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1. In (8) Stonehewer referred to the following open question due to Amitsur:
If G is a torsion-free group and F any field, is the group algebra, FG, of G
over F semi-simple? Stonehewer showed the answer was in the affirmative
if G is a soluble group. In this paper we show the answer is again in the
affirmative if G belongs to a class of generalised soluble groups.

We define Jf to be the class of nilpotent groups, si to be the class of abelian
groups. We use E and L to denote the closure operations introduced by P.
Hall in (3). Then ELJf denotes the class of all groups having an ascending
locally nilpotent series. We recall that in (7) Plotkin has shown that each fiLJf-
group G has an ascending series with /^-factors such that each term is normal
in G. Since si ^ Jf and Lsi = si, it is clear that tsi g ELJf. The former
is the class SN* in the notation of Kurosh (4) and has recently been studied
by Wallace (10) under the name of restricted SW-groups. He has shown that
if G e Esi and F is any field of characteristic p where G has no non-trivial
elements of order p, then FG is semi-simple.

We note that if G is a SW-group and F any field of characteristic zero then
Villamayor (9) has shown that FG is semi-simple. We have been unable to
extend our result to this larger class.

If G is any group, the Hirsch-Plotkin radical of G, denoted by r\{G), is the
product of all the normal -L/T-subgroups of G. It is known that r}{G) is normal
and LJT.

Let G be any group and F any field. Then FG will denote the group algebra
of G over F. We denote the Jacobson radical of FG by J(FG) and recall that
FG is Jacobson semi-simple if and only if J(FG) = {0}.

Let H be any subgroup of G and T a right transversal to H in G. We
will assume that T contains 1 to represent the coset H. Let x be any non-zero
element of FG. Then x can be written uniquely in the form

n

x= Z <*i9i (1)
i = 1

where n ^ 1, 0 # af e FH and the g('s are distinct elements of T for i = 1,

The integer n occurring in (1) is called the " .//-length " of x. If g e G then
x and xg have the same //-length. Hence, if g e T and FG has an element of

E.M.S.—A
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//-length n, there exists an element x e FG of //-length n and #, = # for some
i in (1). The remainder of this paper is divided into two sections. In the next
section we prove certain lemmas necessary for the proof of our theorem. The
proof of this theorem is given in the final section.

The author would like to thank Dr S. E. Stonehewer for suggesting this
problem and for his help and encouragement during the preparation of this
paper. This work was carried out while the author held a Science Research
Council studentship.

2. We begin this section with a lemma due to Amitsur.

Lemma 1. Let G be any group, H any subgroup and F any field, then
J(FG)nFH ^ J(FH).

This was first proved in (1).

Lemma 2. Let F be any field and G a torsion-free LJ/'-group. Then the
following conclusions hold:

(a) FG has no zero-divisors.
(b) J(FG) = {0}.

Proof. We recall that if G is a torsion-free /-/T-group, then G can be
ordered (6). The proofs of (a) and (b) can be found in (2).

Lemma 3. Let G be any group such that r\(G) is torsion-free and greater
than 1. Let F be any field such that FG is not semi-simple. Then there exists
a subgroup Gt of G such that FGt is not semi-simple and the centre of Gt is
non-trivial.

Proof. If G has a non-trivial centre G = G1 will do. If not, choose
0 # x e J(FG). Let H = n(G) and let T be a transversal (with 1) to H in G.
Then x can be uniquely written in the form

i = 1

where n ^ 1, 0 # /XfeFH and the gt's are distinct elements of Tfor 1 ^ i ^ n.
Suppose that x has minimal //-length among the non-zero elements of J{FG).
We can assume that one of the g,'s, gx say, is 1, since J(FG) is an ideal of FG.

Now each xt belongs to FH and can be written uniquely in the form

heH

where yh e F and all but a finite number are zero. Let supp (af) be the set of all
he H such that yh is non-zero.

We can assume that supp (af) # 1 for some i, since x and xk have the
same //-length for all ke H.

Let H{x) = <supp (a,): 1 ^ i ^ n).
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Then H(x) is a finitely generated subgroup of H and hence nilpotent. Also,
H(x) is greater than 1.

Let Z ¥= <1> be the centre of H(x). Choose heZ, then x-xheJ(FG)
where x* = h~lxh.

xh= t «&, QF^Qt and [fc, gf^efl,
i = 1

since H is normal in G.

x-xh= t ^l-lh,gr^)gi = 0,
i = 2

by the choice of x. Thus, a^l —[A, fff1]) = 0 by uniqueness, a, # 0 and
since a,(l-[/i, gf1]) e FH, Lemma 2 implies [ft, gf1] = 1 for 1 g i g n.

Let Gj = (H(x), g{: 1 ^ j ^ «>. Then clearly Z is contained in the centre
of Gt and FGj is not semi-simple by Lemma 1.

3. In this section we prove the main result of this paper.

Theorem. Let G be any torsion-free ELJf-group and F any field, then FG
is semi-simple.

Proof. Assume that the theorem is false and let <Sf be the collection of
groups G such that G is a torsion-free .EZJ^-group with a non-trivial centre
and FG is not semi-simple. Such a collection is non-empty by Lemma 3.
We now find a group G* in <3( such that if H* = r\{G*) then H* coincides with
the centre of G*.

The rest of the proof is as follows:

Let L/H* be the Hirsch-Plotkin radical of G*/H*. L is normal in G*
and L/H* is locally nilpotent. However H* is the centre of G* and hence L
is locally nilpotent and contained in tj(G). Thus H* = L = G*, G* is abelian
and Lemma 2 gives a contradiction. We have to find G* e <3f to prove the
theorem. Choose G e& and let H = r\(G). Choose T to be a transversal to
H in G where we assume T contains 1. Then each non-zero x e FG can be
written uniquely in the form

n
x = E ai9t> where n ^ 1, 0 # af e FH

i = 1

and the gt are distinct elements of Tfor 1 iS i ^ «.
Let iV be the centre of G. Then N ^ H and we choose S to be a transversal

(with 1) to JV in H. Now each at can be written uniquely in the form

<*.• = % PLJKJ>
 w h e r e hi

and the hit j are distinct elements of S for z fixed and 1 ^ _/ ̂  w(/).
Let /(x) be the minimal m(i) for 1 ^ i ^ n, then f(x) = m(j) for some

and, without loss of generality, we may assume j = 1.
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Let r(x) be the ordered pair («, t(x)) and choose x from among the non-zero
elements of J(FG) such that x is minimal with respect to =̂  the lexicographic
ordering on Z + x Z+.

We define r{x) = r(G) and choose G e<& such that r(G) is minimal with
respect to ^ among the elements of <&. For this G choose x e J(FG) such that
r(x) = r(G) and, in the decomposition of x, gt = Alt t = 1. This we can do
since r(x) = r(xg) for all # 6 G.

Let G* = <iV, //,-, ^ , : 1 ^ 7 ^ /n(0> 1 ^ * ̂  «>• Then JV ̂  N*, the centre
of G* and HnG* ^ H* = t](G*). By Lemma 1, xeJ(FG*) and hence

Hence we have to show H* = N* to complete the proof. ^i,;#j and
hi,k9i belong to the same coset of H* in G*. Let this coset be H*g* where
g* belongs to some transversal T* to H* in G*. We assume T* contains 1
and g* - 1.

Then each hltigi can be written in the form hijgi = n*jh*jgf where
nfj e N*, and hfj belongs to some transversal to N* in H*. We can assume

n m*(i)

Thus x can be written in the form x = £ £ ft f jh? j-gf where ft* j = fa jtifj
t = i j = i ' '

and, for fixed z, the / i* ; are distinct. By the choice of n the grf's are distinct
and, by the choice of x, m{\) = m*(l) 5£ /w*(/) ^ /M(0-

Let B denote the subgroup 5 = {N*, hfk: 1 ^ k g m(j), 1 ^ i ^ «>• Then
5 ^ /f * and B/N* is finitely generated. Hence B/N* is nilpotent and since
N* is the centre of G*, B is nilpotent. Also ./V* ^ M, where M is the centre
of B.

Let a* = X Pfjh*j- Choose geM and let x9 denote g xxg. Since
J = i

J(FG*) is a two-sided ideal of FG*, x-x9 belongs to J(FG*). However,
n

x9 = £ a*[0> S*"1]^*. where [^, ^ " ' J e f l * for each i, since ^ * is normal
i = 1

n

in G1*. Thus, x - x ' = ^ «;(! — [^. fl*"1])^*. s m c e 0* = 1- By the choice of
i = 2

JC, x — x9 = 0 and hence by uniqueness, <xf(l-[g, g f" 1 ] ) = 0 for all /. However
H* is a locally nilpotent torsion-free group and <x* is non-zero for each
/, l ^ i £ « . Therefore Lemma 2 (a) implies that 0? = (gf)g for i = 2,3, ...n
and all # e Af. Thus, M = A^*.

Let K/M be the centre of B/M and choose A: e K. Then x - x * e J(FG*),

j = 2

E
i = 2
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where [/c, fc,* J»] 6 N* and (a?)*O, 9*~'] 6 F/f *. Whence

j = 2 i = 2

Thus by the choice of x, x—;c* = 0. By uniqueness af—(af)*[k, gf"1] = 0.
Hence it follows that ufgf = (af#f)* for 1 ^ i g w and all k e K.

Thus the number of conjugates of each h*tjg* under transformation by
elements of K cannot exceed |supp (af)|. Thus K/KnN* = K/M is finite.
However, B is nilpotent torsion-free and thus by (5) each factor of the upper
central series of B is torsion-free. Thus, K/M is torsion-free and thus
K = M = B. Thus each of the af s belongs to FN*. Choose h to be any element

of#*. Then x - x*eJ{FG*) for xeJ(FG*). xh = £ af\_h, g*~l~\gt, where
i = 1

[fc, ffj-'je//*. Hence x-xh = £ a*(l-|>, fff"1])^* = 0 by the choice of
i = 2

n. It follows from uniqueness that for i = 2,3, ..., n, a*(l —[/i, gf"1]) = 0.
By Lemma 2(a), gf = (gf)h since af # 0. Thus heN* and hence # * = N*
and we have found our G*.
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