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ABSTRACT: Background: Clinical trials often struggle to recruit enough participants, with only 10% of eligible patients enrolling. This is
concerning for conditions like stroke, where timely decision-making is crucial. Frontline clinicians typically screen patients manually, but this
approach can be overwhelming and lead to many eligible patients being overlooked. Methods: To address the problem of efficient and
inclusive screening for trials, we developed a matching algorithm using imaging and clinical variables gathered as part of the AcT trial
(NCT03889249) to automatically screen patients by matching these variables with the trials’ inclusion and exclusion criteria using rule-based
logic. We then used the algorithm to identify patients who could have been enrolled in six trials: EASI-TOC (NCT04261478), CATIS-ICAD
(NCT04142125), CONVINCE (NCT02898610), TEMPO-2 (NCT02398656), ESCAPE-MEVO (NCT05151172), and ENDOLOW
(NCT04167527). To evaluate our algorithm, we compared our findings to the number of enrollments achieved without using a matching
algorithm. The algorithm’s performance was validated by comparing results with ground truth from a manual review of two clinicians. The
algorithm’s ability to reduce screening time was assessed by comparing it with the average time used by study clinicians. Results: The
algorithm identified more potentially eligible study candidates than the number of participants enrolled. It also showed over 90% sensitivity
and specificity for all trials, and reducing screening time by over 100-fold. Conclusions: Automated matching algorithms can help clinicians
quickly identify eligible patients and reduce resources needed for enrolment. Additionally, the algorithm can bemodified for use in other trials
and diseases.

RÉSUMÉ : Algorithmes d’appariement automatique pour le repérage de participants et de participantes à des essais de traitement des
accidents vasculaires cérébraux : étude de validation de concept. Contexte : Il est souvent difficile de recruter suffisamment de participants
et de participantes à des essais cliniques, et 10 % seulement des sujets admissibles sont retenus. La situation pose problème dans certains états
pathologiques, notamment dans celui des accidents vasculaires cérébraux où les prises de décision en temps opportun sont d’une importance
capitale. Généralement, ce sont lesmédecins au cœur de l’action qui procèdent à la sélection des patients, selon un processusmanuel, mais cette
façon de faire est lourde, sans compter qu’un bon nombre de patients admissibles passent inaperçus. Méthode : Afin de tenter de résoudre le
problème d’une sélection efficace et inclusive des sujets à des essais, nous avons élaboré un algorithme d’appariement, à l’aide de variables
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cliniques et d’attributs d’imagerie médicale recueillis dans le cadre de l’essai AcT (NCT03889249), pour procéder à la sélection automatique
des patients par le jumelage de ces variables et attributs aux critères d’inclusion et d’exclusion des essais, fondé sur des règles. Nous nous
sommes appuyés ensuite sur l’algorithme pour repérer les patients qui auraient pu participer à l’un ou l’autre des six essais suivants : EASI-
TOC (NCT04261478), CATIS-ICAD (NCT04142125), CONVINCE (NCT02898610), TEMPO-2 (NCT02398656), ESCAPE-MEVO
(NCT05151172) et ENDOLOW (NCT04167527). Nous avons comparé par la suite les résultats obtenus avec le nombre de sujets recrutés sans
algorithme d’appariement afin d’évaluer l’outil à l’étude. A suivi une validation de la performance de l’algorithme par comparaison des
résultats avec ceux d’une revuemanuelle, effectuée par deux cliniciens, leurs nombres faisant foi de valeurs dumonde réel. Enfin, la capacité de
l’algorithme de réduire le temps de sélection a été comparée avec le temps moyen pris par les cliniciens de l’étude. Résultats : L’algorithme a
permis de repérer plus de sujets potentiellement admissibles que le nombre réel de participants et de participantes retenus. Il s’est également
avéré que l’outil avait une sensibilité et une spécificité supérieures à 90 % dans tous les essais, sans compter le fait que le temps de sélection a été
réduit de plus du centuple. Conclusion : Les algorithmes d’appariement automatique peuvent faciliter la tâche des médecins dans le repérage
rapide des sujets admissibles, tout en réduisant les ressources nécessaires au recrutement. En outre, il est possible de modifier l’algorithme afin
de l’adapter à d’autres essais ou à d’autres maladies.
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Introduction

In recent years, significant advancements in healthcare research
have been driven by emerging technologies, innovative method-
ologies, and the results of randomized clinical trials.1–4 These
developments have the potential to improve healthcare practices
and patient outcomes. Patients who are admitted to hospitals that
participate in clinical trials receive better care and have a lower
mortality rate.5

Clinical trials are generally designed to find an alternative
treatment that will be superior to standard care. A higher rate of
participant enrollment in clinical trials could result in faster
medical advancement, which in the long term leads to better care
and outcomes for the general population.6 However, many clinical
trials struggle to meet their enrollment goals.7–10 A hospital may
participate in many trials simultaneously, and it is often
impractical for physicians to be aware of the inclusion and
exclusion criteria for every trial enrolling patients at their
hospital.11

Stroke is an acute disease and a time-sensitive emergency. It is
one of the leading causes of mortality, and 30%–40% of survivors
are disabled.6 Rapid screening and identification of eligible patients
is the key to efficient trial recruitment for acute stroke. Currently,
acute stroke clinical trial recruitment is managed by physicians and
research personnel who screen patients on a per-trial basis, most
often using a manual approach that is time-consuming and
complex. Physicians are appropriately focused on delivering
patient care and may overlook eligibility for ongoing trials.
Hiring research personnel tomanually screen patients is expensive,
and they may not have direct access to patients in clinics or the
emergency room. In addition, some jurisdictions have limited
specialists and knowledge about ongoing trials, and most of those

who know about the trials are in larger urban medical research
centers.12 This is also a common issue among clinicians who do not
engage in research studies and clinician-scientists.

From an equity lens, the cognitive biases of physicians may
prevent many eligible patients from being enrolled in acute trials,
with the consequence that women, older, Indigenous persons, and
other ethnic minorities are underrepresented.13,14 Such inequity
also contributes to slower medical advancement through missed
enrolment opportunities and enrolment of a study population that
may not represent those affected by the disease in the general
population.14,15

This proof-of-concept study aimed to develop a matching
algorithm using imaging and clinical variables to automatically
screen patients by matching these variables with the inclusion and
exclusion criteria of the trials. The algorithm has been designed to
incorporate advanced AI capabilities like image auto-interpreta-
tion and smart notifications. These tools will work together
seamlessly to create an efficient and streamlined automatic
recruiting process.We hypothesized that the number of potentially
eligible patients identified using a matching algorithm would be
higher than the number of patients who were enrolled by
conventional recruitment methods and that the algorithm would
achieve high accuracy in identifying eligible patients compared to
expert clinical researchers.

Methods

Patient data

We used imaging and clinical variables gathered as part of the AcT
trial (NCT03889249, Alteplase Compared to Tenecteplase in
Patients with Acute Ischemic Stroke). The ACT trial was an
investigator-initiated, phase 3, pragmatic, multicenter, open-label,
registry-linked, randomized, controlled, non-inferiority trial, with
blinded end-point assessment (PROBE), comparing tenecteplase
to alteplase in patients presenting with acute ischemic stroke.16

Inclusion and exclusion criteria were informed by the Canadian
Stroke Best Practice Recommendations (CSBPR 2018) 17 and are
published elsewhere.18 The trial used deferred consent procedures,
details of which have already been published. Reuse of data for
design and development of the algorithms was approved by the
Conjoint Health Research Ethics Board of the University of
Calgary (REB22–0592). Data have been disclosed to only
researchers and clinicians involved in this study. The sample size

Highlights
• Clinical trials currently require manually intensive screening to find
potentially eligible patients

• An automatic matching algorithm using imaging and clinical variables
could quickly and accurately list eligible trials for 1,577 individual acute
stroke patients

• This algorithm can be adapted to other diseases and integrated with
imaging and health record data extraction modules for full automation.
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was one of convenience, making use of all available data from the
AcT dataset.

The data were collected from December 2019 to January 2022
from 1,577 patients. Available features included demographic,
medical history, clinical and imaging data (with baseline imaging
consisting of computed tomography (CT) and computed
tomography angiography (CTA)). This dataset was selected to
test our algorithms for two key reasons: 1) AcT had comprehensive
characterization of patients with key clinical, imaging, and
demographic variables, and 2) AcT was a pragmatic trial and
therefore reflected patients with acute ischemic stroke seen in
routine practice (with the notable exception that all the AcT
patients had to be eligible for thrombolysis).

The key baseline and imaging characteristics of patients in the
AcT dataset are given in Table 1.

Clinical trials

We developed our matching algorithm to identify patients in the
AcT dataset who would potentially be eligible for six exemplar
stroke trials, including a variety of ischemic stroke mechanisms
and intervention strategies: EASI-TOC (NCT04261478,
Endovascular. Acute Stroke Intervention - Tandem Occlusion
Trial), CATIS-ICAD (NCT04142125, Combination
Antithrombotic Treatment for Prevention of Recurrent Ischemic

Stroke in Intracranial Atherosclerotic Disease), CONVINCE
(NCT02898610, Colchicine for Prevention of Vascular
Inflammation in Non-cardioembolic Stroke), TEMPO-219

(NCT02398656, A Randomized Controlled Trial of TNK-tPA
Versus Standard of Care for Minor Ischemic Stroke With Proven
Occlusion), ESCAPE-MEVO (NCT05151172, EndovaSCular
TreAtment to imProve outcomEs for Medium Vessel
Occlusions), and ENDOLOW (NCT04167527, Endovascular
Therapy for Low NIHSS Ischemic Strokes). The first three –
EASI-TOC, CATIS-ICAD, and CONVINCE – were used as proof-
of-concept as these three trials were ongoing at the time of the AcT
trial and permitted patients in the AcT trial to be co-enrolled, as
was the case for EASI-TOC, or to be enrolled after the 90-day
follow-up for AcT was completed, as with CATIS-ICAD and
CONVINCE (Table 2). The last three – TEMPO-2, ESCAPE-
MEVO, and ENDOLOW – were used to evaluate the capability of
expanding the algorithm to trials that were currently enrolling
patients but for which the AcT population could not, in fact, have
been co-enrolled.

Matching algorithm

The study clinicians started the pipeline by simplifying and
adapting the original clinical trial inclusion and exclusion criteria
to align with the available features in the dataset. Then, the
algorithms were developed based on a rule-based method, which
manually added all criteria using a cascade of if-else statements.
The code was developed on Python, a widely used high-level
programming language known for its simplicity and power in the
data science field. The patient’s clinical features, collected by the
AcT research team when they were presented at the hospital, were
used as input variables. The complete criteria can be reviewed from
the registrations published on clinicaltrials.gov. The validation was
conducted by comparing with a manual screening on a subsample,
as explained in the following section.

Evaluation

We used the matching algorithms to identify potentially eligible
patients who could have been enrolled in these six trials: EASI-
TOC (NCT04261478), CATIS-ICAD (NCT04142125),
CONVINCE (NCT02898610), TEMPO-2 (NCT02398656),
ESCAPE-MEVO (NCT05151172), ENDOLOW (NCT04167527).
We then compared eligible patients identified by the matching
algorithms to the number of enrollments from the AcT population
that had been achieved in the three trials (EASI-TOC, CATIS-
ICAD, CONVINCE), that allowed co-enrolment with AcT. The
algorithm’s performance was also validated by having study
clinicians manually screen a 10% validation set, which rounded up
to 200 patients from AcT, for eligibility into each of the six trials
while blinded to the algorithm’s results. The validation set was
weighted more toward the patient group that was evaluated by the
algorithm as not being eligible for any trial, as we wanted to
specifically evaluate the risk of false negative classification by the
algorithm, which is crucial to mitigate when deploying such an
algorithm for screening patients for ongoing trials. The validation
set therefore included 100 patients who were screened by the
algorithm as not eligible for any trial. Another half were the
patients eligible for 1 to 5 trials. Specifically, there were 50, 35, 10, 3,
and 2 individuals for those deemed eligible by the algorithm to be
eligible in 1, 2, 3, 4, and 5 trials, respectively. These numbers
approximately represent 51%, 36%, 9%, 3%, and 1% of all eligible
patients in each group, and we ensured that the characteristics of

Table 1. Key characteristics of the 1,577 patients in the AcT dataset

Features
Median(IQR),

n (%)

Age [years]
Sex: female
Weight [kilograms.]
Baseline NIHSS
Time from onset to randomization [minutes]

74 (63-83)
822 (52.12%)
75 (65-89)
9 (6-16)

122 (87-179)

ASPECTS 9 (8-10)

Occlusion site on baseline CT angiography
(n= 1,558*)

Intracranial internal carotid artery 135 (8.56%)

M1 segment MCA 237 (15.21%)

M2 segment MCA 315 (20.22%)

Other distal occlusions 268 (17.20%)

Vertebrobasilar arterial system 64 (4.11%)

Cervical internal carotid artery 26 (1.67%)

No visible occlusions 513 (32.93%)

ICAD exists (n = 1,558*) 373 (23.94%)

Follow-up affected territory (n = 1,577)

MCA 1091 (69.18%)

ACA 84 (5.33%)

PCA 130 (8.24%)

Vertebral 99 (6.28%)

Anterior choroidal 3 (0.19%)

No evident affected territory 170 (10.78%)

*19 patients did not have a baseline CT angiography. ACA= Anterior Cerebral Artery;
ASPECT= Alberta Stroke Program Early CT Score; CT= Computed Tomography;
ICAD= Intracranial Atherosclerotic Disease; IQR= Interquartile Range; MCA=Middle
Cerebral Artery; NIHSS= National Institutes of Health Stroke Scale; PCA= Posterior
Cerebral Artery.
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the validation group were representative of the entire dataset. The
first study clinician (AG) reviewed the neuroimaging scans and
available clinical data for every patient on the list, indicating which
of the six trials (if any) each patient was potentially eligible for
enrolment. This clinician was blinded to the algorithm’s results,

and the matching algorithm, of course, did not have access to the
clinician’s impression. In the spirit of efficiency, discrepancies
between the first physician and the algorithm were adjudicated
based on screening by a second clinician (NS) whowas also blinded
to the algorithm’s output. Then, the combination of screening

Table 2. Summary of key details of the selected clinical trials

EASI-TOC CATIS-ICAD CONVINCE TEMPO-2 ESCAPE-MEVO ENDOLOW

Target
patient
population

485 115 3,154 1,274 530 175

Design A multi-center,
prospective,
randomized, open-
label, blinded
endpoint (PROBE)
controlled trial (1:1
allocation).

Randomized, open-
label, blinded
endpoint, pilot trial

A multi-center
international,
Prospective,
Randomized Open-
label, Blinded-
Endpoint assessment
(PROBE) controlled
Phase 3 clinical trial

A Phase 3,
prospective,
randomized
controlled, open-label
with blinded outcome
assessment (PROBE)
controlled trial.

Multicenter,
prospective,
randomized, open-
label study with
blinded endpoint
evaluation (PROBE
design)

Phase 2/3,
prospective,
randomized, open-
label, blinded-
endpoint (PROBE)
adaptive two-stage
design trial

Intervention Acute ICA stenting
during the
thrombectomy
procedure versus
intracranial
thrombectomy alone
without ICA stenting

Rivaroxaban 2.5 mg
bid and ASA 81mg
od versus ASA 81 mg
od

Colchicine 0.5 mg/day
and usual care versus
usual care alone
(antiplatelet, lipid-
lowering,
antihypertensive
treatment, lifestyle
advice)

TNK-tPA versus
Standard of Care for
minor ischemic stroke
with proven occlusion

EVT with Solitaire
group of intracranial
stent-retriever
devices as the first
line approach and
standard medical
care, versus
standard medical
care

iMT using EmboTrap
Revascularization
Device versus iMM

Key
inclusion
criteria*

• Occlusion in the
intracranial carotid,
M1, or M2

• Within 24 hours of
last seen normal

• Ipsilateral
(same side)>= 70%
cervical ICA stenosis
or occlusion

• Age>= 40 years
• ICAD 30%–99%
• Affected territory
correspond to the
ICAD

• Age>= 40 years
• Atherosclerosis of
the carotid or verte-
bral or MCA or ACA or
basilar artery

‐ Within 12 hours of
last seen normal
‐ NIHSS
(baseline) <= 5
‐ Any acute
intracranial (not
cervical ICA)
occlusion, or CTP
focal perfusion
abnormality

‐ Within 12 hours of
last seen normal
‐ NIHSS
(baseline) >= 3
‐ Occlusion in M2,
M3, A2, A3, P2, or P3

‐ NIHSS
(baseline) <= 5
‐ CT/CTA occlusion of
ICA, M1, or M2
‐ ASPECTS>= 6 or
core volume < 70cc

Key
exclusion
criteria*

‐ Ipsilateral ICA
stenosis or occlusion
attributable to
clinically or
radiologically
confirmed arterial
dissection
‐ Isolated cervical
carotid occlusion
without intracranial
occlusion
* Not applicable to
AcT: pregnancy
* Not available in AcT:
pre-stroke mRS ≥ 3,
contraindication to
angioplasty/stenting
or antiplatelet therapy

• Intracranial arterial
occlusion (e.g. 100%
stenosis) respon-
sible for the acute
brain ischemia

• Intracranial arterial
stenosis secondary
to causes other
than
atherosclerosis.

• Intraluminal
thrombus

* Not available in
AcT: other indication
for longterm dual
antiplatelet or
anticoagulation,
plans for carotid
revascularization,
atrial fibrillation,
subdural hematoma
in prior 12 months,
prior hemorrhagic
stroke, pre-stroke
mRS ≥ 4

* Not applicable to
AcT: pregnancy
* Not available in AcT:
cardioembolic
etiology, drug use,
venous thrombosis,
hyper-coagulability
states, migraine,
myopathy, blood
dyscrasia, impaired
hepatic function, use
of CYP3A4 inhibitors,
symptomatic
peripheral neuropathy
or neuromuscular
disease, inflammatory
bowel disease,
dementia, active
malignancy, hepatitis
B/C, HIV, dysphagia,
poor medication
compliance, colchicine
allergy or sensitivity

• ASPECTS < 7
• Core volume > 10cc
• Intracranial
hemorrhage

‐ Chronic intracranial
occlusion
* Not applicable to
AcT: severe fatal or
disabling illness
preventing 90-day
follow-up, Pregnancy,
Exclusions for
thrombolysis
* Not available in AcT:
in-hospital stroke

‐ ASPECTS <= 5
‐ Lack of core:
penumbra mismatch
(based on available
imaging
combination)-
Intracranial
hemorrhage
* Not applicable to
AcT: pregnancy
* Not available in
AcT: nursing care
needs, major
comorbidity like
dementia or cancer

‐ Time from last seen
normal >= 8 hours
‐ NIHSS ≥ 6
‐ Intracranial
hemorrhage
‐ Multifocal ICAD
* Not applicable to
AcT: pregnancy
* Not available in
AcT: investigator
judgement of futile
recanalization, pre-
stroke mRS ≥ 3,
seizures at onset,
baseline glucose < 50
mg/dL or > 400 mg/
dL, platelets <
100,000/uL, creatinine
> 3.0 mg/dL,
suspected bacterial
endocarditis,
intubation, drug or
alcohol dependence,
incarceration, acute
COVID-19

*The inclusion and exclusion criteria have been adapted to align with the clinical features in the AcT dataset. ACA = Anterior Cerebral Artery; ASA= Acetylsalicylic Acid; ASPECT= Alberta Stroke
Program Early CT Score; cc = cubic centimeter; CT= Computed Tomography; CTA= Computed Tomography Angiography; CTP= Computed Tomography Perfusion; EVT= Endovascular
Thrombectomy; HIV= Human Immunodeficiency Virus; ICA= Internal Carotid Artery; ICAD = Intracranial Atherosclerotic Disease; iMM = Initial Medical Management; iMT = Immediate
mechanical thrombectomy; IQR= Interquartile Range; MCA=Middle Cerebral Artery; mg = milligrams; mg/dL = milligrams per decilitre; NIHSS= National Institutes of Health Stroke Scale;
TNK= Tenecteplase; tPA = Tissue Plasminogen Activator; uL = microliters.
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results from the first clinician and adjudicated results on the
discrepancy list from the second clinician were used as ground
truth to determine the performance metrics of the algorithm.
Lastly, we calculated sensitivity, specificity, PPV, NPV, and
accuracy.

Results

Figure 1 shows the number of potentially eligible patients
identified by the algorithm after filtering by each criterion for all
six trials. The range of potentially eligible patients varied from 51 in
the ENDOLOW trial to 1,090 in the CONVINCE trial, as shown in
Table 3 under the trial’s name. For patients with missing data in
critical features, any trial that required those features was excluded
from the eligible list. However, the name of the trial and the
missing features were shown in the algorithm’s remarks to let the
clinician know that it was possible to enroll if the criteria were met.
The proportion of patients with missing data in key criteria in each
trial ranged from 0.4% to 6.2%. For missing data in optional
criteria, trials with missing data were still eligible to appear in the
list with remarks indicating the missing features. Imputation
methods were not applied to the algorithm to avoid altering the
screening results.

The distribution of potentially eligible patients in each trial,
compared to the entire patient population in the original dataset, is
shown in Table 3. The median age range of participants in each
trial was between 69.5 and 79, compared to 74 in the entire
population. The distribution of sex was mostly balanced, with
roughly equal numbers of male and female patients, except for the
EASI-TOC trial, which had a higher proportion of female
potentially eligible participants at 69.3%.

The algorithm results were compared with the actual number of
enrollments achieved without utilizing the algorithm in the three
proof-of-concept trials that allowed enrolment during the AcT trial
study period: EASI-TOC, CATIS-ICAD, and CONVINCE. A
summary of the comparison of enrollment rates is presented in
Figure 2. The number of patients actually recruited was observed to
be considerably lower when compared to the total number of
patients who were identified by the algorithm, showing a more
than 25 to 90-fold difference in all trials. In particular, the
CONVINCE trial had only 12 patients who were actually recruited
from the AcT sample, but 1,090 were identified as potentially
eligible by the algorithm.

Comparing the time used between the algorithms and manual
screening by the clinician, the algorithms could complete the
screening process for all six trials in 2.14 seconds per patient, and it
took 2.83 seconds for 200 patients in the validation set. In contrast,
the study clinician spent more than 140 times longer to evaluate.
The screening required at least 5 minutes per patient, and it took
about 17 hours to complete the validation set of 200 patients.

The percent agreement between results from the algorithm and
study clinicians (ground truth) are shown in Table 4. The results
showed that the algorithmwas highly accurate, achieving over 90%
for all performance metrics in all trials except for some metrics in
CATIS-ICAD and ESCAPE-MEVO. This implies that the
algorithms generated only a few false positives and false negatives
in most trials. CATIS-ICAD and ESCAPE-MEVO had a slightly
higher number of false positives because of important limitations
in real-world clinical aspects of patient selection for those studies,
resulting in a lower positive predictive value (PPV) rate at 68% and
75%, respectively.

Discussion

In this proof-of-concept study, we developed algorithms to
automatically match patients in an acute ischemic stroke dataset
to six different clinical trials based on clinical and imaging features.
The study solely compared the results of the algorithm with
manual screening of a subset and with the actual number of
enrollments because our team did not have any other available
automated tools available to us in our routine practice. We opted
not to use other non-rule-based algorithmic techniques for
developing our automated screening technique because we wanted
to ensure that the rules used by the algorithm were easily
explainable and not subject to unanticipated distortions through
‘black-box’ AI methods. The trials had varying inclusion and
exclusion criteria, resulting in different numbers of eligible
patients. The CONVINCE trial had the most eligible patients
due to its broad criteria, while EASI-TOC had stricter criteria,
resulting in fewer eligible patients. CATIS-ICAD’s requirement for
specific ICAD locations further reduced eligible numbers.
Although TEMPO-2, ESCAPE-MEVO, and ENDOLOW had
similar criteria, ESCAPE-MEVO had more eligible patients due to
focusing on those with NIHSS scores of 3 or higher. According to
the performance metrics, the algorithm performed well in all
aspects except the PPV in the ESCAPE-MEVO and CATIS-ICAD
trials. We designed the algorithms by weighing more on the impact
of false negatives, which resulted in a high NPV that was higher
than 95% in all trials. For PPV, it was low in the ESCAPE-MEVO
because the human readers also considered the technical feasibility
of thrombectomy for the given patient’s neurovascular anatomy
and specific clot location, which the algorithm could not evaluate.
For CATIS-ICAD, when the readers reviewed the data alongside
the imaging, they might have overlooked certain vessels that had a
less clinically significant burden of ICAD and also appeared to be
more selective when considering the affected area of ICAD.

The algorithm could significantly reduce the time required for
screening patients. Most of the algorithm’s time was spent on
initializing the software package and importing data, which is
illustrated by a small difference in time used between 1 and 200
patients. Therefore, increasing the number of patients or clinical
trials did not substantially influence the algorithm’s run time.
However, the impact of time-effectiveness depends on where the
algorithms are implemented; in acute trials, screening case by case
with a limited number of trials could significantly differ from
screening in a large database in prevention trials. Additionally,
these results relied on the assumption that all necessary data is
accessible to the clinician, and the algorithms used the processed
structural data. In real situations, several factors affecting screening
time need to be considered, such as the time required to obtain
information from the patient and the waiting time for imaging
acquisition and interpretation. Addressing these aspects will be
vital for future evaluations.

Another important consideration with such algorithms is their
potential cost-effectiveness. Figure 3 compares the estimated cost
of hiring researchers and clinicians with the cost of running the
algorithm. This estimation was based on the time that our study
clinicians used when screening the validation set, which was
approximately 50 seconds per trial per patient. Hiring a research
associate and a clinician to screen patients can cost around CAD
$30/hour and CAD$200/hour. This can be contrasted with the cost
of using automated algorithms like ours, which are expected to cost
less than CAD$1.5/hour (based on the virtual machine price from
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ACT Dataset
(1577)

Last seen normal <= 24hr
(1569)

EASI-TOC

Left occlusion
(561)

Right occlusion
(469)

Intracranial Occ
(388)

Intracranial Occ
(456)

Cervical Occ
(71)

Cervical Occ
(69)

Eligible
(140)

ACT Dataset
(1577)

Age >= 40
(1547)

Left ICAD
(256)

Right ICAD
(271)

- ICA (17)
- MCA (87)
- ACA (59)

- PCA (140)
- Vertebral (85)

- ICA (19)
- MCA (89)
- ACA (59)

- PCA (161)
- Vertebral (68)

With affected area
- ICA (7)

- MCA (34)
- ACA (1)
- PCA (7)

- Vertebral (13)

With affected area
- ICA (10)
- MCA (24)
- ACA (3)

- PCA (10)
- Vertebral (7)

Eligible
(105)

ACT Dataset
(1577)

Age >= 40
(1547)

Stenosis or
ICAD

Left side

- ICA (884)
- MCA (87)
- ACA (59)

- Vertebral (149)

Stenosis or
ICAD

Right side

- ICA (883)
- MCA (89)
- ACA (59)

- Vertebral (133)

Eligible
(1090)

Stenosis or
ICAD

Basillar
(134)

CATIS-ICAD CONVINCE

AcT Dataset
(1577)

Last seen normal <= 12hr
(1568)

TEMPO-2

Eligible
(191)

NIHSS <= 5
(378)

Occlusion
(192)

ASPECT >= 7
OR Core Vol. <= 10

(191)

AcT Dataset
(1577)

Last seen normal <= 12hr
(1568)

ESCAPE-MEVO

Eligible
(544)

NIHSS >= 3
(1503)

Occlusion
(553)

ASPECT > 5
(544)

AcT Dataset
(1577)

NIHSS <= 5
(378)

ENDOLOW

Eligible
(51)

Occlusion
(51)

ASPECT >= 6
OR Core Vol. < 70

(51)

Last seen normal < 8hr
(1564)

Figure 1. Potentially eligible patients identified for each trial according to key criteria used for automatic matching. Each box displays the key criteria for inclusion and exclusion,
along with the number of potentially eligible patients up to that criterion in the blanket. ACA = Anterior Cerebral Artery; ASPECT= Alberta Stroke Program Early CT Score;
hr = hours; ICA= Internal Carotid Artery; ICAD = Intracranial Atherosclerotic Disease; MCA =Middle Cerebral Artery; NIHSS = National Institutes of Health Stroke Scale;
PCA = Posterior Cerebral Artery; Vol. = volume.
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the Google Cloud Compute Engine), with a running time less than
5 seconds for the entire dataset. Therefore, the cost of human raters
quickly rises as the number of trials and patients increases while
that of the automated algorithm remains the same. That being said,
this comparison does not account for the fact that clinical staff
would still need to prepare data for the algorithm, confirm
eligibility to enrol, and approach the patient for enrollment; as
such, prospective evaluation of the algorithm is needed to more
formally evaluate its cost-effectiveness.

However, the algorithm was fast and accurate, comparable to
experienced human screeners. In addition, the algorithm itself
would not introduce biases because the screening relied only on
each trial’s criteria. As shown in Table 3, there was no significant
selection bias regarding patient characteristics such as age, sex,

weight, and time from onset to randomization.Moreover, since the
screening algorithm does not require clinicians to actively consider
each trial for a given patient, it can potentially mitigate cognitive
biases from clinicians that arise in manual screening processes.

Previous studies have developed algorithms or software to
match patients with clinical trials automatically.20–31 Many studies
used rule-based logic with inclusion and exclusion criteria, but
some recent studies have tried to incorporate machine learning in
the matching process. Penberthy and Kamal conducted studies
aiming to use healthcare institute data and systems to design
adaptable rule-based software for various diseases.20,21 Their
research focused on improving the screening time and increasing
the enrollment of potentially eligible patients, but it did not
mention the accuracy of their method. The studies conducted by

Table 3. The summary statistics of potentially eligible patients identified by the algorithm for each trial compared with the entire AcT population

Features Median (IQR), n (%)

AcT Dataset
(n= 1,577)

EASI-TOC
(n = 140*)

CATIS-ICAD
(n= 105*)

CONVINCE
(n= 1,090*)

TEMPO-2
(n = 191*)

ESCAPE-MEVO
(n = 544*)

ENDOLOW
(n= 51*)

Age [years]
Sex: female
Weight [kilograms]
Baseline NIHSS
Time from onset to randomization [minutes]

74 (63-83)
822 (52.12%)
75 (65-89)
9 (6-16)

122 (87-179)

69.5 (60-79)
97 (69.3%)
80 (66.8-89)
16 (10-20)
117 (85-168)

79 (70-87)
53 (50.5%)
75 (67-90)
8 (5-14)

145 (97-208)

76 (67-84)
586 (53.8%)
75 (65-88)
10 (6-17)

124 (88-181)

72 (60-83)
114 (59.7%)
77 (66-90)
4 (3-5)

140 (101-201)

76 (66-84)
279 (51.3%)
75 (64-86)
9 (6-16)

117.5 (86-173)

75 (65.5-84)
29 (56.9%)
81 (68-90.5)

4 (3-5)
140 (98.5-203)

ASPECTS 9 (8-10) 8 (7-10) 10 (9-10) 9 (8-10) 10 (9-10) 9 (8-10) 10 (8.5-10)

*Number of potentially eligible patients identified by the algorithm. ASPECT= Alberta Stroke Program Early CT score; IQR= Interquartile Range; NIHSS= National Institutes of Health Stroke
Scale.

Figure 2. Comparison of the total number of enrolled
patients for each trial versus the number of potential
candidates identified by the algorithm.

Table 4. Classification performance metrics between the algorithm and ground truth

Patient groups Sensitivity (95% CI) Specificity (95% CI) PPV (95% CI) NPV (95%CI) Accuracy (95% CI)

EASI-TOC 0.92 (0.78-1.00) 1.00 (1.00-1.00) 1.00 (1.00-1.00) 0.99 (0.98-1.00) 0.99 (0.99-1.00)

CATIS-ICAD 0.94 (0.82-1.00) 0.96 (0.93-0.99) 0.68 (0.49-0.88) 0.99 (0.98-1.00) 0.96 (0.93-0.99)

CONVINCE 0.93 (0.88-0.98) 1.00 (1.00-1.00) 1.00 (1.00-1.00) 0.95 (0.91-0.99) 0.97 (0.95-0.99)

TEMPO-2 0.96 (0.89-1.00) 0.98 (0.96-1.00) 0.89 (0.78-1.00) 0.99 (0.98-1.00) 0.98 (0.96-1.00)

ESCAPE-MEVO 1.00 (1.00-1.00) 0.93 (0.89-0.97) 0.76 (0.64-0.88) 1.00 (1.00-1.00) 0.94 (0.91-0.97)

ENDOLOW 0.90 (0.71-1.00) 0.99 (0.98-1.00) 0.90 (0.71-1.00) 0.99 (0.98-1.00) 0.99 (0.98-1.00)

CI= Confidence Interval; NPV= Negative Prediction Value; PPV= Positive Predictive Value.
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Lucila and Musan were focused on AIDS and cancer.22,23 Both
researchers used logical rules and Bayesian networks to match
patients and suggest additional data for informed decisions. Recent
studies aimed to develop matching algorithms focused on
extracting clinical variables from patient records. Hassanzadeh
and Chen used natural language processing (NLP) and Medical
Knowledge, respectively, to extract clinical variables from the
records and then trained a deep learning model to match patients
with trials.24,25 Their study was based on the National NLP Clinical
Challenges (N2C2) data and attempted to match the extracted
variables with preset eligibility criteria, which was not a real-world
trial. There are existing methods to extract clinical variables of
patients based on oncology and use rule-based logic to match them
with clinical trials.26,27 Yuan and Ni proposed to matching both
clinical variables and trial criteria from raw data.28,29 Yuan also
focused on stroke clinical trials, and their study yielded a sensitivity
range of 0.41–0.98 for six trials. Kaskovich and colleagues used
NLP to automatically extract inclusion and exclusion criteria from
raw data of 216 leukemia-associated trials. The approach was to
input patients’ data to match with those trials.30 However, during
the N2C2 shared task, the rule-based method had the highest
performance, and four of the top ten systems were rule-based.24,31

Our research focused on matching structured data to specific
criteria and applying this to clinical trial recruitment. Rather than
the accuracy of thematching algorithm, the rule-basedmethod was
chosen for the reasons of its simplicity for maintenance and
expansion. Unlike “black box”machine learningmethods, the logic
behind a matching algorithm is interpretable and easily under-
stood, and it does not require retraining. Additional criteria could
be added or removed from the cascade statement for each trial.
Adding other trials is as simple as adding another cascade of
statements to the list. Moreover, implementing it as a Python
software package makes it easy to add any future modules. This
approach is valuable for increasing enrollment in stroke trials and
simplifying the enrollment process in smaller healthcare settings.
Other areas of acute care, like cardiac failure, could also benefit
from this approach.

Automatic matching algorithms could mitigate critical limi-
tations in current recruitment methods by quickly identifying
eligible patients, allowing clinicians to focus on quality care. This
approach reduces screening costs for hospitals and research
centers, and benefits patients by considering them for appropriate
treatment trials. The algorithms do not require a high-performance
computing system due to the simplicity of a rule-based algorithm,
even when used on a larger scope. Therefore, it is suitable to be
implemented in remote areas. Combining the algorithm with
advanced notification systems can help mitigate the shortage of
specialized clinicians in rural areas by sending screening results to
nearby specialists for timely care.4 Commercial applications have
used similar notification systems for stroke cases to speed up
enrollment. These algorithms could be applied to other stroke trials
or diseases and potentially improve the representation of under-
represented populations, but this remains to be demonstrated.
However, when considering applying these algorithms to other
trials and diseases, there are some challenges in adapting the
original trial criteria to the nature of the available structural data,
which requires collaboration between the technical and clinical
teams in a given healthcare system.

Importantly, there are some limitations of the proposed
method. First, some of the exclusion criteria for the trials, such
as baseline pre-morbid function (e.g., pre-stroke modified Rankin
Scale) and alternative stroke etiologies (e.g., atrial fibrillation for
CATIS-ICAD), were not gathered in the AcT dataset, meaning that
an unknown proportion of the patients flagged as eligible for the
trials by our algorithm would likely be ultimately excluded from
participation. This was especially the case for CONVINCE, which
had several specific comorbidity- andmedication tolerance-related
exclusionary criteria that were simply unavailable in the routinely
gathered clinical and imaging data in AcT. The study was
conducted using only one dataset, which might not be reflective of
the general stroke population. The high level of data completeness
in the AcT randomized-controlled trial dataset does not reflect the
missingness that is inevitable in routine clinical data. Therefore,
our future plan involves utilizing datasets from multiple sources to

Figure 3. Cost comparison estimate between using a
clinician or a research assistant versus our automatic
algorithm for the trials screening process, using standard
hourly rates and extrapolating from the comparative
time data from our test sample.
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validate the generalizability and effectiveness of the algorithms.
Missing data and features could hinder the real-world performance
of the algorithm by reducing the number of potentially eligible
patients. Even in the manual screening process, clinicians cannot
decide whether to enroll patients if relevant data are missing. The
list of missing data variables for specific trials shown in the
algorithm’s outputted remarks will nevertheless help alert
clinicians to fill in remaining criteria to complete screening for
otherwise potentially eligible patients.

Second, in some clinical trials, more nuanced clinical
interpretation is required to determine whether a patient is eligible
to participate. For instance, in the CATIS-ICAD trial, the treating
physician would need to establish whether they consider the
patient’s ICAD (flagged by the algorithm) to be symptomatic or
not. The absence of this information can lead to a lower algorithm
performance. The data from the AcT trial was extracted from data
available in an electronic data capture system. Real-world data is
often a combination of free text, notes, and a wide variety of other
data formats. In addition, imaging variables from CTA that were
crucial selection criteria for these trials need to be gathered by
specialized physicians; the AcT trial dataset benefited from a
detailed review of key imaging features by study readers. In
practice, this could lead to a delay in the availability of key
information for the algorithm. By integrating with EMRs at the
point-of-care, we can greatly enhance the utility of this approach. It
will allow us to take advantage of real-time data entry, resulting in
more efficient data collection. However, human interpretation of
medical imaging could potentially confound the algorithm’s
performance due to reader biases. The same image can be
interpreted differently by different readers, which might lead to
misleading results. Another confounding factor could be the
variations in data quality in different sites where the algorithm is
deployed. Some variations directly impact the quality and
homogeneity of the data, such as the protocol and image
processing method, which can cause variations in assessment of
certain stroke characteristics such as infarct core volume
estimation.

Third, obtaining ethical permission to run a screening
algorithm through patients’ electronic medical records (EMRs)
and imaging can be a potential challenge. For enrolling patients in
clinical trials, both consent to use their data and participation in the
trial are crucial. While having a higher number of eligible
candidates may seem like it would lead to more people consenting
to participate, this may not always be the case. In reality, only a
proportion of eligible candidates will actually agree to participate.32

This can be due to various reasons, such as a lack of interest,
concerns about side effects, or a desire for certainty in receiving a
particular intervention. In real-life scenarios, clinicians are
authorized to access the EMRs of patients they care for, evaluate
which clinical trial would be appropriate for the patient, and then
seek the patient’s consent to participate. Rather than involving
clinicians in the initial screening process, the algorithm directly
reviews the EMR and generates a list of eligible trials. Then,
clinicians are responsible for selecting a trial and obtaining consent
from the patient before enrollment. Since the algorithm is
technically not directly involved in the patient’s care, privacy
concerns may therefore be potentially raised about its use of
patient data. Therefore, it is important to consider potential
regulatory or data access barriers which may vary from one
healthcare system to another, and develop strategies to overcome
them. For example, the algorithm may require pre-approval of

patients to access their EMRs to screen for trial participation. This
could be facilitated by implementing patient-directed communi-
cation strategies and offering patients the option to provide
advance consent for their data to be used for such screening
purposes in medical emergencies when interacting with their
family doctors or otherwise sharing information with health
systems. These steps can increase the number of trial enrollments
while still respecting patient privacy. However, given that it is a
matching algorithm, the patient data can remain local to the site
and does not need to be stored or transmitted, easing some of these
concerns.

In the future, we envision this solution ideally being paired with
other modules to achieve complete automation and mitigate
human error and biases. Automated imaging analysis and data
extraction algorithms for relevant clinical variables from electronic
health records are important upstream modules that are
increasingly being adopted by hospital systems worldwide to
identify patients eligible for therapy, automatically gathering
variables such as age, medications, occlusion presence/location and
extent of ischemic changes as examples. Once the matching
algorithm generates screening results, a smart notification system
can be integrated into the smartphone system. This could notify
either the attending physicians or research staff in the coverage
area of any positive trial eligibility, ideally without interfering with
patient care processes. This system can prompt them to take
appropriate actions in terms of further evaluating and consenting
the patient or a proxy decision-maker for the trial, leading to a
timely and accurate screening process. Deferral of consent and
advance consent processes could help facilitate the automatic flow
of the entire process since patients are often incapacitated and may
not be accompanied by a proxy decision-maker.33–36 Future studies
should aim to evaluate trial enrolment rates achieved with such
screening algorithms in the real world, before and after
implementation, and across multiple sites. Our future work will
include implementing and validating the algorithm at different
stroke centers for point-of-care use. In particular, we plan to adapt
the algorithm to guide patient selection for different domains of an
upcoming platform trial for acute ischemic stroke, using trial-
related checklists to capture relevant characteristics. However, this
initial offline research was crucial to justify this novel enrolment
method for future ethics applications.

Conclusion

We found that automated trial matching algorithms achieved fast
and accurate performance in identifying patients eligible for six
different stroke trials. Overall, this research has the potential to
significantly improve clinical trial recruitment and thereby help
accelerate the development of new treatments for time-sensitive
diseases like stroke. Mitigating cognitive biases and ensuring
equitable access to clinical trials are important benefits of these
innovative strategies.

Supplementary material. The supplementary material for this article can be
found at https://doi.org/10.1017/cjn.2024.352.
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