7	0.8-8.4

PGA, pteroylglutamic acid.

7

Mean value was significantly different from control value: • P < 0.05.

RESULTS

Methionine synthetase activity (Table 1)

Methionine synthetase activity was decreased in the liver of all bats exposed to N₂O compared with that of control animals. In short-term exposure, enzyme activity averaged 32% of that of control animals, and with prolonged exposure, the activity was almost undetectable ($\pm 5\%$). The difference in degree of reduction in both short-term and long-term exposures, as compared with control animals, was statistically significant (P < 0.02).

dU suppression test (Table 2)

The mean degree of suppression by dU in the bone marrow of bats after 4 d of exposure to N_2O (mean 1.4 (se 0.3)%) did not differ significantly from that in control animals (mean 1.5 (se 0.3)%). However, after long-term exposure to N_2O (mean 6.6 (se 0.4)weeks) the degree of suppression by dU (mean 4.4 (se 1.0)%) was significantly less than that of control

189

SUSAN V. VAN TONDER AND OTHERS

animals (P < 0.05) and of animals following short-term exposure to N₂O, although in the latter case the difference just failed to be statistically significant. The addition of either folate in the form of pteroylglutamic acid (PGA) or cyanocobalamin to the marrow cultures of animals after long-term exposure to N₂O produced a greater degree of dU suppression, so that the differences in the results of the dU suppression test between these and control animals was no longer statistically significant (Table 2). The corrective effect of PGA was greater than that of cyanocobalamin.

DISCUSSION

The effect of methionine synthetase activity in the liver or brain, or both, of rats exposed to N₂O has been reported by Deacon et al. (1978, 1979, 1980a, b) and Kondo et al. (1981). Deacon et al. (1978, 1979, 1980a, b) found the levels of enzyme activity in the liver of control rats to range from 1.4 to 3.4 nmol/h per mg protein; the synthetase activity after 30 min exposure to N₂O-O₂ (50:50, v/v) declined to 0.35-0.7 nmol/h per mg protein (30% of control) and, after 6 h of exposure, was virtually absent (0.03-0.04 nmol/h per mg protein); 6% of control). The dU suppression test became abnormal shortly after the inactivation of the enzyme. Brain methionine synthetase was depressed in a similar manner by exposure to N.O. Kondo et al. (1981) also showed a fall in activity in the liver of rats exposed to N_2O-O_2 (50: 50, v/v), but the degree of inhibition of the enzyme was less than that reported by Deacon et al. (1978, 1979, 1980a, b). Thus 15 min of exposure caused the level of methionine synthetase activity to decrease to 45% of control values, and activity fell to 30% after 1 h and remained at this level for exposure periods up to 2 d. With longer exposure, methionine synthetase activity decreased further to 18 and 12% of control values after 16 and 33 d respectively.

The results of the present study show that in the fruit bat too, exposure to N_2O-O_2 (50:50, v/v) results in inhibition of the methionine synthetase enzyme. Deacon *et al.* (1978, 1979, 1980a, b) and Kondo et al. (1981) exposed rats continuously to $N_{2}O$. This is not possible in the bat, a free-flying animal, and in the present experiments exposure was intermittent (90 min/d). However, it is most unlikely that the effects of intermittent exposure would be different from that of continuous exposure, for the rate of recovery of methionine synthetase following exposure to N₂O is extremely slow (Deacon et al. 1979; Kondo et al. 1981). The degree of inhibition of the enzyme in relation to the length of exposure was less in the bat than that reported by Deacon et al. (1979) in the rat, and more like that reported by Kondo et al. (1981) in the rat. The values reported by Deacon et al. (1979) and Kondo et al. (1981) for the rat differ in the degree of methionine synthetase inhibition produced by N_2O-O_2 (50:50, v/v) making comparison with the values for the bat difficult. However, the important finding was that with adequate exposure (12-14 weeks), methionine synthetase activity virtually disappeared from bat liver.

Deacon et al. (1980b) reported that in five marrows from control rats the dU suppression test mean was 6.6%. After 60 min of exposure to N2O it became abnormal, and increasingly abnormal till 6 h. There was usually a small improvement in the test of the order of 2-3%when 10 μ g hydroxycobalamin was added, and a somewhat greater fall when folate in the form of folinic acid (30 μ g) was added in vitro. In another paper, Deacon *et al.* (1980*a*) reported on studies of rats exposed to N_2O-O_2 (50:50, v/v) for 3 h. In forty control rats, the mean dU suppression was 7.3%. After 3 h of exposure to N₂O the dU suppression test was abnormal, the mean being 15.7%. There was no significant improvement in dU utilization on addition of $10 \,\mu g$ PGA; an improved dU utilization occurred with the addition of formylfolate.

The results in man differ from those reported in rats by Deacon et al. (1980a, b). In

190

191

Nitrous oxide-induced vitamin B_{12} deficiency

patients receiving N_2O-O_2 (50:50, v/v) for 24 h, the mean dU suppression was 19.9% (controls mean 4.0%) (Amess *et al.* 1978). The addition of 4 µg cyanocobalamin or 40 µg PGA produced significant correction in the dU suppression test, to 11.2 and 9.0% respectively. These results were confirmed in a further study of forty-two patients receiving N_2O-O_2 (50:50, v/v) (Amos *et al.* 1982). The dU suppression was abnormal in almost all patients, and significant partial correction occurred on addition of cyanocobalamin or PGA.

The effect of N_2O exposure on the dU suppression test in the bat, as shown in the present study, differed from those reported for man and the rat. Thus exposure of the bat to N_2O for 4 d failed to affect the dU suppression test. After 5–10 weeks of exposure to the gas, the dU suppression test in the bat was only mildly affected, in spite of the fact that methionine synthetase activity in the liver was virtually absent.

Methionine synthetase is the enzyme responsible for demethylating methyltetrahydrofolate (Poston & Stadtman, 1975), the major transport form of folate in man (Herbert *et al.* 1962) and probably in most other mammals (Scott & Weir, 1976). Without the initial demethylation step, folate is not available for intracellular metabolism (Scott & Weir, 1976) and normal dU utilization will not occur (reviewed by Das & Herbert, 1976) since its conversion to 5,10-methylenetetrahydrofolate is impaired.

Thus, depression of methionine synthetase appears to be the basis of the abnormal dU suppression test in vitamin B_{12} deficiency in humans (Killman, 1964; Metz *et al.* 1968), and following exposure to N₂O in humans (Amess *et al.* 1978), rats (Deacon *et al.* 1980*a*) and monkeys (Dinn *et al.* 1978).

DNA synthesis in the fruit bat appears to be unusually resistant to inhibition of methionine synthetase since neither profound dietary vitamin B_{12} deficiency (Miller *et al.* 1980) nor short-term N_2O exposure affects the dU suppression test. Only prolonged N_2O exposure results in abnormal dU suppression and even then the effect is slight. This is contrary to the findings in other mammalian species in which short-term exposure to N_2O has an immediate effect on the dU suppression test. As in other animals, dU suppression in the fruit bat is folate-dependent, for the addition of methotrexate, a potent inhibitor of the key enzyme dihydrofolate reductase (*EC* 1.5.1.3), results in a markedly abnormal dU suppression test (Miller *et al.* 1980). Thus the N_2O -treated bat has adequate metabolically active folate despite inhibition of the enzyme which in other species plays a key role in the provision of this form of folate.

The possible reason for the resistance of the fruit bat to the effects of dietary vitamin B_{12} deficiency or N_2O exposure on DNA synthesis may be related to the finding that the fruit bat has a non-methylated pool of circulating folate which is separate from the methyltetrahydrofolate pool (Perry *et al.* 1979). Folate from the non-methylated pool would be able to enter the metabolically active pool directly, by-passing the methionine synthetase-dependent step. Such a mechanism may have evolved in the fruit bat since, in the wild, it subsists on an exclusive fruit diet (fruit contains no vitamin B_{12}), and thus its vitamin B_{12} nutrition might be expected to be marginal. A protective pathway to serve as an escape from the effects of vitamin B_{12} deficiency would obviously be advantageous.

Supported in part by grants from the Medical Research Council and Atomic Energy Board, South Africa.

REFERENCES

Amess, J. A. L., Burman, J. F., Rees, G. M., Nancekievill, D. J. & Mollin, D. L. (1978). Lancet ii, 339-342.
Amos, R. J., Amess, J. A. L., Hinds, C. J. & Mollin, D. L. (1982). Lancet ii, 835-839.
Banks, R. G. S., Henderson, R. J. & Pratt, J. M. (1968). Journal of the Chemistry Society A, 2886-2888.
Das, K. C. & Herbert, V. (1976). Seminars in Haematology 5, 697-726.

- Deacon, R., Chanarin, I., Perry, J. & Lumb, M. (1980a). Biochemical and Biophysical Research Communications 93, 516-520.
- Deacon, R., Lumb, M., Muir, M., Perry, J., Chanarin, I., Minty, B., Halsey, M. J. & Nunn, J. (1979). In Vitamin B₁₂, pp. 1055–1060 [B. Zagalak and W. Friedrich, editors]. Berlin: W. de Gruyter.
- Deacon, R., Lumb, M., Perry, J., Chanarin, I., Minty, B., Halsey, M. J. & Nunn, J. F. (1978). Lancet ii, 1023–1024. Deacon, R., Lumb, M., Perry, J., Chanarin, I., Minty, B., Halsey, M. & Nunn, J. (1980b). Journal of Biochemistry 104, 419–422.
- Dinn, J. J., McCann, S., Wilson, P., Reed, B., Weir, D. and Scott, J. (1978). Lancet ii, 1154.
- Green, R. S., van Tonder, S. V., Oettle, G. J., Cole, G. & Metz, J. (1975). Nature 254, 148-150.
- Herbert, V., Larrabee, A. R. & Buchanan, J. M. (1962). Journal of Clinical Investigation 41, 1134-1138.
- Herbert, V. & Zalusky, R. (1962). Journal of Clinical Investigation 41, 1263-1276.
- Killman, S. A. (1964). Acta Medica Scandinavica 175, 483-497.
- Kondo, H., Osborne, M. L., Kolhouse, J. F., Binder, M. J., Podell, E. R., Utley, C. S., Abrams, R. S. & Allen, R. H. (1981). Journal of Clinical Investigation 67, 1270–1283.
- Metz, J., Kelly, A., Swett, V. C., Waxman, S. & Herbert, V. (1968). British Journal of Haematology 14, 575–592. Miller, M., Fernandes-Costa, F. & Metz, J. (1980). British Journal of Nutrition 44, 229–235.
- Noronha, J. M. & Silverman, M. (1962). In Vitamin B₁₂ and Intrinsic Factor. 2nd European Symposium, Hamburg, pp. 728-731 [M. C. Heinrich, editor]. Stuttgart: Enke Verlag.
- Perry, J., Lumb, M., van der Westhuyzen, J., Fernandes-Costa, F., Metz, J. & Chanarin, I. (1979). In Chemistry and Biology of Pteridines, pp. 315–320. [J. L. Kisluik and G. M. Brown, editors]. Amsterdam: Elsevier-North Holland.
- Poston, J. M. & Stadtman, T. C. (1975). In Cobalamin, 1st ed., pp. 141-214 [B. M. Babior, editor]. New York: John Wiley.
- Scott, J. M. & Weir, D. G. (1976). Seminars in Haematology 5, 547-568.
- Taylor, R. T. & Weissbach, H. (1971). Methods in Enzymology 18, 379-380.
- van der Westhuyzen, J., Fernandes-Costa, F., Metz, J., Drivas, G. & Herbert, V. (1982). Proceedings of the Society for Experimental Biology and Medicine 171, 88-91.
- van Tonder, S. V., Metz, J. & Green, R. (1975). British Journal of Nutrition 34, 397-410.