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Abstract
Using cryogenic laser technology, it is now possible to design and demonstrate lasers that have concomitant high average

and peak powers, with near-diffraction-limited beam quality. We refer to these new laser systems as HAPP lasers. In

this paper, we review important laser crystal materials properties at cryogenic temperature, with an emphasis on Yb

lasers, and discuss the important design considerations, including the laser-induced damage threshold, nonlinear effects

and thermal effects. A comprehensive model is presented to describe diode pulsed pumping with arbitrary duration and

repetition rate, and is used with the Frantz–Nodvik equation to describe, to first order, the performance of HAPP laser

systems. A computer code with representative results is also described.
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1. Introduction

Cryogenic solid-state lasers have come to the fore recently,

in large part because cryogenic laser technology has been

shown to be capable of providing concomitant high average

and peak powers with very good beam quality and without

the need for any beam-correction optics or nonlinear beam-

correction schemes. The progress made has been well doc-

umented in two landmark papers[1, 2], and more recently in

a comprehensive review of the technology[3], including its

applicability to ultrafast lasers. In this paper, we discuss

cryogenic nanosecond and picosecond lasers, the former

having the potential to substantially increase the perfor-

mance of traditional Ti:Al2O3 lasers, and the latter to provide

powerful pump sources for optical parametric chirped pulse

amplification (OPCPA) systems. For nanosecond pulse dura-

tions, large laser-induced damage thresholds (LIDTs) are the

norm, and one can build powerful pump sources using direct

amplification only. For picosecond lasers, direct and chirped

pulse amplification (CPA) approaches have been used[4, 5].

For pulsewidths greater than 5–10 ps, direct amplification

may be used consistent with the reduced LIDTs found for

ps pulse durations; however, pulsewidths of about 1 ps are

desired for pumping OPCPA systems[6, 7], and to obtain large

Correspondence to: D.C. Brown, 26741 State Route 267, Friendsville,
PA 18818. USA. Email: dbrown@snakecreeklasers.com

energy/pulse one must use the CPA approach, stretching

low power seed lasers into the hundreds of ps or even into

the ns regime to obtain larger damage thresholds, and then

compressing the pulses after amplification. For short pulse

ps systems, dispersion begins to play an important role,

although not as important as for fs laser systems. Successful

compression of 1 to a few ps pulses requires a knowledge

of the dispersion accumulated in the system and the use of

compression methods that compensate such dispersion.

In this paper, we first give Section 2. A succinct review

of the important thermal, thermo-optic and elastic proper-

ties including figures of merit found helpful in evaluating

candidate laser materials. Spectroscopic, laser, linear and

nonlinear indices for a variety of legacy and newer laser

materials are presented. An up-to-date compilation of most

Yb-based laser materials is included. Section 3 discusses

HAPP laser design considerations. In Section 3.1, we discuss

the two distinctly different operating modes of cryogenic

lasers: stress-limited and aberration-limited operation. For

aberration-limited operation we define a very useful new

performance parameter, the extracted power output per unit

phase distortion, that allows for example the calculation of

the expected thermal phase distortion from a laser amplifier

operating at two different temperatures and identical output

power, that is applied to Yb:YAG operating at 300 and

77 K. In Section 3.2, we present a new pulse-pumped
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extraction and kinetics model that may be used for any pump

pulsewidth and repetition rate. In Section 3.3, we discuss

the use of the generalized Frantz–Nodvik equation. In Sec-

tion 3.4, we present a review of the calculational methods

that may be employed for the accumulated nonlinear phase

(B-integral) in a laser amplifier, using the Frantz–Nodvik

equation. A discussion of LIDTs is shown in Section 3.5 and

some sample results from a first-order ray-tracing extraction

code developed to aid in the design of HAPP cryogenic laser

systems are presented in Section 3.6. Finally, in Section 4,

we summarize the results contained in this article.

2. Review of important laser materials properties

The development of modern cryogenic solid-state lasers be-

gan with the publications of the first experimental cryogenic

Yb:YAG laser[8], and a significantly performance-enhanced

Ti:Al2O3 laser[9], both in 1991. Subsequent theoretical and

experimental work confirmed that not only can enhanced

laser properties be obtained by cryogenic cooling, but that

dramatic reductions in thermo-optic distortion and enhanced

mechanical properties can be realized as well[1–3, 10–14].

Cryogenic cooling was employed prior to 1991; however,

thermo-optic properties were not emphasized and the focus

was mainly on laser physics, kinetics and spectroscopy.

Since 1991, laser physicists, designers and engineers have

for the first time fully appreciated that the entire set of

physical crystal properties (optical, laser kinetics, thermal,

thermo-optic, and elastic) must be taken into account to

effect successful laser outcomes. Appreciation of this reality

has and will continue to drive the demonstration of much

higher average power cryogenic lasers, as well as HAPP

lasers, in the future. The manipulation of the thermo-optic

properties of solid-state laser hosts through the use of cryo-

genic cooling has been proven capable of providing both

high average power and near-vanishing thermally induced

aberrations. This results in output beams whose divergence

and transverse beam size are virtually constant, without

the use of any external beam correction. Beam-parameter-

independent lasers are highly desirable for harmonic gener-

ation, as well as for many other scientific, commercial and

military applications.

We have recently provided a detailed comprehensive

review of the important thermal, thermo-optic, elastic,

laser, optical, nonlinear and dispersion effects for a number

of laser materials[3], and will not repeat that discussion

here. Previous publications also provide a wealth of

information[1–3, 15–22]. It is now well known that the

value of the thermal conductivity increases as temperature

is lowered, for all measured single crystals as well as

for their ceramic counterparts. The increase in thermal

conductivity is however reduced in some materials as

the rare-earth doping density is increased[18, 23]. The two

other major determinants of the magnitude of thermally

induced aberrations, the thermal expansion coefficient,

and the thermo-optic coefficient (dn/dT ), have also been

found to be dramatically decreased in most single-crystal

and ceramic optical and laser materials as temperature is

lowered[1, 2, 15, 16, 18, 19]. In combination, the net result is

that at temperatures of <100 K, the thermal aberrations are

reduced in most cases by at least one order of magnitude. In

addition, thermally induced stresses are nearly eliminated,

significantly increasing the value of the rupture modulus

and leading to only residual values for the stress-induced

contribution to thermal aberrations. Section 2.1 provides

a summary, in graphical form, of much of the recently

published data for the thermal conductivity, thermo-optic

coefficient and thermal expansion coefficient. In Section 2.2,

we present recently derived figures of merits for thermal

and stress effects[1]. A summary of relevant laser material

elastic parameters can be found in Section 2.3. Section 2.4

presents calculations of the figures of merit for temperatures

of 300 and 77 K. In Section 2.5, we discuss the spectral and

laser parameters for a number of laser materials at 300 and

77 K, and summarized in Table 3. Section 2.6 contains a

brief discussion of the intensity-dependent nonlinear index

of refraction and nonlinear coefficient; Table 4 summarizes

many known values for the linear index, nonlinear index and

nonlinear coefficients for various laser and optical materials.

2.1. Thermal conductivity, thermal expansion coefficient
and thermo-optic coefficient

In this section, we present published numerical data for

the thermal conductivity k, thermal expansion coefficient α,

and the thermo-optic coefficient (dn/dT ), all on the same

graph, as a function of absolute temperature, for a number of

anaxial, uniaxial and biaxial laser materials. All the materials

presented here have published complete datasets between

300 and 77 K or lower, with the exception of Al2O3 for

which little (dn/dT ) data is known. We do not include

single value data points that may be found in the literature,

with the exception of Al2O3. The thermal conductivity

values are, except where noted, for un-doped crystals only.

Those parameters are most important in determining the

value of the low temperature thermal aberrations and play

a significant role in scaling the average power of solid-state

lasers at cryogenic temperatures. This data, as well as data

presented in Section 2.3 for Young’s modulus and Poisson’s

ratio, are used in Section 2.4 to calculate figures of merit that

may be used to compare various laser materials.

Figure 1 shows the thermal conductivity for Al2O3 along

the a and c axes[24], as well as the thermal expansion

coefficient along the same axes[25], both as a function of

absolute temperature. The thermal conductivity increases

for both axes from a value of about 0.36 W/(cm K) near

room temperature to about 7.35 W/(cm K) at 80 K. The
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Figure 1. Thermal conductivity for Al2O3 as a function of temperature for the c-axis (green circles) and the a-axis (blue squares); also shown are the thermal

expansion coefficient values for the c-axis (pink triangles) and the a-axis (red squares).

thermal expansion coefficient of the c-axis is reduced from

about 5.9 × 10−6/K at room temperature to about 0.38 ×
10−6/K at 80 K. (dn/dT ) values can be estimated at 300

and 77 K from literature values[9], but are not shown in

Figure 1. In Figure 2, we show thermal conductivity k,

thermal expansion coefficient α, and thermo-optic coefficient

β as a function of absolute temperature for the legacy anaxial

laser material YAG[18]. Figure 3 shows k, α and β for

the homologous laser material Yb:LuAG[18]. Both YAG

and LuAG display very similar functional dependences,

and both experience increased thermal conductivities and

reduced thermal expansion and thermo-optic coefficients as

temperature is lowered. Figure 4 plots k, α and β for the

fluoride uniaxial laser material YLF[18], along the a and c
axes. For this laser material, the thermo-optic coefficients

are negative, converging toward 0 as temperature is lowered.

This same behavior is seen for the homologous laser material

LuLF in Figure 5; however, for LuLF the thermo-optic

coefficient displays a more complicated behavior[18]. Both

YLF and LuLF display increasing thermal conductivities and

decreasing thermal expansion coefficients as temperature

is lowered. In Figure 6, we show k, α and β for the

biaxial oxide laser material YALO (YAP)[18]; values for the

three parameters are plotted for the a, b and c axes. For

each axis we see an increasing thermal conductivity and

decreasing values of the thermal expansion and thermo-optic

coefficients as temperature is lowered, similar to the oxide

materials YAG and LuAG. Figures 7 and 8 show k, α and

β for the anaxial sesquioxide laser materials Y2O3
[2, 22] and

Sc2O3
[2, 23]. Figure 9 plots k, α and β for the uniaxial laser

material GdVO4
[2, 19].

Finally, in Figure 10 we show measured values of k, α

and β[21, 22, 26, 27] for the anaxial laser and optical material

CaF2. The values of α and β were measured at a wavelength

of 632.8 nm[22]. Like other laser materials, the thermal

conductivity increases and the thermal expansion coeffi-

cient decreases as temperature is lowered. The values of β

however, are negative and show a complicated temperature

dependence. Yb:CaF2 has been shown to be a laser material

with much promise as an ultrafast laser, capable of reaching

pulsewidths <100 fs[28]. As discussed in more detail in

Refs. [21, 29], however, very low Yb doping levels lead

to clustering and to a reduction in thermal conductivity as

temperature is lowered. It has been surmised that CaF2

in that situation transitions from a crystalline to a glassy

state, thus displaying the characteristic reduction in thermal

conductivity as temperature is lowered. Such behavior is

well known for SiO2, for example[1].

2.2. Thermal and stress figures of merit

For the case where a major design goal is to eliminate or

reduce aberrations to residual levels, we can define two

figures of merit Γ as follows[3]:

ΓT = k
αβηh

, (1)

ΓS = k(1− ν)

αEηh
. (2)
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Figure 2. YAG thermal conductivity (blue diamonds), thermal expansion coefficient (red squares) and (dn/dT ) (green triangles) as a function of absolute

temperature.

Figure 3. LuAG thermal conductivity (red squares), thermal expansion coefficient (blue diamonds) and (dn/dT ) (green triangles) as a function of absolute

temperature.
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Figure 4. YLF thermal conductivity along a-axis (blue diamonds) and c-axis (green triangles), thermal expansion coefficient along a-axis (red squares) and

c-axis (black diamonds), and (dn/dT ) along the a-axis (pink circles) and the c-axis (orange circles), all as a function of absolute temperature.

Figure 5. LuLF thermal conductivity along a-axis (blue diamonds) and c-axis (green triangles), thermal expansion coefficient along a-axis (red squares) and

c-axis (black triangles), and (dn/dT ) along the a-axis (pink circles) and the c-axis (orange circles), all as a function of absolute temperature.
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Figure 6. YALO thermal conductivity along a-axis (blue diamonds), b-axis (red squares) and c-axis (green triangles), thermal expansion coefficient along

the a-axis (black crosses), b-axis (blue squares) and c-axis (long dashes), and (dn/dT ) along the a-axis (light blue diamonds), b-axis (short dashes) and

c-axis(pink triangles), all as a function of absolute temperature.

Figure 7. Y2O3 thermal conductivity (red circles), thermal expansion coefficient (blue diamonds) and (dn/dT ) (green triangles) as a function of absolute

temperature.
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Figure 8. Sc2O3 thermal conductivity (blue circles), thermal expansion coefficient (green diamonds) and (dn/dT ) (red squares) as a function of absolute

temperature.

Figure 9. GdVO4 thermal conductivity along a-axis (blue diamonds) and c-axis (green triangles), thermal expansion coefficient along a-axis (black triangles)

and c-axis (red triangles), and (dn/dT ) along the a-axis (orange circles) and the c-axis (pink squares), all as a function of absolute temperature.
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Figure 10. CaF2 thermal conductivity (red squares, blue diamonds and pink circles), thermal expansion coefficient green triangles) and (dn/dT ) (black

circles) as a function of absolute temperature.

Figure of merit ΓT addresses changes in the index of re-

fraction due to temperature gradients, and ΓS applies to

changes in the index due to stress (or strain) effects. For a

detailed discussion of Equations (1) and (2) please consult[3].

To reduce thermal aberrations, we wish to maximize the

value of ΓT . This is achieved by maximizing the value

of k to minimize the thermal gradients, minimizing the

values of α and β, and by minimizing the amount of

heat generated by minimizing the value of the total heat

fraction ηh . Minimizing the thermal expansion coefficient

α minimizes thermal distortions in large aspect ratio, rod

lasers (plane-strain approximation) in which the bulging of

the end faces is ignored. However, since end face bulging is

primarily due to the thermal expansion, minimizing α also

minimizes the magnitude of the bulging as well. The heat

fraction is formally defined as the fraction of the absorbed

light converted to heat. It includes contributions from the

quantum defect, fluorescence and stimulated emission. Yb-

based materials are particularly attractive for producing

low ηh values, due to the lack of concentration-quenching,

excited-state absorption and upconversion, processes that

plague other laser materials like Nd:YAG or Nd:YVO4 and

Nd:YLF, for example. The thermal conductivity k, thermal

expansion coefficient α and thermo-optic coefficient β were

previously defined and discussed in Section 2.1.

Equation (2) is the figure of merit for considering stress

effects only. It arises naturally from the consideration of the

stresses generated in laser crystals due to thermal gradients.

Calculation shows[11] that the obtained thermally induced

stress in laser materials is proportional to the heat density

Q0 and inversely proportional to Ms , a quantity known as

the materials parameter, expressed as

Ms = k(1− ν)

αE
, (3)

where E is Young’s modulus and ν Poisson’s ratio. The

materials parameter is then a mixture of thermal and elastic

constants. To reduce the stress one wants to maximize the

value of Ms , and that is the motivation for the use of the

figure of merit ΓS . To minimize stress contributions to the

change in the index of refraction, the appropriate strategy

is to maximize k, minimize α, E and ηh , and minimize

the value of ν. While other similar figures of merit have

been used[2], we prefer our approach where the contributing

factors to the change in index of refraction from purely

thermal effects and thermally induced stress are clearly

separated. If desired, however, after eliminating duplicate

parameters we can write a simple overall multiplicative

figure of merit Γ as

Γ = ΓT ΓS = k(1− ν)

αEβηh
= MS

βηh
. (4)

Laser materials with the highest figure of merit therefore

should have a large value for MS , and minimum values for

β and ηh . Values of the figures of merit are provided for a

number of laser materials in Section 2.4 at 300 and 100 K.
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Table 1. Young’s modulus, bulk modulus and Poisson’s ratio for selected laser materials (from Ref. [3]).

Elastic parameters E0 (0 K) a (10−4/K) E (300 K) B0 (0 K) b (10−4/K) B (300 K) ν

(GPa) (GPa) (GPa) (GPa)

Al2O3 393 1.33 377 241 0.84 235 0.23

CaF — — 110 — — — 0.30

Lu2O3 204 1.03 198 161 0.24 160 0.29

MgAl2O4 278 1.98 262 187 1.97 176 0.25

MgO 310 1.63 295 164 1.23 158 0.19

Sc2O3 229 1.22 221 148 0.98 144 0.24

Y2O3 176 1.37 169 147 1.93 139 0.30

YAG — — 302 — — — 0.24

YbAG — — 257 — — — 0.25

LiYF4 — — 77 — — — 0.33

2.3. Elastic parameters

The elastic parameters Young’s Modulus (E), Poisson’s ratio

(ν), the bulk modulus B and the related moduli K and G
have been investigated by a number of researchers. The

most comprehensive study was published by Munro[30] who

treated single-crystal and ceramic materials with varying

porosity, and whose data for single crystals we include in

Table 1, which lists values for E0 (0 K), a, E (300 K), ν and

B. In Ref. [30], the Young’s modulus values were generated

for a temperature of absolute zero, and the values at higher

temperatures are determined using the relationship

E(T ) = E0(T = 0)(1− aT ), (5)

where E is Young’s modulus at temperature T and a is

a constant. The bulk moduli values B0 and B at 300 K

in Table 2 are taken from Ref. [30] as well, with B(T )

calculated from the relationship

B(T ) = B0(T = 0)(1− bT ). (6)

Other values in Table 2 were obtained from Refs. [31, 32].

The Poisson’s ratio values in Table 2 were either calculated

at 300 K using the relationship

ν = 1

2
− E

6B
, (7)

or taken from Ref. [31, 32].

2.4. Figures-of-merit calculations

Table 2 shows the values of k, α, β, ν and E at 300

and 100 K. The heat fraction was in all cases for simple

comparison taken equal to the quantum-defect value. The

figures of merit ΓT , ΓS and Γ are also shown at 300 and

100 K. Large increases in the figures of merit are obtained

at 100 K relative to 300 K. Materials like YAG, Sc2O3, the

c-axis of YLF, the a-axis of YALO and the a and c axes

of Al2O3 show the largest increases in the figures of merit,

while CaF2 shows the smallest increase. We can conclude

from this simple comparison that the most suitable materials

for high-average-power and HAPP cryogenic lasers, of the

materials investigated to date, are YAG, YLF, YALO, Sc2O3

and Al2O3. CaF2 on the other hand may be very useful as a

low-average-power mode-locked laser material (Yb:CaF2),

but is unlikely to be used for amplifiers in HAPP cryogenic

laser systems.

2.5. Spectroscopic and lasing parameters

Table 3, taken from Ref. [3], shows the spectral properties of

a number of important laser materials, including a number

of legacy ultrafast materials as well as some newer laser

materials, all based upon the Yb3+ lasing ion. We show

only Yb materials for which both room and cryogenic

temperature data are available. Table 3 shows the laser

material, the crystal classification (anaxial (A) and uniaxial

(U)), the absorption span δλabs (FWHM) and wavelength

of peak absorption λP
abs, the absorption bandwidth 	λabs

(FWHM), peak absorption cross-section σ P
abs, the wave-

length of the peak stimulated-emission cross-section λP
em,

the emission bandwidth 	λem (FWHM), the value of the

peak stimulated-emission cross-section σ P
em, the upper level

(2F5/2) fluorescence lifetime τF , the absolute temperature,

and the references from whence the data were taken. While

we will not detail the enhanced laser properties of laser

materials at cryogenic temperatures, and instead refer the

reader to the discussion in Ref. [3], we mention here that Yb

laser materials become more four-level like at temperatures

below about 150 K, negating the need to first pump to

transparency as is required for room-temperature opera-

tion. Spectral absorption and emission lines narrow as well;

the stimulated-emission cross-section becomes substantially

larger at cryogenic temperatures, resulting in a much reduced

saturation fluence and intensity. While the absorption bands

narrow, in the pump region around 940 nm the narrowing

is moderate, and the band remains broad enough to be

pumped by common diode laser sources. For many laser

materials such as Yb:YAG, the zero-phonon absorption line
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Table 2. Thermal conductivity k, thermal expansion coefficient α, thermo-optic coefficient β, quantum-defect heat fraction η
QD
h , Poisson’s

ratio ν, Young’s modulus E , and calculated figures of merit ΓT , ΓS and Γ for selected laser crystals at 100 and 300 K. Absolute values of
negative parameter values were used to calculate figures of merit. Table is reproduced from Ref. [3].

Crystal k α (10−6) β (10−6) η
QD
h ν E (109) ΓT (1010) ΓS (10−5) Γ T

(W/(cm-K)) (1/K) (1/K) (g/cm2) (W-K)/cm (W-cm)/g (W-cm)/g (K)

YAG 0.112 6.14 7.80 0.086 0.24 3.080 2.72 5.23 6.71 300

0.461 1.95 0.90 0.086 0.24 3.080 305.44 67.83 753.7 100

LuAG 0.083 6.13 8.30 0.086 0.25 2.872 1.90 4.11 4.95 300

0.254 2.46 0.70 0.086 0.25 2.872 171.5 31.35 447.86 100

YLF-a 0.053 10.05 −4.60 0.045 0.33 0.785 2.55 10.00 21.74 300

0.242 3.18 −0.50 0.045 0.33 0.785 338.23 144.34 453.93 100

YLF-c 0.072 14.31 −6.60 0.045 0.33 0.785 1.69 9.54 14.45 300

0.337 2.36 −1.80 0.045 0.33 0.785 176.29 270.81 1504.50 100

YALO-a 0.117 2.32 7.70 0.096 0.23 3.220 6.82 12.56 16.31 300

0.649 −1.16 1.00 0.096 0.23 3.220 582.79 139.36 1393.60 100

YALO-b 0.100 8.08 11.70 0.096 0.23 3.220 1.10 3.08 2.63 300

0.544 3.24 4.50 0.096 0.23 3.220 388.66 41.82 92.93 100

YALO-c 0.133 8.70 8.30 0.096 0.23 3.220 1.92 3.81 4.59 300

0.776 3.00 1.20 0.096 0.23 3.220 224.54 64.43 536.92 100

Lu2O3 0.114 6.10 7.1* 0.080 0.29 2.019 3.29 8.22 11.58 300

0.340 2.90 2.3* 0.080 0.29 2.019 63.72 51.54 224.09 100

Sc2O3 0.147 6.40 8.12 0.088 0.24 2.254 3.21 8.80 10.84 300

0.455 0.75 2.20 0.088 0.24 2.254 313.36 265.66 1207.55 100

Y2O3 0.130 6.30 6.08 0.074 0.30 1.723 4.59 11.33 18.64 300

0.520 0.90 2.40 0.074 0.30 1.723 325.33 156.86 653.58 100

CaF2 0.080 19.20 −12.70 0.091 0.30 1.122 0.36 2.86 2.25 300

0.390 10.60 −7.5* 0.091 0.30 1.122 5.32 25.22 23.79 100

Al2O3-c 0.330 5.15 9.80 0.335 0.23 3.844 1.95 3.83 3.91 300

5.150 0.71 4.05 0.335 0.23 3.844 534.62 433.72 1070.91 100

Al2O3-a 0.360 5.93 12.80 0.335 0.23 3.844 1.42 3.63 2.84 300

3.440 0.90 1.90 0.335 0.23 3.844 600.51 228.55 1202.89 100

∗ Estimated values.

near 969 nm becomes extremely narrow at low temperatures,

so that even narrowband volume Bragg grating stabilized

diode laser sources have inefficient absorption. For Yb:CaF2,

however, even at cryogenic temperatures the zero-phonon

line remains broad enough to be pumped with conventional

diode sources, leading to a very low quantum defect.

The three legacy laser materials shown, Ti:Al2O3,

Cr:LiSAF and Cr:LiCAF, are uniaxial and we show data

for the cases E‖c and E‖a, and at room temperature. While

Ti:Al2O3 is often cooled to near 77 K to reduce thermal

aberrations[33–36], little data is available in the literature

regarding the spectral properties at that temperature. For

Cr:LiSAF and Cr:LiCAF, we were not able to find any

cryogenic data available in the literature. The bandwidths for

these materials indicate that for transform-limited Gaussian

pulses, pulsewidths of as short as 4, 6 and 7 fs can be

achieved, respectively, in the absence of gain narrowing.

2.6. Linear and nonlinear indices of refraction

Other than laser-induced optical damage, a subject that we

shall discuss in Section 3.5, the major performance-limiting

factor affecting ultrafast performance in solid-state laser sys-

tems is the existence of a finite nonlinear index of refraction

n2. Much of the early work on inertial-confinement fusion

involved the use of flashlamp-pumped laser glasses doped

with Nd, driven by picosecond duration Nd:YLF mode-

locked oscillators with typical FWHM pulse durations in the

range 50–200 ps. When scaling such systems to ever larger

energy/pulse and peak powers, it was discovered that whole-

beam and small-scale self-focusing, caused by the nonlinear

index, were the principal limiting factors, and managing

and reducing such effects was a major design goal. Good

summaries of the understanding and design tools used to

design picosecond high-peak-power laser systems may be

found in Refs. [58, 59]; in addition, a very good summary of

the most important papers addressing the phenomena of self-

focusing and the design and performance of such systems

may be found in Ref. [60]. It should be pointed out that

in those early systems dispersion management was not a

significant design issue and the technique of CPA was just

in its infancy.

For a laser pulse traveling through a nonlinear medium, a

finite nonlinear index leads to the temporal phenomenon of
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Table 3. Spectral properties of legacy and Yb-based ultrafast laser materials at room and cryogenic temperatures. Part of Table 3 is
reproduced from Ref. [3].

Crystal Crystal δλabs (FWHM) 	λabs σ P
abs λP

em 	λem σ P
em τF Temp. References

type λP
abs (nm) (FWHM) (cm2) (nm) (FWHM) (cm2) (μs) (K)

(nm) (10−20) (nm) (10−20)

Ti3+:Al2O3
E ‖ c (π)

U
455–580

493 120.0 6.45 790 225.0 3.0 3.2 300 [37, 38]

Ti3+:Al2O3
E ‖ a (σ )

U
455–575

493 122.0 2.79 800 236.0 1.5 3.2 300 [37, 38]

Cr3+:LiSAF
E ‖ c U

600–703
637 97.7 5.4 850 192.0 4.8 67 300 [39]

Cr3+:LiSAF
E ‖ a U

593–693
637 102.3 2.6 850 171.4 1.6 67 300 [39]

Cr3+:LiCAF
E ‖ c U

585–680
647 85.8 2.95 763 127.0 1.3 175 300 [39]

Cr3+:LiCAF
E ‖ a U

580–680
647 92.7 2.00 763 127.0 0.9 175 300 [39]

Yb3+:BOYS A
972–978

975 6.0 0.90 1062 60.0 0.43 1100 300 [40, 41]

Yb3+:CaF2 A
915–970

979
53.3
21.8

0.83
0.57 1030 26.7 0.25 1900 300 [42]

Yb3+:CaF2 A
915–970

980
53.3

2.93
0.88
1.57

1033
990

43.3
10.7

0.50
0.83 1900 77 [42]

Yb3+:CALGO
E ‖ c (π)

U
974–984

979 6.60 2.7 1040 80 0.25 420 300 [43, 44]*

Yb3+:CALGO
E ‖ a (σ )

U
974–984

979 7.90 1.0 1040 80 0.75 420 300 [43, 44]*

Yb3+:GdCOB
E ‖ Z B

902
949
976

13.5
10.8

2.4

0.48
0.13
1.10

976
1003
1032
1070

4.1
18.9
27.0
32.4

0.5
0.3
0.6
0.2

2440 300 [45]*

Yb3+:GSO B

889–981
897
922
940
976

17.0
26.0
24.0
10.0

0.33
0.60
0.39
0.51

1011
1030
1047
1080

72

0.27
0.18
0.34
0.27
0.46

1560 300 [46]*

Yb3+:KGW
E ‖ a B

927–983
934
981

14.0
3.2

3.0
12.0

988
1000
1025

6.6
12.0
13.8

15.1
8.1
2.8

243 300 [47]

Yb3+:KGW
E ‖ b B

939–982
952
979

25.5
5.1

2.0
2.0

981
1001
1031

9.0
15.1
18.0

3.3
2.6
2.1

243 300 [47]

Yb3+:KGW
E ‖ c B

946–982
953
979

14.0
5.1

0.8
2.0

981
1001
1024

7.8
12.0
21.1

2.5
1.2
0.8

243 300 [47]

Yb3+:KYW
E ‖ a B

928–983
934
954
981

12.1
20.2

3.4

2.9
1.3

13.1

937
1006
1032

7.8
8.6
8.6

15.6
3.4
2.2

233 300 [47]

Yb3+:KYW
E ‖ b B

928–984
933
952
980

9.4
19.5

7.4

1.9
3.5
2.8

982
1002
1032

8.6
17.2
22.4

8.5
2.9
1.4

233 300 [47]

Yb3+:KYW
E ‖ c B

925–984
932
952
979

13.5
13.5
10.1

1.0
0.8
2.0

982
1000
1024

15.5
31.0
25.9

28.0
2.2
0.7

233 300 [47]
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Table 3. (continued.)

Yb3+:LSO B

894–985
900
924
977

13.0
25.0
15.0

0.21
0.36
1.30

1004
1012
1032
1055
1083

73

0.34
0.32
0.33
0.21
0.14

1680 300 [46]*

Yb3+:Lu2O3 A

899–977
903
950
976

8.1
12.1

4.0

1.1
1.4
3.1

976
1033
1078

4.1
14.2
12.1

3.3
1.9
0.9

820 300 [48, 49]

Yb3+:LuAG A

913–972
917
941
970

8.5
21.3

3.2

0.61
0.95
1.02

1030 3.4 2.50 950 295 [48, 50]

Yb3+:LuAG A

916–970
917
941
969

2.8
4.8
1.2

1.35
1.80
2.50

1030 1.1 13.90 950 100 [48, 51]

Yb3+:LSB
E ‖ c (π)

U

894–975
899
938
971

11.0
40.4

7.4

0.30
0.14
0.37

938
988

1042
36

0.33
0.29
0.28

1150 300 [52]

Yb3+:LSB
E ‖ a (σ )

U

894–992
899
939
980

11.0
—

23.3

0.20
—
0.96

1080
988
980

55

0.16
—
0.12

1150 300 [52]

Yb3+:Sc2O3 A

890–977
893
942
976

6.9
23.8

2.3

0.6
1.0
4.4

1041
1095

13.4
10.7

1.44
0.33 800 300 [51]

Yb3+:S-FAP
E ‖ c (π)

U

898–937
900
936

3.5
<1

9.5
6.6

986
1048
1119

<1
3.5
9.5

6.6
7.3
0.1

1140 300 [53]

Yb3+:S-FAP
E ‖ a (σ )

U

898–987
900
952
986

4.0
3.0
<1

3.9
1.1

10.8

986
1048
1119

<1
4.0
—

10.8
1.4
—

1140 300 [53]

Yb3+:SSO B

905–988
914
956
976

18.0
19.0
24.0

0.68
0.50
0.90

1006
1036
1062
1087

57

0.26
0.44
0.38
0.10

1640 300 [46]*

Yb3+:SYS
E ‖ c (π)

U

896–982
918
979

43.0
5.4

0.87
0.40 1040 73 0.44 800 300 [41, 54]*

Yb3+:SYS
E ‖ a (σ )

U

897–981
918
979

43.0
4.3

1.22
0.34 1040 — — 800 300 [41, 54]*

Yb3+:Y2O3 A

901–978
904
950
976

6.1
10.7

3.8

0.7
0.9
2.4

1031
1076

14.3
15.6

1.06
0.42 850 300 [51]

Yb3+:YAG A

911–970
915
941
969

8.1
18.9

2.5

0.5
0.9
0.9

1029 8.5 2.3 951 300 [2, 17]

Yb3+:YAG A

914–968
916
941
968

3.9
6.9
0.1

0.8
1.8

37.0
1029 1.5 11.0 951 75–80 [2, 17]
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Table 3. (continued.)

Yb3+:YCOB
E ‖ X B

893–978
900
950
977

14.7
14.7

2.3

0.3
0.2
0.9

977
1033
1084

2.2
48.2
16.5

1.1
0.3
0.1

2200 300 [52]

Yb3+:YCOB
E ‖ Y B

894–978
900
950
977

12.0
20.0

2.0

0.2
0.1
1.5

977
1033
1084

1.3
20.0
—

1.7
0.3
—

2200 300 [52]

Yb3+:YCOB
E ‖ Z B

894–978
900
950
977

12.7
14.7

2.2

0.5
0.1
0.8

977
1033
1084

2.6
28.9
—

0.9
0.5
—

2200 300 [52]

Yb3+:YLF
E ‖ c (π)

U

954–974
959
971

9.5
≈5.1

1.0
0.4 1020 36.0 0.8 2080 300 [2, 55, 56]

Yb3+:YLF
E ‖ a (σ )

U

927–981
931
946
959
972

8.3
5.2

15.5
16.5

0.6
0.6
0.4
0.3

1020 27.0 0.7 2080 300 [2, 55, 56]

Yb3+:YLF
E ‖ c (π)

U

958–971
959
971

2.1
—

6.8
1.3 1020 8.0 1.8 1990 79 [2, 55, 56]

Yb3+:YLF
E ‖ a (σ )

U

930–971
934
946
960
971

8.2
3.1
1.5
—

0.8
1.0
2.4
2.8

1020 28.0 1.0 1990 79 [2, 55, 56]

Yb3+:YSO B

892–984
899
917
950
977

15.0
24.0
31.0
13.0

0.31
0.32
0.28
0.64

980
1003
1040
1056
1081

48

0.24
0.39
0.23
0.17
0.12

1740 300 [46]*

Yb3+:YVO4
E ‖ c (π)

U
383–991

987 7.6 7.2 987 7.6 9.6 310 300 [57]

Yb3+:YVO4
E ‖ a(σ )

U

952–992
970
987

35.6
9.9

1.9
1.7

975
987

1009

26.5
13.6
17.4

1.4
2.3
1.1

310 300 [57]

∗ Reported data is incomplete or crystal axes orientation not identified.

self-phase modulation, resulting in a temporally dependent

phase modulation. Spatial phase modulation can lead to

whole-beam and small-scale self-focusing[58, 59]. In general,

the threshold for the formation of small-scale self-focusing

is significantly lower than that for whole-beam self-focusing.

Calculating in advance the susceptibility of an ultrafast

system to nonlinear and damage effects is an important part

of ultrafast laser system design, and here we discuss the

standard method for doing so.

To manage whole-beam and small-scale self-focusing in

high-peak-power laser ultrafast systems, a knowledge of the

nonlinear index n2 and the corresponding nonlinear coeffi-

cient γN is essential. A standard and often-used measure of

the severity of nonlinear effects in laser systems is the B-

integral[58, 59], formally defined as

B(r, z, t) = 	ϕN L(r, z, t) = 2π

λ

∫
γN I (r, z, t) dz, (8)

where B is in general a function of the beam radius r ,

propagation location z and time t, I (r, z, t) is the radially,

longitudinally and temporally varying laser intensity, the

wavelength λ, and z is the propagation length parame-

ter. The B-integral is the nonlinear phase accumulation

	ϕN L(r, z, t) due to the nonlinear index n2, and in laser

systems must be calculated for all optical and gain elements

encountered by the propagating beam. It is customary to

calculate the maximum value of the B-integral where the in-

tensity I is maximum (t = 0). For spatially Gaussian beams,

the B-integral value at the beam edge is typically very small,

and only the on-axis value is normally specified. The same

holds true for higher-order super-Gaussian beams where the

intensity at the beam edge becomes insignificant. For any

arbitrary spatial beam profile, it is easy to use Equation (8)

in a computer code and calculate the B-integral profile at any

location in a laser amplifier or system. The nonlinear index
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can be calculated using the relationship[58, 59]

n2 = 12π2

n2
0c

χ(3). (9)

Here, χ(3) is the third-order susceptibility, and both n2

and χ(3) are expressed in electrostatic units (esu). The

relationship between n2 and γN is given by the simple

formula[37, 61]

γN =
(

40π

c
× 10−6

) (
n2

n0

)
= (4.19×10−3)

(
n2

n0

)
,

(10)

and γN is expressed in (cm2/W). We note that in some

contributions to the laser literature, n2 is often used to

describe γN , a confusing practice since they have distinctly

different values and units. Table 4 shows reported values for

the nonlinear index n2 and for the nonlinear coefficient γN .

The table also shows the linear index n0, the measurement

wavelength, the crystal type and the orientation of the elec-

tric field. All values are reported at room temperature.

Al2O3, LiSAF, LiCAF, LiSGAF, Mg2SiO4, SiO2, YLF,

MgO, MgAl2O4 and CaF2 all exhibit rather small nonlinear

index values in the spectral region 800–1100 nm. YAG,

YALO and LuAG display somewhat larger values, while the

sesquioxides Y2O3, Sc2O3 and Lu2O3 show a substantial

increase, followed by the vanadates YVO4 and GdVO4 and

the tungstates KGW and KYW which display the largest

nonlinear index values. A much larger nonlinear index for

many commonly mode-locked materials like YVO4, KGW

and KYW makes Kerr lens mode locking easier to achieve,

but will provide challenges to suppress nonlinear effects in

scaled up ultrafast systems consisting of multiple amplifiers.

Minimizing B-integral contributions in ultrafast systems

utilizing some of these newer materials will likely force

designers to consider thin lasing elements such as thin-disk

lasers for some applications; however, the thinner the lasing

element the more troublesome the suppression of parasitics

and amplified spontaneous emission (ASE), so undoubtedly

tradeoffs will need to be made. Also, thin lasing elements

have low gain as well, and require multi-passing of the

element for good extraction, thus increasing the B-integral

and often negating any advantage.

3. HAPP cryogenic laser design considerations

3.1. Operating modes of cryogenic lasers

It is generally assumed that a diode-pumped laser system

operating at room temperature, upon being cooled to cryo-

genic temperatures, will have superior performance char-

acteristics. In particular, thermal effects are lessened due

to improved thermal conductivity and reduced values of

the thermal expansion coefficient and (dn/dT ). It is also

assumed that a cryogenically cooled device will behave

as a nearly 4-level laser, that stimulated-emission cross-

sections will increase, reducing the saturation fluence, and

that stress-induced birefringence will be absent. While much

experimental evidence exists in the laser literature to support

those assumptions, surprisingly little work has been done to

quantify the improvement in beam quality relative to room-

temperature operation. It is also not generally appreciated

that there exist two distinctly different operating modes for

cryogenic lasers, here referred to as stress-limited operation
and aberration-limited operation. We briefly describe both

modes.

3.1.1. Stress-limited operation

Both room-temperature and cryogenic lasers can be operated

at the stress limit, and both cases were examined in an early

cryogenic laser paper[10]. For a rod laser, the stress limit is

defined as the heat density at which the barrel surface stress

is equal to the fracture stress. Stress at the barrel surface

is most important because surfaces are always weaker than

the crystalline bulk due to the presence of micro-fractures,

scratches and voids. The relationship between crack size and

surface strength has been discussed in the literature[32]. If

we define the heat fraction ηh as the fraction of the incident

pump power converted to heat, and ηi as the inversion

fraction, then we have

Ph = ηh Pabs, (11)

Pi = ηi Pabs, (12)

where Pabs is the absorbed pump power, and Ph and Pi
are the absorbed total heat power and inversion power,

respectively. We also have from power conservation,

ηh + ηi = 1. (13)

We can write the ratio of heat to inversion powers χ as

χ = Ph

Pi
= ηh

1− ηh
. (14)

If Q0 is the heat per unit volume, then the extractable power

per unit length is

(
Pex

L

)
= ηex Pi = ηex

(
1− ηh

ηh

)
Q0 Ap, (15)

where AP is the pump area/for the case where the rod

tangential stress σθθ is equal to the fracture stress σ f , and

using the explicit expression for σθθ in a rod laser (in the

plane-strain approximation) as a function of the rod radius r
and diameter D[11],

σθθ (r) =
(

Q0

Ms

) [
3 (r)2 −

(
D
2

)2
]

, (16)
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Table 4. Reported room-temperature values of the linear index, nonlinear index and nonlinear coefficient for a number of important laser
crystals and optical materials. Also shown are the crystal type (SC – single crystal, GM – glassy material, or CER – ceramic), the E-field
orientation (parallel to specified crystal axis, unspecified, and I – isotropic), and the measurement wavelength. Table reproduced from
Ref. [3].

Crystal type Crystal E field orientation Wavelength (nm) n0 n2 (esu) 10−13 γN (cm2/W) 10−16 Reference

SC Al2O3 E ‖ C 1064 1.76 1.30 3.09 [61]

SC Al2O3 E ‖ C 532 1.78 1.40 3.30 [61]

SC Al2O3 E ‖ C 355 1.80 1.60 3.72 [61]

SC Al2O3 E ‖ C 266 1.82 2.60 5.98 [61]

SC Al2O3 E ‖ C 650 1.77 1.36 3.21 [62]

SC Al2O3 E ‖ C 700 1.77 1.33 3.17 [62]

SC Al2O3 E ‖ C 750 1.76 1.32 3.14 [62]

SC Al2O3 E ‖ C 800 1.76 1.31 3.11 [62]

SC Al2O3 E ‖ C 850 1.76 1.30 3.09 [62]

SC Al2O3 E ‖ C 900 1.76 1.29 3.06 [62]

SC Al2O3 E ‖ C 950 1.76 1.28 3.04 [62]

SC Al2O3 E ‖ C 1000 1.76 1.26 3.01 [62]

SC Al2O3 E ‖ C 1050 1.76 1.26 2.99 [62]

SC Al2O3 E ‖ C 1100 1.75 1.24 2.97 [62]

SC LiSAF Unspecified 850 1.39 1.10 3.30 [63]

SC LiCAF Unspecified 850 1.38 1.22 3.70 [63]

SC LiSGAF Unspecified 850 1.39 1.10 3.30 [63]

SC Mg2SiO4 Unspecified 1240 1.64 0.78 2.00 [63]

GM SiO2 I 1064 1.45 0.95 2.74 [64]

GM SiO2 I 527 1.46 1.05 3.00 [64]

GM SiO2 I 351 1.48 1.27 3.60 [64]

GM BK-7 I 1064 1.52 1.46 4.00 [61]

SC YAG I 1064 1.82 2.51 5.78 [65]

SC YAG I 1064 1.82 2.70 6.21 [66]

CER YAG I 1064 1.82 2.49 5.73 [65]

SC YALO E ‖ C 1064 1.91 3.33 7.30 [26]

SC YLF Unoriented measurement 1064 1.46 (o) 1.48 (e) 0.60 1.72 [67]

SC LuAG I 1064 2.14 5.50 10.77 [66]

SC Y2O3 I 1064 1.78 5.33 12.54 [66]

CER Y2O3 I 1064 1.78 5.79 13.63 [65]

CER Sc2O3 I 1064 1.85 5.32 12.05 [65]

CER Lu2O3 I 1064 1.83 3.96 9.06 [65]

SC MgO I 1064 1.74 1.61 3.88 [66]

SC MgAl2O4 I 1064 1.72 1.50 3.65 [66]

SC CaF2 I 1064 1.43 0.43 1.26 [66]

SC YVO4 E ‖ C 1080 2.25 8.06 15.00 [68]

SC YVO4 E ‖ A 1080 1.96 8.89 19.00 [68]

SC YVO4 Unoriented measurement 1064 2.06* 10.62 21.60 [69]

SC GdVO4 Unoriented measurement 1064 2.08* 8.34 16.80 [69]

SC KGW E ‖ Nm 800–1600 1.99 9.50 20.00 [70]

SC KGW E ‖ Np 800–1600 2.03 7.27 15.00 [70]

SC KYW E ‖ Nm 1080 2.01 4.80 10.00 [68]

Gas Air I 400 1 0.00128 0.00536 [71]

Gas Air I 800 1 0.00072 0.00301 [71]

∗ Measurements of γN along c-axis and orthogonal b-axis found to be the same.

we find the maximum tolerable heat density QM
0 to be,

evaluating Equation (16) for r = (D/2),

QM
0 = 32Msσ f

D2
. (17)

Substituting Equations (17) into (15), the extractable power/

length is then given by(
Pex

L

)
= 8πηex

(
1− ηh

ηh

) (
σ f Ms

)

= 8πηex

(
1− ηh

ηh

)
Rm . (18)

The quantity Rm , the product of the materials parameter

times the fracture stress, is known in the literature as the

rupture modulus. The heat fraction can be obtained explicitly

as a function of the extraction efficiency. For Yb:YAG, for

example, we have shown previously that ηh can be found

from the relationship[72]

ηh = A + Bηex + C(1− ηex) . (19)
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Upon substituting Equations (19) into (18), we find a final

simple expression for the extractable power per unit length

as a function of the heat fraction:(
Pex

L

)
= 8πηex

(
1− A + Bηex + C (1− ηex)

A + Bηex + C (1− ηex)

)
Rm .

(20)

The constants A, B and C have been calculated for Yb:YAG

and are tabulated at 300 and 77 K in Ref. [72]. The maximum

extractable power per unit length is then seen to be a function

of the heat fraction only, as the rupture modulus is a constant

in this treatment. The maximum tolerable surface stress has

been discussed in the literature, and is a function of the

fracture toughness, a geometry factor, and the surface flaw

radius that initiates a crack[32]. A number of techniques have

been used to decrease the surface flaw radius and increase

the fracture stress, including advanced surface polishing

techniques and acid etching[32]. In the case of rod amplifiers,

however, it is often the case that the barrel is ground to

suppress parasitic oscillations. This leads to a much reduced

rupture modulus. Recently, an alternative technique has

been developed to suppress parasitics, in which a ceramic

or single-crystal layer is grown in an absorbing annulus

onto the rod barrel. The layer may contain Sm, Cr4+ or

any other number of ions to absorb fluorescence and ASE

to both suppress parasitics and minimize ASE losses[73].

This solution allows rod barrels to be polished, substantially

increasing the fracture stress.

Equation (18) takes the following values for ηex = 0, 1(
Pex

L

)
(ηex = 0) = 8πηex

(
1− A + C

A + C

)
Rm = 0,

(21)(
Pex

L

)
(ηex = 1) = 8πηex

(
1− A + B

A + B

)
Rm . (22)

Calculation shows that the rupture modulus can be much

larger at 77 K than at 300 K[3]. If we assume that ηex = 1,

then the extractable power per unit length obtained at 77 K

can be calculated from Equation (22) to be about 9.31 times

the extractable power at 300 K, assuming that the fracture

stress values are the same in both cases. We evaluated the

Rm values at 300 and 77 K using the data from Table 2 and

assuming that the values for Young’s modulus and Poisson’s

ratio are approximately the same at both temperatures.

Stress-limited operation can, in this case, result in an

increase of average power at 77 K by approximately an order

of magnitude compared to room-temperature operation. We

note that in stress-limited operation, laser amplifiers will

have very large thermal aberrations. Stress values are large

and will contribute strongly to the change in index of

refraction. Such amplifiers display large changes in the

beam parameters (beam waist and divergence angle) as pump

power is increased to the maximum value.

3.1.2. Aberration-limited operation

In contrast to stress-limited operation, for aberration-limited

operation the contribution to the change in the index of

refraction from stresses is near-zero. We begin by writing the

change in phase 	ϕ due to thermal effects in a rod amplifier

as[11]:

	ϕ =
(

2π L
λ

) [
(β+ (n0 − 1) α) 	Tc−e + (n0 − 1)

×
(σzz

E
− ν

E
(σrr + σθθ )

)]
, (23)

where L is the amplifier length; β the value of (dn/dT ); α

the thermal expansion coefficient and σrr , σθθ and σzz are

the radial, tangential, and z stress components. The quantity

	Tc−e is the rod center-edge temperature difference. At

cryogenic temperatures, it can be shown that the stress term

is very small and may be ignored[11]. Equation (23) then

reverts to the much simpler equation

	ϕ =
(

2π L
λ

) (
Q0 D2

16k

)
[(β+ (n0 − 1) α)] (24)

that involves only changes in the index of refraction with

temperature, β, and changes in physical path length due to α.

Q0 is the heat density, D the rod diameter and k the thermal

conductivity. We define a new parameter ξ , the extractable

power per unit thermal phase distortion, as

ξ =
(

Pex

	ϕ

)
=

ηex

(
1−ηh
ηh

)
Q0Vp(

2π L
λ

) (
Q0 D2

16k

)
[(β+ (n0 − 1) α)]

. (25)

We use the phase relationship N = 	ϕ/2π where N is the

number of waves of thermal distortion, which leads to the

final expression

ξ = 4π

(
λk

(β + (n0 − 1))α

)

×
[

A + Bηex + C(1− ηex)

1− A − Bηex − C(1− ηex)

]
. (26)

This new equation allows the (idealized) calculation of

the output power per unit phase distortion, or if preferred,

the magnitude of the thermally induced phase distortion

for a given amount of laser output power, at cryogenic

temperatures. (This equation obviously ignores the effects

of gain or a resonator.) Note that ξ is independent of the

heat density, the rod diameter and the rod length. We can use

this relationship to estimate for example how much phase

aberration will be produced at two temperatures for the same

amount of output power. It is instructive to ignore the stress

contribution to the phase aberration at room temperature, and
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to simply calculate the ratio

Rϕ =
(

1
ξ

)
300(

1
ξ

)
77

, (27)

to find the ratio of the phase aberration at 300 K relative to

77 K. While we prefer in this paper to calculate Equation

(27), note that we could also have calculated the ratio of ξ

at 300 K to that at 77 K to find the ratio of power output at

300 K relative to that at 77 K for 1 unit of wave distortion.

Using the values of A, B and C found in Ref. [72] for

Yb:YAG, as well as values of β and α from Table 2, a

wavelength of 1029 nm, and an index of refraction of 1.817,

we have calculated the reciprocal of ξ at 300 and 77 K,

(1/ξ)300 and (1/ξ)77, and the ratio Rϕ as a function of ηex

and show the results in Figure 11. Examination of Figure

11 reveals that the number of waves distortion at 300 K,

for the same heat density and rod radius and length is about

16.4 to 15.9 times the number of waves generated at 77 K.

This result explicitly shows that for any extraction efficiency,

operating an amplifier at 77 K will always result in much

lower thermal aberrations, by over an order of magnitude

for Yb:YAG. Similar results will be obtained for other laser

materials. We have not included the stress contribution to the

thermal phase change at 300 K in Yb:YAG here for brevity,

but doing so will increase the value of Rϕ . Equation (24)

represents a rational way to compare the performance of

laser amplifiers at different temperatures, and may be used

to quantify the expected improvement in power output per

unit thermal phase distortion at cryogenic temperatures.

3.2. Pulse-pumped laser extraction model

We have developed a very useful pulsed-pumping model

that enables modeling of picosecond and nanosecond cryo-

genic laser systems that are used for pumping ultrafast

lasers, whether broadband Ti:Al2O3 or other tunable broad-

bandwidth systems or broadband OPCPA systems. The

model treats four-level diode-pumped lasers like cryogenic

Yb:YAG that use square-wave pumping into the upper laser

manifold. We begin by showing in Figure 12 a timing

diagram for a typical diode-pumped laser.

The pump pulse, of duration T , produces an initial inver-

sion density ni that is the sum of the inversion left from

the fluorescence decay of the final inversion density from

the previous pulse (pink) nfp, plus the inversion created

from the current pulse (solid blue line). The final inversion

density after the passage of an extracting pulse is nf , and

the difference inversion density is 	n = ni − nf . The time

between pulses, Tbp, is the inverse of the repetition rate νR .

Figure 11. Number of waves distortion per unit output power for Yb:YAG

at 300 (blue line) and 77 K (red line), and the ratio of the number of waves

at 300 to 77 K pink), all as a function of laser extraction efficiency.

We can then write the initial inversion density as

ni = ncw

(
1− e

−
(

T
τ

))
+ nfpe

−
(

Tbp
τ

)
, (28)

and recognizing that in steady-state nfp = nf , we have

ni = ncw

(
1− e

−
(

T
τ

))
+ nf e

−
(

Tbp
τ

)
. (29)

The CW inversion density is given by

ncw = Reτ =
(

PPλP Aτ

hcπa2L

)
. (30)

The quantity τ is fluorescence lifetime, Re the excitation

density, A the pump absorption, PP the pump power, λP the

pump wavelength, h Planck’s constant, c the speed of light

and VP the pump volume that may be calculated from

VP = πa2L ,

where a is the assumed cylindrical pump volume radius and

L the length. We assume in all that follows that the excitation

and inversion densities are constant in the pump volume. We

can relate the change in excitation after pulse extraction to

the change in the extracting beam fluence 	J through the

relationship

ni − nf = 	n =
(

λL

hcL

)
	J = nex, (31)

with the change in the fluence given by

	J =Jout − Jin. (32)

The quantity nex, the extracted inversion density, can then be

written

nex = ni − nf =
(

λL

hcL

)
	J. (33)
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Figure 12. Temporal repetitively diode-pumped sequence showing pump pulses of duration T , repetition rate νR , the temporal variation of the initial inversion

density ni and the inversion from a previous pulse nfp, and the difference inversion density 	n due to extraction.

Substituting nf = ni − nex in Equation (29), we find

ni =
ncw

(
1− e−

(
T
τ

))
− nexe

−
(

Tbp
τ

)

(
1− e−

( Tbp
τ

)) . (34)

Now, using Equation (31), we find a similar equation for the

final inversion density:

nf =
ncw

(
1− e−

(
T
τ

))
− nex(

1− e−
( Tbp

τ

)) . (35)

Equations (34) and (35), which express the initial and final

inversion densities in terms of the CW inversion density and

the extracted inversion density, will be found to be useful in

the following derivations. Using Equation (31), we write the

extracted inversion density as

nex =
(

λL

hcL

)
(Jout − Jin) =

(
λL

hcL

)
Jin (Gs − 1) . (36)

Gs is the saturated gain which is defined as:

Gs = Jout

Jin
. (37)

We will use the Frantz–Nodvik Equation, written in the form

Gs =
(

Js

Jin

)
ln

[
1+ G0

[
e
(

Jin
Js

)
− 1

]]
. (38)

G0 is the small-signal gain, given by

G0 = eσeni L , (39)

and σe is the stimulated-emission cross-section. Substituting

Equation (38) into (36), we find the very useful relationship

nex =
(

λL

hcL

) [
Js ln

[
1+ G0

(
e
(

Jin
Js

)
− 1

)]
− Jin

]
.

(40)

This equation allows us to calculate the extracted inversion

density nex as a function of the small-signal gain G0, the

saturation fluence, and the input fluence of the amplifier, Jin.

We can now re-write Equation (34) as

ni = n0
i −

nexe
−

(
Tbp
τ

)
(

1− e−
( Tbp

τ

)) , (41)

or, finally, as

ni = n0
i −

nex(
e
( Tbp

τ

)
− 1

) . (42)

The quantity n0
i is the initial starting density without extrac-

tion, and is calculated according to

n0
i =

ncw

(
1− e−

(
T
τ

))
(

1− e−
( Tbp

τ

)) . (43)

Thus, by knowing the time between the pump pulses (repe-

tition rate), the fluorescence lifetime and the CW inversion

density, we may calculate the initial inversion density with

no extraction. We define the starting small-signal gain G0
0 by

the following relationship:

G0
0 = e(σen0

i L). (44)

The starting small-signal gain is then calculated with re-

pumping, but with no extraction. Similarly, we can calculate

the small-signal gain after extraction, G0, using

G0 = e(σenf L). (45)

This equation allows us to calculate the remaining small-

signal gain with re-pumping but after extraction. We now

define two new variables, β and f as follows:
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β =
(

Jin

Js

)
, (46)

f =
(

e

(
Tbp
τ

)
− 1

)
. (47)

Multiplying Equation (42) by σe L , we find

σeni L = σen0
i L − nexσe L

f
. (48)

This equation may be manipulated to yield the relationship

ln G0 = ln G0
0 −

1

f
	J
Js

. (49)

Using Equations (36) and (38) we then arrive at

f ln

(
G0

G0
0

)
=

[(
Jin

Js

)
− ln

(
1+ G0

(
e
(

Jin
Js

)
− 1

))]
,

(50)

or, upon further arrangement:

ln

⎛
⎝(

G0

G0
0

) f
⎞
⎠ = βin − ln

(
1+ G0

(
eβin − 1

))
. (51)

There are no closed form solutions to this transcendental

equation; however, the equations may be solved numerically.

Knowing β, G0
0 and f, we can solve for G0, and then

using the Frantz–Nodvik Equation (38), we can calculate the

saturated gain as well as Jout. The formalism above can be

used to solve for the initial and final inversion densities, the

extracted inversion density, the starting and final small-signal

gains, the saturated gain, and the output fluence for any pump

pulse duration T and repetition rate νR . We have developed

a computer code to implement these results, as applied to

spatially flat-topped or Gaussian distributions. Equation (51)

is solved in the form

ln

⎛
⎝(

G0

G0
0

) f
⎞
⎠−β in + ln

(
1+ G0

(
eβin − 1

)) = 0. (52)

In addition to the above relationships, the code keeps tracks

of a number of other quantities as well, including the CW

small-signal gain given by Gcw
0 ,

Gcw
0 = eσencw L , (53)

the CW total energy stored in pumped volume Vp, Ecw
T ,

Ecw
T = ncwVp

(
hc
λL

)
, (54)

the total energy stored with re-pumping and just before

extraction, Ei
T

Ei
T =

ncw

(
1− e

−
(

T
τ

))
⎛
⎝1− e

−
(

Tbp
τ

)⎞
⎠

(
hc
λL

)
Vp, (55)

and the total energy remaining after extraction, E f
T ,

ET =
(

ln(G0)

σe L

) (
hc
λL

)
Vp. (56)

An additional quantity of interest is the energy extraction

efficiency ηex, given by

ηex = Eout − Ein

EStored
. (57)

Eout and Ein are found from the obvious relationships

Eout = Jout

(
πa2

)
; Ein = Jin

(
πa2

)
, (58)

and EStored = Ei
T . Then ηex can be expressed as

ηex = (Jout − Jin)

(
λL

hcL

) (
1− e−

( Tbp
τ

))
ncw

(
1− e−

(
T
τ

)) . (59)

3.3. Use of Frantz–Nodvik equation in system modeling:
generalized form

We begin this Section by first writing the well-known

Avizonis–Grotbeck equation describing the variation of the

pulse fluence J with distance z in an amplifier as:

d J
dz
= g0 JS

(
1− e−

(
J

JS

))
− αL J. (60)

In Equation (60), J is the fluence, JS the saturation fluence,

g0 the gain/length, and αL is a general loss coefficient

per unit length. By assuming αL = 0, Equation (60) is

easily integrated to give the Frantz–Nodvik equation for the

saturated gain, given by

GS =
(

JS

Jin

)
ln

[
1+ eg0 L

(
e
(

Jin
JS

)
− 1

)]

=
(

JS

Jin

)
ln

[
1+ G0

(
e
(

Jin
JS

)
− 1

)]
, (61)

G0 is the exponential small-signal gain; by knowing the in-

put fluence and the small-signal gain, one can then calculate

the saturated gain for an amplifier of length L . In most laser
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systems, a number of amplifiers are usually required to meet

performance goals. For systems we have demonstrated or are

presently demonstrating, for example, as many as 15 laser

disks may be used. To simplify the laser pulse extraction

modeling using the Frantz–Nodvik equation, it is convenient

to use a cascaded Frantz–Nodvik approach where the output

of the first amplifier for example is incident on a second

amplifier. If the amplifiers are identical, then we have as

the equations for the output fluences of the first and second

amplifiers:

J 1
out = G1

S J 1
in = JS ln

⎡
⎣1+ G1

0

⎛
⎝e

(
J1
in

JS

)
− 1

⎞
⎠

⎤
⎦ , (62)

J 2
out = G2

S J 2
in = JS ln

⎡
⎣1+ G2

0

⎛
⎝e

(
J2
in

JS

)
− 1

⎞
⎠

⎤
⎦ . (63)

If we now use J 1
out = J 2

in, and substitute Equation (62) for

J 2
in in the exponential of Equation (63), we find the following

equation:

J 2
out = G2

S J 2
in = JS ln

⎡
⎣1+ G2

0G1
0

⎛
⎝e

(
J1
in

JS

)
− 1

⎞
⎠

⎤
⎦ . (64)

Thus we can see that by utilizing the two Frantz–Nodvik

equations, it is possible to combine the effect of the two

amplifiers into a single gain equation simply by multiplying

the two small-signal gains together. For identical amplifiers,

each having the same small-signal gain, Equation (64) be-

comes

J 2
out = G2

S J 2
in = JS ln

⎡
⎣1+ (G0)

2

⎛
⎝e

(
J1
in

JS

)
− 1

⎞
⎠

⎤
⎦ . (65)

The saturated gain is then

GT
S =

J 2
out

J 1
in

=
(

JS

J 1
in

)
ln

⎡
⎣1+ (G0)

2

⎛
⎝e

(
J1
in

JS

)
− 1

⎞
⎠

⎤
⎦ .

(66)

It is easy to show that the saturated gain from N identical

amplifiers is then

G N
S =

J N
out

J 1
in

=
(

JS

J 1
in

)
ln

⎡
⎣1+ (G0)

N

⎛
⎝e

(
J1
in

JS

)
− 1

⎞
⎠

⎤
⎦ .

(67)

Equation (67) works for nonidentical amplifiers as well; it is

also easy to include a transmission factor to account for any

losses between the amplifier stages. We refer to this equation

as the cascaded Frantz–Nodvik equation.

Another application for Equation (67) is in modeling

double-passed active-mirror or other types of amplifiers. If

we ignore any overlap effects, and assume that the first and

second extraction pulses are completely separated in time,

then the active-mirror gain can be written

GAM
S =

(
JS

J 1
in

)
ln

⎡
⎣1+ G2

0G1
0

⎛
⎝e

(
J1
in

JS

)
− 1

⎞
⎠

⎤
⎦ . (68)

In this case, the small-signal gain of the first pass, G1
0, is

greater than the second-pass small-signal gain G2
0 since the

first pass reduces the stored inversion density; it is then

necessary to find the remaining inversion and to calculate

the remaining small-signal gain G2
0 available for pass two,

a feat that is easily accomplished. Equation (68) is then

convenient to use in modeling the extraction from active-

mirror amplifiers; a second way to accomplish the same task

is to use two Frantz–Nodvik equations serially. The two

approaches agree exactly.

For pulses that overlap in time, Equation (68) still applies.

It has been shown that the Frantz–Nodvik equation is invari-

ant to any starting pulse shape. This is because the extracted

inversion is proportional to the total fluence only, and is thus

not sensitive to pulse shape. This means that two pulses

with exactly the same total fluence, but with widely different

pulsewidths, will produce exactly the same Frantz–Nodvik

saturated gain. Because of this pulsewidth invariant property,

we can see that even overlapped pulses in the active-mirror

extraction volume with nanosecond durations and extracting

a ∼1 cm thick disk must have the same extraction efficiency

as a pulse, that is, say only 1 ps duration, and that the overlap

does not affect the extraction efficiency. Thus, calculating

the extraction efficiency serially, using two pulses that are

assumed not to overlap in time, results in the same extraction

efficiency as for two temporally overlapped pulses. We of

course ignore any gain narrowing that may occur at a pulse

leading edge for example; in that case a more sophisticated

finite-element approach is needed.

3.4. Calculating nonlinear phase with the Frantz–Nodvik
equation

As discussed previously in Section 2.6, the B-integral de-

fined by Equation (8) is an important system design pa-

rameter. B is in general a function of the beam radius r ,

propagation location z and time t , I (r, z, t) is the radially,

longitudinally and temporally varying laser intensity, the

wavelength λ, and z is the propagation length parame-

ter. The B-integral is the nonlinear phase accumulation

	ϕN L(r, z, t) due to the nonlinear index n2, and in laser

systems must be calculated for all optical and gain elements

encountered by the propagating beam. It is customary to

calculate the maximum value of the B-integral where the
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intensity I is maximum (t = 0). For spatially Gaussian

beams, the B-integral value at the beam edge is typically

very small, and only the on-axis value for r = 0 is normally

specified. For any arbitrary spatial beam profile, is easy

to use Equation (8) in a computer code to calculate the

B-integral profile at any location in a laser amplifier or

system. In order to calculate B(r, z, t) = 	ϕN L(r, z, t),
a very important design parameter in HAPP lasers, we

have developed an approach that uses the Frantz–Nodvik

Equation (38), previously discussed in this paper. We start

by explicitly showing the Gaussian intensity distribution as

a function or radius and time:

I = (r, t) = I0Pe
−2

(
r

ω0

)2

e
−2

(
t
t0

)2

, (69)

where I0P is the peak intensity on axis (r = 0) and at pulse

center for t = 0, ω0 is the 1/e2 radius and t0 is the 1/e2 time

half-width. By integrating Equation (69) over the beam area

and time, we arrive at an expression for the pulse energy E0:

E0 =
(π

2

)3/2
I0Pt0ω2

0. (70)

We also note that for a Gaussian beam, the 1/e2 half-width

t0 is related to the full width at half maximum pulsewidth tp
by the relationship

t0 = tp

(2 ln(2))1/2
. (71)

By combining Equations (70) and (72), we find an expres-

sion for the peak intensity I0P as a function of the pulse

energy, full width at half maximum pulsewidth and beam

radius:

I0P =
(

4

π

) (
ln (2)

π

)1/2
(

E0

tpω
2
0

)
. (72)

To find the peak fluence J0 for r = 0, we integrate the

intensity over time to find

J0 =
(

2

π

) (
E0

ω2
0

)
. (73)

We now write the general expression for the passive B-

integral as

B(r, z, t) =
(

2π

λL

) ∫
γN L I (r, z, t) dz, (74)

or, if gain is present in the propagation medium,

B(r, z, t) =
(

2π

λL

)
I0Pe

−2
(

r
ω0

)2

e
−2

(
t
t0

)2 ∫
G (z) dz. (75)

If we now restrict the calculated value to the peak value for

r = 0 and t = 0, we have

B (z) =
(

2π

λL

)
γN L I0P

∫
G (z) dz. (76)

Using the previous Equations (72) and (75), we then find an

equation for calculating B:

B (z) =
(

4 (π ln(2))1/2 γN L Jin

λL tp

) ∫
G (z) dz. (77)

We have set J0 = Jin in Equation (77). For passive (nonam-

plifying) optical elements in a laser system, the B-integral

becomes simply

B (L) =
(

4 (π ln(2))1/2 γN L JinL
λL tp

)
. (78)

Now, using the Frantz–Nodvik equation (Equation (61)), we

can then write the final expression for B, evaluated at z = L:

B (L) =
(

4 (π ln(2))1/2 γN L Js

λL tp

)

×
∫ L

0

ln

[
1+ eg0 L

(
e
(

Jin
JS

)
− 1

)]
dz. (79)

The integral in Equation (79) can be solved analytically; the

result is shown below:

B (L) =
(

4 (π ln(2))1/2 γN L Js

λL tpg0

) {
Li2

(
1− e

(
Jin
JS

))

−Li2

((
1− e

(
Jin
JS

))
e(g0 L)

)}
. (80)

Li2(z) is the dilogarithm, which may be calculated from the

polylogarithm infinite sum with n = 2:

Lin (z) =
∞∑

k=1

zk

kn . (81)

While the polylogarithm may be calculated using computer

programs such as Mathematica, it can be difficult to integrate

into stand-alone laser amplifier extraction programs.

Limiting solutions:

It is well known that the Frantz–Nodvik equation has two

limiting solutions for Jin/JS� 1, and for Jin/JS� 1. In the

former case the gain is equal to the small-signal gain G0, and

Equation (79) for the B-integral reverts to
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B (L) =
(

4 (π ln(2))1/2 γN L Js

λL tpg0

) [
eg0 L − 1

]
. (82)

For the latter case, we obtain

B(L) =
(

4(π ln(2))1/2γN L Js L
λL tp

) [
1+

(
g0L

2

) (
JS

Jin

)]
.

(83)

First-order computer laser design codes that ray-trace as-

sumed Gaussian beams through a sequence of amplifiers are

very useful in determining whether or not an estimated laser

system configuration has the potential to achieve a prescribed

set of laser system output parameters, and can be used to de-

termine for example the number of finite amplification stages

required, and to determine what beam sizes are required to

achieve a reasonably efficient system, as well as to determine

how close required fluences might be to damage thresholds.

More detailed system simulations usually then follow to

include finite-element beam propagation, diffraction effects,

and an accurate calculation of the B-integral. It is then

usually sufficient for first-order laser design codes to only

estimate the value of the B-integral in amplification stages.

As we have seen, no truly simple calculation approaches

are presently available to do so, except in the case where

the amplifier fluence is greater than or approximately equal

to the saturation fluence, in which case Equation (83) may

be employed. Another method that we have employed is to

calculate the fluences at the input and output faces of an

amplifier, Jin and Jout, and to then estimate the average B-

integral value using the equation

B (L) =
(

4 (π ln(2))1/2 γN L L
λL tp

) [
Jout + Jin

2

]

=
(

4 (π ln(2))1/2 γN L L
λL tp

) (
GS + 1

2

)
Jin. (84)

3.5. LIDTs

Perhaps the most important parameter in the design of any

laser system is the LIDT, the value of fluence, intensity, or

average power that if exceeded, will result in irreversible

damage to at least one optical or lasing element in the

laser system. If the weakest component in a laser system

has an LIDT that is a fraction of the laser saturation flu-

ence, one cannot obtain a high overall system efficiency

because for high extraction efficiency the input laser fluence

must be at least equal to the saturation fluence, and in the

case of Gaussian beams, many times the saturation fluence.

A small saturation fluence is obtained for laser materials

with a large stimulated-emission cross-section. The LIDT

has a strong laser pulsewidth dependence that results in

picosecond pulses having a smaller damage threshold than

nanosecond pulses, and femtosecond less than picosecond.

It was a challenge in early ultrafast lasers to scale laser

output due to the limiting value of LIDT’s in the picosecond

and particularly in the femtosecond regime. It was because

of those damage limitations, as well as to avoid the type

of nonlinear effects discussed in the aforementioned, that

the technique of CPA was invented[74]. Using CPA, a short

femtosecond pulse for example is stretched using diffraction

gratings or other means, to the picosecond regime where

damage thresholds are substantially larger, After stretching,

the initial pulse is amplified in a following beam line of

amplifiers where the larger pulsewidth allows nonlinear

effects to be avoided or minimized, and where more efficient

extraction can be obtained due to the larger damage thresh-

old. After amplification, the stretched pulse is compressed, in

many cases using a diffraction-grating compressor, to restore

the pulsewidth close to its initial value. Managing the ac-

cumulated dispersion, and compensating for it using certain

types of compressor configurations determines how close

to the initial pulsewidth the final compressed pulse comes.

Reducing gain narrowing is also an important contributing

factor to the compressed pulse duration.

The literature of LIDT’s is vast. Interested readers that

have a need to thoroughly explore the field may consult the

book by Wood[75], as well as the many publications of the

Annual Boulder Damage Symposium (Boulder, Colorado,

USA), a conference that celebrated it’s 45th year in 2013.

The LIDT of laser and optical materials is a consequence

of the many physical mechanisms connected with the high

fields achievable with laser. When intense beams are trans-

mitted through crystals or glasses, many nonlinear effects

such as harmonic generation, self-focusing and self-phase

modulation, nonlinear absorption, excited-state absorption,

stimulated Brillouin or Raman scattering and others may

occur, and contribute to irreversible damage. In addition,

electron avalanches may occur in response to a strong E

field, and plasmas may form on a crystal surface or inter-

nally. High-average-power effects, that are now becoming

more and more important, can be caused by absorption and

melting of dielectric crystals or dielectric coatings, and can

lead to distortion de-polarization, and ultimately fracture of

crystals or other optics. It is a general observation, supported

by measurements, that the LIDT of surfaces are substantially

smaller than bulk LIDT’s. LIDT’s are a strong function of

the laser wavelength, with visible and UV LIDT’s much less

than those obtained around 1000 nm[75, 76].

The pulsewidth dependence of surface LIDT’s is rather

simple in the picosecond–nanosecond-long-pulse regime,

varying as the pulsewidth to the 1
2 power[75, 76] for pulse-

widths τP > about 20 ps. For picosecond pulses <20 ps in

duration and femtosecond pulses, the dependence is however

more complicated[77, 78]. For τP > 20 ps, the damage

morphology is thermal in nature, and usually accompanied

by surface melting and boiling; electronic kinetic energy is

transferred to the crystal lattice via avalanche multi-photon
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ionization and inverse Bremsstrahlung free carrier absorp-

tion, and diffuses in the lattice during the pulsewidth τP .

For short ps and femtosecond pulsewidths (τP < 20 ps), the

LIDT is explained by the nonlinear excitation of electrons

to the conduction band from avalanche ionization, tunneling

ionization, and multi-photon absorption. After reaching a

critical plasma density of ≈1021/cm3, strong absorption

occurs due to inverse Bremsstrahlung, that results in ablation

and permanent structural changes. Measurements of the

LIDT using the standard high-purity material SiO2 or CaF2,

have resulted in rather complete sets of data showing the

LIDT dependence on τP from 140 fs to 1 ns. In general,

the LIDT value decreases in a monotonic fashion over the

entire range of pulsewidths. A more recent publication shows

the SiO2 LIDT dependence on the pulsewidth over the more

limited range of 7–350 fs. While the pulsewidth dependence

of all dielectric elements such as crystals and dielectric

coatings have been found to show a similar pulsewidth

dependence, from a laser designers perspective every optic in

a HAPP systems should be LIDT tested before installation,

at the expected operating pulsewidth and average power.

Fortunately, many laser optics fabricators are now beginning

to offer such measurements.

It is a shortcoming of the present state of the art that

high-average-power effects have received far less attention

than high-peak-power effects. Now that we are witnessing

the advent of HAPP laser systems, much attention will be

focused in the near future on determining the LIDT’s of laser

crystals and optics under very extreme conditions. LIDT’s at

low temperature are scarce and in most cases have not been

measured. Recently a publication reported a reduced damage

threshold at cryogenic temperatures relative to the room-

temperature value[79]. This is in contrast to a number of

publications that have reported increased damage thresholds

at cryogenic temperatures[80–82]. Increased laser damage

threshold measurement efforts at cryogenic temperatures

are needed to further our understanding of the design of

cryogenic laser devices and to increase our knowledge of the

scaling of the damage threshold with temperature.

3.6. Dispersion effects

Dispersion effects in high-peak-power laser systems are

negligible for nanosecond pulsewidths, slightly important

for picosecond pulsewidths, and critically important for

femtosecond lasers. The following well-known equation

may be used to estimate the importance of the operating

pulsewidth:

τP (z)
τP0

=
√√√√1+

(
β2z

τ 2
P O

)2

. (85)

τP0 is the pulsewidth entering a dispersive medium, β2 is the

second-order dispersion coefficient (GVD) and z the propa-

gation distance. τP (z) is the pulsewidth after propagating a

distance z, and is broadened by the effect of the second-order

dispersion. This approach ignores any broadening effects

due to the higher-order dispersion terms. If we examine a

laser system using the laser material Yb:YAG for example,

and assume that the total path length is typically 10 cm for

the amplification stages, then about 6,700 fs2 of GVD are

accumulated in a single pass. For a 1 ns pulsewidth, the pulse

broadening term β2z/τ 2
P O amounts to ≈2 × 10−8, so the

square root in Equation (85) is close to 1, and the pulsewidth

unaffected. For a 1 ps pulsewidth, β2z/τ 2
P O is 0.0186, and

the square root takes the value 1.00017, so the pulsewidth

is still hardly affected. For a 10 fs pulsewidth, however,

β2z/τ 2
P O is calculated to be about 185.8, and the pulse is

significantly broadened to about 137 fs. Now, when other

system components such as windows and wave plates are

included in the calculation, pulse broadening may become

significant at 1 ps as well; however, direct pulse amplification

may be used in common cryogenic laser systems with a

pulsewidth >5–10 ps, as long as there are no laser-induced

damage constraints. This approach has been successfully

used in a high repetition rate, low energy/pulse cryogenic

laser system for example[83]. For repetition rates less than a

few kHz in which the energy/pulse is typically large, CPA

must be used to increase the available damage threshold. In

that case the dispersion used to stretch the pulse, typically

by a diffraction-grating pair, as well as the accumulated

dispersion from pulse propagation through the laser system

must be compensated in the compressor stage, typically up to

at least to the second order, and in some cases the third-order

dispersion term.

Table 5, reproduced from Ref. [3], shows calculated values

of the index of refraction, the wavelength the values were

calculated at, and the first-, second-, third- and fourth-order

dispersion coefficients. In addition, references are provided

to allow interested readers to know what form of the index

equation was used, as well as the values of the constants.

We have included crystals and optical materials often used

in ultrafast lasers, including Ti:Al2O3, Cr:LiSAF, Cr:LiCAF

and a number of Yb laser materials. Some entries in Table 5

have also served as a check on the calculational accuracy.

For example, for BK-7 at 800 nm and fused silica (SiO2)

at 800 nm, the calculated dispersion parameter values agree

closely with previously published results[32]. For Ti:Al2O3,

the dispersion parameters were calculated for a Sellmeier

equation used for sapphire grown using the heat exchanger

method (HEM), and are similar to previously published

results[84], but a one-to-one comparison cannot be made

because the data and Sellmeier equations used in Ref. [32]

were not revealed. The variation of the index of refraction

with wavelength can also be slightly different depending

upon the crystal growth method, and the corresponding

Sellmeier equations will be somewhat different as well,

and it is likely that such differences explain the variation
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Table 5. Calculated room-temperature values of the linear index and the first-, second-, third- and fourth-order dispersion parameters for
legacy and newer laser crystals of length 1 mm. Also shown are the operating laser wavelengths, as well as references to allow readers to
know what Sellmeier or alternative index equation was used in the calculations. Table reproduced from Ref. [3].

Crystal Wavelength (nm) n0 β1 (fs/mm) β2 (fs2/mm) β3 (fs3/mm) β4 (fs4/mm) Reference

Al2O3-(e) (HEM) 800 1.7540 5928.1 49.9 48.3 −30.0 [85]

Al2O3-(o) (HEM) 800 1.7620 5960.6 42.2 48.7 −36.7 [85]

Al2O3-(e) (HEM) 1030 1.7477 5912.4 11.9 81.3 −127.6 [85]

Al2O3-(o) (HEM) 1030 1.7552 5946.7 7.0 87.9 −146.4 [85]

LiSAF-(e) 850 1.4054 4709.2 7.9 15.7 −15.0 [86]

LiSAF-(o) 850 1.4074 4720.0 9.5 28.4 −1.2 [86]

LiCAF-(e) 760 1.3890 4654.6 23.6 13.6 −3.3 [87]

LiCAF-(o) 760 1.3899 4659.5 23.1 13.7 −3.9 [87]

YAG 1060 1.8243 6148.6 60.9 68.3 −46.9 [88]

YAG 1030 1.8153 6121.7 66.6 66.7 −41.6 [88]

LuAG 1060 1.8279 6136.5 74.6 45.7 7.3 [89]

LuAG 1030 1.8249 6151.8 64.4 66.1 −39.3 [89]

YALO-(a) 1040 1.9341 6502.8 93.4 55.5 7.6 [90]

YALO-(b) 1040 1.9258 6473.2 90.3 53.5 7.2 [90]

YALO-(c) 1040 1.9140 6430.1 84.2 49.7 6.3 [90]

YLF-(e) 1020 1.4705 4927.6 21.7 24.2 −18.7 [91]

YLF-(o) 1020 1.4483 4851.8 18.9 23.3 −21.3 [91]

YVO4-(e) 1060 2.1661 5947.6 341.1 305.0 69.1 [92]

YVO4-(o) 1060 1.9579 6662.4 191.7 168.5 18.2 [92]

KGW-(Np) 1032 1.9829 6726.0 165.8 129.6 9.1 [93]

KGW-(Nm) 1027 2.0113 6828.7 178.7 139.5 12.6 [93]

KGW-(Ng) 1024 2.0625 7005.8 216.0 141.5 3.5 [93]

KYW-(Np) 1028 1.9690 6673.0 184.4 429.5 21.3 [93]

KYW-(Nm) 1028 2.0073 6814.0 207.2 495.1 26.0 [93]

KYW-(Ng) 1028 2.0514 6972.1 223.8 543.2 28.9 [93]

KYbW-(Np) 1040 1.9932 6772.2 130.5 106.2 −29.9 [93]

KYbW-(Nm) 1026 2.0365 6897.3 173.2 421.5 56.3 [93]

KYbW-(Ng) 1024 2.0789 7074.3 179.6 307.7 20.9 [93]

Y2O3 1030 1.8889 6386.6 113.9 93.2 −14.0 [94]

Sc2O3 1030 1.9654 6659.2 124.8 108.6 −30.4 [94]

Lu2O3 1030 1.9102 5691.4 126.1 100.6 −15.8 [94]

CaF2 1030 1.4287 4784.1 18.4 20.2 −14.7 [26]

BK-7, N-BK-7 800 1.5108 5088.8 44.6 32.0 −10.0 [26]

BK-7, N-BK-7 1030 1.5071 5070.2 25.1 44.7 −49.8 [26]

SF10 800 1.7112 5836.7 159.2 102.9 33.4 [47]

SF10 1030 1.7030 5766.4 108.1 97.3 −15.7 [47]

SF11 800 1.7648 6036.4 189.4 124.1 48.3 [26]

SF11 1030 1.7553 5952.9 128.9 113.0 −7.3 [26]

N-SF14 800 1.7429 5957.1 176.4 117.6 41.6 [26]

N-SF14 1030 1.7337 5879.7 118.3 110.2 −17.7 [26]

Crystal SiO2 (e) 1030 1.5282 5189.3 0.4 98.8 −193.5 [95]

Crystal SiO2 (o) 1030 1.5342 5162.8 25.8 46.2 −53.6 [95]

Crystal SiO2 (e) 800 1.5348 5200.6 38.1 50.4 −43.9 [95]

Crystal SiO2 (o) 800 1.5381 5181.9 45.8 32.1 −12.0 [95]

Fused silica (SiO2) 800 1.4533 4890.5 36.1 27.3 −11.0 [96]

Fused silica (SiO2) 1030 1.4500 4875.7 19.0 40.4 −49.8 [96]

between our calculations and Ref. [84]. We have endeavored

to calculate accurate values for the dispersion parameters

reported in Table 5, and have checked and compared our

results to other values found in the literature where available.

Readers should be aware however that coding long and

tedious Sellmeier, Cauchy, Laurent and other equations and

their derivatives up to the fourth order may lead to some

inadvertent errors being present.

3.7. Computer code design results

We have written a number of VBA (Visual Basic Ap-

plication) computer codes to model single- and double-

passed active-mirror chains as well as straight-through laser

disks, and regenerative amplifiers, based on the pulsed pump

extraction model (PPEM) described in Section 3.2, and have

used the code to investigate the pulse energy scaling in

excess of 1 J/pulse at 1 kHz. In this section, we will review
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Figure 13. Schematic diagram of the Thor-300 Cryo Amplifier system; the gray boxes represent copper heat sinks that are coupled to closed-cycle cryogenic

coolers, the disks are shown on opposite faces of the heat sinks. Green arrows represent 940 nm pump beams used to optically pump the disks, A more

detailed description may be found in the text.

some of the features and results of the code, which we refer

to as PPEM-8.0.

One system we have modeled, the Thor 300 cryogenic

amplifier, is shown in Figure 13. Eight active-mirror disks

are used to amplify an initial beam, that is imaged and

double-passed through the first stage using a series of HR

mirrors and a final HR mirror and quarter-wave plate. A

positive and negative lens pair (not shown in Figure 13) is

used to image the beam through the stage. After rejection

from the first thin-film polarizer (TFP), the beam is further

imaged and magnified using the vacuum beam expander to

the second TFP. The beam is then imaged through the second

double pass which also includes a final HR mirror and

quarter-wave plate, using a second positive–negative lens

pair, and rejected from the second TFP and exits the system.

The system architecture is largely driven by the limited heat

removal capacity of the closed-cycle cryogenic coolers.

The system uses 200 W of pump peak power per active-

mirror disk, for a total pump power of 1600 W. The pump

pulse duration is 500 μs and the repetition rate 1 kHz.

Each active-mirror disk is 25 mm in diameter and has a

3.75 mm thick Yb:YAG section with 10 at.% doping. A

second 2 mm thick clear YAG disk is diffusion-bonded to the

doped disk forming a 25 mm diameter × 5.75 mm bonded

crystal assembly. The rear surface of each disk has a high

reflection (HR) dielectric coating at 940 and 1029 nm and is

typically cooled through a thin indium foil by use of a pulse-

tube cryocooler that maintains temperature <120 K at full

power pumping. The opposite disk face has an anti-reflection

(AR) coating at 940 and 1029 nm. The Thor 300 cryogenic

Figure 14. Thor-300 Yb:YAG pump chamber showing entrance window,

vacuum, window, and mounting flanges, and a pulse-tube He closed-cycle

cryocooler mounted on top.

amplifier system modeled, under development by our group,

consists of eight active-mirror disks with two disks cooled

per closed-cycle pulsed cryocooler. A photograph of one

Thor 300 vacuum pump chamber is shown in Figure 14.

Each of the four disks on the first double-pass side are

pumped with a 4f imaging system that provides a 1:1

magnification from a pump source fiber collimator, with a

1/e2 pump beam diameter of 4 mm. The seed beam used

to drive the amplifier system is double-passed on both sides

using polarization multiplexing. Between the two double

passes of the system, the beam is imaged using a vacuum

telescope magnifier to a 1/e2 beam diameter of 7 mm
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Figure 15. Evolution of the energy/pulse in Thor-300 cryogenic laser system as a function of the optical element number and at a 1 kHz repetition rate. The

pump pulse duration is 500 μs. The Gaussian beam radius in elements 1-82 is 2 mm; after beam expansion at element 82, the beam radius is 3.5 mm.

(magnification of 1.75). The design assumes that the seed

beam diameter 2ω0 is matched to the 1/e2 pump beam

diameter.

The entire Thor amplifier system will be discussed in

much more detail in a future publication. Here we show some

typical results obtained with our laser extraction computer

code, used to ascertain the expected output energy/pulse,

the intensities expected at each optical element, where the

peak intensities occur, and which elements are most sus-

ceptible to laser-induced damage. Figure 15 shows a plot

of the energy/pulse as a function of the optical element

number. There are 182 optical elements in the entire system,

including many optical elements that are double-passed and

counted twice. The input energy/pulse at 1 kHz is 10 mJ,

and the FWHM Gaussian pulsewidth is 1 ns. The seed

beam driving the system is assumed to be Gaussian spa-

tially and temporally. Passive losses associated with optical

elements are included in the calculations. After propagation

through the entire system the calculated energy/pulse exiting

is about 293 mJ, close to our design goal of 300 mJ. The

second plot, Figure 16, shows the intensity as a function of

optical element number. The peak intensity reaches about

3 GW/cm2 just before the amplified beam is expanded after

the first double pass. To determine what optical elements

are most susceptible to laser-induced optical damage, we

show in Figure 17 the same data used for Figure 16 plus the

damage threshold for each optical element in the system, as

obtained from the manufacturers of all the optical elements.

As expected, the optics for which the probability of damage

is highest is at the location of the TFPs used to inject and

reject the amplifier beam from the first and second double

passes and for some lower damage threshold half- and

quarter-wave plates. Calculated intensity values for TFPs

were reduced by taking the increased area of the polarizer at

Brewster’s angle into account. While the damage thresholds

shown in Figure 17 appear to be a piecewise continuous

function, note that the individual damage thresholds for each

optic in the system are simply linked together using the

plotting program, making it much easier to visualize the

wide variation in damage thresholds encountered by a beam

propagating through the system.

Figures 18–20 show the same plots of energy/pulse, in-

tensity, and intensity and damage threshold, respectively

for a much smaller seed energy/pulse of 0.1 mJ, and for a

FWHM pulsewidth of 400 ps. All other system parameters

are identical to those used for Figures 15–17. Figure 20

shows that for this case, laser-induced damage is not an issue

anywhere in the system.

It should be pointed out that the PPEM-8.0 results shown

in Figures 15–20 do not represent optimized systems, but

rather individual runs that demonstrate the utility of the

PPEM-8.0 code and its usefulness in identifying damage

sensitive optics in the laser system.

The development of the PPEM-8.0 computer code allows

us to quickly obtain the expected first-order performance of

any single- or double-pass laser disk system with an arbitrary

number of disks. The ease with which the repetition rate,

pump pulse duration, input energy/pulse, peak pump power,

pump and seed beam spot sizes and other critical parameters

can be changed allows optimum system configurations to

be determined time efficiently. The code has also been

applied to cryogenic Yb:YAG lasers with high repetition

rates (MHz), to systems that use other laser crystals such as

Yb:Lu2O3 and Yb:LuAG, to single- and double-passed rod

amplifier systems, and to regenerative amplifiers. Once near-

optimum system configurations have been determined, more

sophisticated diffraction-based codes may be used to refine

the expected results.

https://doi.org/10.1017/hpl.2016.12 Published online by Cambridge University Press

https://doi.org/10.1017/hpl.2016.12


Cryogenic nanosecond and picosecond HAPP pump lasers 27

Figure 16. Evolution of the intensity in Thor-300 cryogenic laser system as a function of the optical element number and at a 1 kHz repetition rate. The pump

pulse duration is 500 μs. The Gaussian beam radius in elements 1-82 is 2 mm; after beam expansion at element 82, the beam radius is 3.5 mm.

Figure 17. Evolution of the intensity (blue line) in Thor-300 cryogenic laser system as a function of the optical element number and at a 1 kHz repetition

rate. Also shown is the laser damage threshold for each optical element (red line). The pump pulse duration is 500 μs. The Gaussian beam radius in elements

1-82 is 2 mm; after beam expansion at element 82, the beam radius is 3.5 mm.

4. Summary

In this paper, we have endeavored to provide readers with an

overview of the most important laser materials parameters

needed to design nanosecond and picosecond cryogenic laser

systems, with useful Tables tabulating the known values of

those parameters. Thermal, thermo-optic, elastic, optical,

nonlinear and laser properties are discussed. Representative

plots of the thermal conductivity, thermal expansion coeffi-

cient and thermo-optic coefficients as a function of absolute

temperature have been included for ten anaxial, uniaxial and

biaxial laser materials. We have also reviewed the use of

figures of merit to evaluate the average power potential of

laser materials, and show in Table 2 representative values
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Figure 18. Evolution of the energy/pulse in Thor-300 cryogenic laser system as a function of the optical element number and at a 1 kHz repetition rate. The

pump pulse duration is 500 μs. The Gaussian beam radius in elements 1-82 is 2 mm; after beam expansion at element 82, the beam radius is 3.5 mm.

Figure 19. Evolution of the intensity in Thor-300 cryogenic laser system as a function of the optical element number and at a 1 kHz repetition rate. The pump

pulse duration is 500 μs. The Gaussian beam radius in elements 1-82 is 2 mm; after beam expansion at element 82, the beam radius is 3.5 mm.

for a number of legacy and Yb-based laser materials. The

relevant spectral properties of a number of laser materials at

300 and 77 K are shown in Table 2, including many legacy

materials and a more comprehensive sample of Yb-based

laser materials than previously published[3].

In Section 3, we discussed the important design consider-

ations for HAPP lasers. Section 3.1 discussed the two major

operating modes of cryogenic lasers, referred to as fracture-

limited and aberration-limited. For aberration-limited oper-

ating we defined a new parameter ξ , the extractable output

power obtained per unit thermal phase aberration, that allows

designers to easily evaluate the benefits that can be obtained

by operating a laser amplifier at cryogenic temperatures.

Also, in Section 3.2, we present a useful new pulse-pumped

laser extraction model based on the use of the Frantz–Nodvik

equation that is an efficient tool for generating first-order

ray-tracing designs for cryogenically cooled amplifiers or

amplifier chains, whether they be straight-through single-

pass or double-passed active-mirror amplifiers. Section 3.3

gives the derivation of the cascaded Frantz–Nodvik equation

and discusses active-mirror modeling as well. In Section 3.4,
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Figure 20. Evolution of the intensity (blue line) in Thor-300 cryogenic laser system as a function of the optical element number and at a 1 kHz repetition

rate. Also shown is the laser damage threshold for each optical element (red line). The pump pulse duration is 500 μs. The Gaussian beam radius in elements

1-82 is 2 mm; after beam expansion at element 82, the beam radius is 3.5 mm.

we discuss methods of calculating the nonlinear phase or

B-integral by use of the Frantz–Nodvik equation, and in

Section 3.5 LIDTs. The damage of optical elements is the

most limiting effect to consider in high-peak-power laser

designs. The CPA technique was invented to circumvent

this limitation by stretching pulses to obtain a larger dam-

age threshold, and than compressing after amplification.

Section 3.6 discusses dispersion effects in high-peak-power

lasers; it was shown that dispersion management and com-

pensation are not important for nanosecond lasers, but need

to be considered for short pulse picosecond lasers (<10 ps),

and are very important in femtosecond lasers. Finally, in

Section 3, we showed representative computer design results

obtained in connection with the design of our Thor-300

Yb:YAG cryogenic amplifier system, including plots for

operation at 1 kHz using a 1 ns pulsewidth, 10 mJ/pulse seed

pulse that produces near 300 mJ of output energy/pulse, and

for a 0.1 mJ/pulse, 400 ps seed pulse that produces close to

100 mJ/pulse.
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