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Abstract

We consider solutions of Burgers’ equation with linear or quadratic external potential and
stationary random initial conditions of Ornstein–Uhlenbeck type. We study a class of
limit laws that correspond to a scale renormalization of the solutions.
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1. Introduction

We consider the one-dimensional Burgers equation of the form

ut + uux = µuxx + 2µ�x (1)

subject to the initial condition
u(0, x) = u0(x), (2)

where u ≡ u(t, x), t > 0, x ∈ R, is a velocity field; � ≡ �(x), x ∈ R, is the external potential;
�x ≡ (d/dx)�(x), µ > 0, is the viscosity of the media (the reciprocal of which, Re = 1/µ,
corresponds to the Reynolds number); and we define

U ≡ U(x) =
∫ x

u0(ξ) dξ (3)

to be the velocity potential. Note that subscripts on a function of a single variable denote
total differentiation, while those on a function of many variables denote the appropriate partial
derivative. The nonlinear equation (1) can be viewed as a simplified version of the Navier–
Stokes equation. However, the differences between the Burgers and Navier–Stokes equations
are as interesting as the similarities.

Our interest is in cases where the external potential � is a linear or quadratic function and
the initial condition

u0(x) = ξ(x), x ∈ R, (4)
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Burgers’ turbulence problem 551

is a stationary random process with short- or long-range dependence, and which has sample
paths that are integrable over all finite intervals. The initial-value problem (1), (4) is known as
Burgers’ turbulence problem.

Our main interest is in the analysis of the limiting behavior, as ε → 0, of the average
solutions

1

Aε

∫ x/ε

0
[u(t, y) − B(t, y)] dy, x > 0,

with t > 0 and x ∈ R fixed, and where Aε is a normalizing factor and B(t, y) is a centering
function.

The Burgers equation constitutes an important example of the nonlinear partial differential
equations studied in turbulence (see, for example, Burgers (1974), Chorin (1975), Kardar et al.
(1986), Shandarin and Zeldovich (1989), Gurbatov et al. (1991), and Frisch (1995)) and finance
(see Hodges and Carverhill (1993) and Hodges and Selby (1997)).

Burgers’ equation with random initial conditions and external potential � = 0 has been
extensively studied in the last fifteen years by Rosenblatt (1987), Bulinskiı̆ and Molchanov
(1991), Funaki et al. (1995), Leonenko and Orsingher (1995), Molchanov et al. (1995), Hu
and Woyczyński (1995), Bertoin (1998a), (1998b), Leonenko and Woyczyński (1998), Ryan
(1998), and Dermone et al. (1999), among others. Recent books of Woyczyński (1998) and
Leonenko (1999) contain a complete bibliography of the subject and expositions of some of
the principal results of the theory of Burgers’ turbulence.

In particular, Bulinskiı̆ and Molchanov (1991), Albeverio et al. (1994), Leonenko and Li
(1994), Leonenko and Orsingher (1995), Funaki et al. (1995), and Deriev and Leonenko
(1997) obtained Gaussian and non-Gaussian scenarios for parabolically rescaled solutions of
the Burgers equation with weakly dependent and strongly dependent random initial conditions.
These scenarios are in some sense subordinate to the Gaussian white noise random measure.

For other approaches to Burgers’ turbulence problem, see Rosenblatt (1987), Hu and
Woyczyński (1995) (for asymptotic distributions of averages of solutions of Burgers equation
with random data), Sinai (1992) (for statistics of shocks and related topics), Molchanov et al.
(1995) (for hyperbolic asymptotics), Bertoin (1998a), (1998b) and Ryan (1998) (for the large
deviation principle and statistics of shock waves), and their references.

In a sense, the Gaussian and non-Gaussian scenarios for a solution of Burgers’ equation with
random initial condition are results of the application of the central limit theorem or noncentral
limit theorems for nonlinear functionals of Gaussian processes and fields. The results of Taqqu
(1975), (1979) and Dobrushin and Major (1979) contain a main principle for the study of limiting
distributions of nonlinear transformations of Gaussian processes with long-range dependence.
These distributions are not always Gaussian, but they are subordinate to Gaussian white noise
random measures. For a recent development, see Anh and Leonenko (1999) and its references.

Recent work of Barndorff-Nielsen (1998a), (1998b), (2001) and Barndorff-Nielsen and
Pérez-Abreu (1999) presented a new type of process with long-range dependence and possibly
non-Gaussian marginal distributions such as gamma, inverse Gaussian, or normal inverse
Gaussian distributions (which are all infinitely divisible). These processes are constructed via
stochastic integrals with respect to independently scattered random measures with infinitely
divisible distributions.

Our paper is motivated by the papers of Rosenblatt (1987), Hu and Woyczyński (1995)
and Barndorff-Nielsen (1998a), (1998b), (2001). We present an explicit solution to Burgers’
turbulence problem with linear or quadratic external potential. Furthermore, we study
the limiting behavior of averages of solutions of Burgers’ equation with linear or quadratic
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external potential and Ornstein–Uhlenbeck-type initial conditions with short- and long-range
dependence.

Note that a more hydrodynamic and physical approach to the forced version of Burgers’
turbulence problem was proposed in a paper by Saichev and Woyczyński (1997), in which
statistical properties of Burgers’ turbulence problem with random potential were studied.

Throughout the paper, as standard notation we shall write C{ζ ‡ y} for the cumulant function
of a random variable y, i.e.

C{ζ ‡ y} = log E exp{iζy}.

2. Cole–Hopf solutions of the Burgers equation

The Burgers equation (1) can be reduced to a parabolic-type equation using the Hopf–Cole
transformation

u(t, x) = −2µ
∂

∂x
log h(t, x) (5)

(see, e.g. Witham (1974), Rosenblatt (1987), Gurbatov et al. (1991), Albeverio et al. (1994),
or Bertini and Cancrini (1995)), which reduces (1) and (2) to the equation

ht = µhxx − �h (6)

subject to the initial condition

h(0, x) = h0(x) = exp

{
−U(x)

2µ

}
= exp

{
− 1

2µ

∫ x

u0(ξ) dξ

}
,

where h ≡ h(t, x), t > 0, x ∈ R.
The parabolic-type equation (6) reduces, for � = 0, to the classical heat equation

ht = µhxx,

which has a fundamental solution of the following form:

g(t, x) = 1√
4πµt

exp

{
− x2

4µt

}
, t > 0, x ∈ R.

Thus, the field

u(t, x) =
∫
R
((x − y)/t)g(t, x − y)e−U(y)/2µ dy∫

R
g(t, x − y)e−U(y)/2µ dy

=: I (t, x)

J (t, x)

solves the initial-value problem (1)–(3) in the case where the external potential vanishes.
We recall Hopf’s formulation of this result (see Hopf (1950)).

Theorem 1. Let u(t, x) be a solution of (1) with locally integrable initial condition u(0, x) =
u0(x) and external potential � = 0. If∫ x

0
u0(ξ) dξ = o(x2) (7)

as |x| → ∞, then

u(t, x) =
∫
R
((x − y)/t) exp{−(1/2µ)F(x, y, t)} dy∫

R
exp{−(1/2µ)F(x, y, t)} dy

,
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where

F(x, y, t) = (x − y)2

2t
+

∫ y

0
u0(ξ) dξ = (x − y)2

2t
+ U(y)

is a solution of (1), with � = 0, that satisfies the initial condition∫ x

0
u(y, t) dy →

∫ a

0
u0(y) dy as x → a, t → 0,

for every a. If, in addition, u0(x) is continuous at x = a, then

u(x, t) → u0(a) as x → a, t → 0.

We note that (6), with initial condition

h(0, x) = h0(x), (8)

can be solved explicitly in a number of cases (see, e.g. Kochmanski (1994) or Leonenko and
Mel´nikova (2001)). In particular, for the linear external potential

�(x) = a + bx, (9)

the field

h(t, x) = exp

{
−t (a + bx) + µb2t3

3

} ∫
R

exp{−(x − y − bµt2)2/4µt}√
4πµt

h0(y) dy (10)

solves the initial-value problem (6), (8), and, under the conditions of Theorem 1, the field

u(t, x) = 2µbt +
∫
R
((x − y − bµt2)/t) exp{−(x − y − bµt2)2/4µt} e−U(y)/2µ dy∫

R
exp{−(x − y − bµt2)2/4µt} e−U(y)/2µ dy

solves the initial-value problem (1)–(3).
For the quadratic external potential

�(x) = a + bx2, b > 0, (11)

the field

h(t, x) = exp

{
−at −

√
bx2

√
4µ

tanh(ωt)

}

×
∫

R

exp{−[x − y cosh(ωt)]2/
√

µ/b sinh(2ωt)}h0(y) dy

[2π
√

µ/b sinh(ωt)]1/2
(12)

solves the initial-value problem (6),(8), where

ω = 2
√

µb. (13)

Note that for a = 0 and b = 1, (12) can be reduced to Mehler’s formula. (For information
on Mehler’s formula see, e.g. Cycon et al. (1987, pp. 286–287) or Berline et al. (1992, p. 154)).
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Hence, under the conditions of Theorem 1, the solution to (1)–(3) with external potential
(11) can be written as

u(t, x) = 2
√

µbx tanh(ωt)

+ 4µ

(∫
R

x − y cosh(ωt)√
µ/b sinh(2ωt)

exp

{
−[x − y cosh(ωt)]2

√
µ/b sinh(2ωt)

− U(y)

2µ

}
dy

)

×
(∫

R

exp

{
−[x − y cosh(ωt)]2

√
µ/b sinh(2ωt)

− U(y)/2µ

}
dy

)−1

.

Remark 1. For an external potential � of general (possibly random) form, the solution of
Burgers’ initial-value problem can be expressed in terms of the Feynman–Kac formula (see,
e.g. Holden et al. (1996), Molchanov et al. (1997), Woyczyński (1998), and Leonenko (1999),
among others), or in terms of functional integrals (see Saichev and Woyczyński (1997,
Equation (12))).

3. Rosenblatt’s type-reduction principles

Now, consider the Burgers equation (1) with external potential � = 0 and random initial
condition

u0(x) = ξ(x), x ∈ R. (14)

We introduce the following two conditions.

Condition A. The function ξ(x), x ∈ R, is a strictly stationary random process whose sample
paths are almost surely locally integrable and such that E|ξ(x)| < ∞.

Under this condition, we have ∫ x

0
ξ(y) dy = O(x)

as |x| → ∞ and, consequently, condition (7) in Hopf’s theorem is satisfied.

Condition A′. E ξ2(x) < ∞ and

A2
ε = var

[∫ 1/ε

0
ξ(y) dy

]
→ ∞

as ε → 0.

Rosenblatt (1987) observed that, for each ε > 0,

1

2µ

∫ 1/ε

0
u(t, x) dx = 1

2µ

∫ 1/ε

0
ξ(x) dx − Rε, (15)

where t > 0 is fixed and

Rε = log

{∫
R

exp{−ν2/4µt + ςε(ν)} dν

}
− log

{∫
R

exp{−ν2/4µt + ς(ν)} dν

}
,

with

ςε(ν) = − 1

2µ

∫ (1/ε)+ν

1/ε

ξ(y) dy, ς(ν) = − 1

2µ

∫ ν

0
ξ(y) dy.
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The random variables ςε(ν) and ς(ν) are identically distributed. Thus, under Conditions A
and A′,

1

Aε

(∫ x/ε

0
u(t, y) dy −

∫ x/ε

0
ξ(y) dy

)
→ 0

in probability as ε → 0, where u(t, y), t > 0, y ∈ R, is the solution of Burgers’ equation with
initial condition (14). This leads to the so-called Rosenblatt reduction principle (see Rosenblatt
(1987)).

Theorem 2. Under Conditions A and A′, the limiting behavior (as ε → 0) of the average
process

1

Aε

∫ x/ε

0
[u(t, y) − E ξ(y)] dy, x > 0, (16)

is the same as that of the average process

1

Aε

∫ x/ε

0
[ξ(y) − E ξ(y)] dy, x > 0, (17)

in the sense of finite-dimensional distributions.

The limiting behavior of the process (17) itself has been studied in many cases.

Remark 2. Theorem 2 implies that the low-frequency behavior of the spectrum of u(t, x) in
the immediate neighborhood of 0 is independent of t > 0 and is the same as that of ξ(x).
Similar remarks, also suggesting this, have been made in the case of homogeneous turbulence
(see Batchelor (1953, Section 3.3)).

Now consider the Burgers equation (1) with linear external potential � of the form (9) and
initial condition (14). Observe that in this case, from (5), we have

1

2µ

∫ 1/ε

0
u(t, x) dx = −log

h(t, 1/ε)

h(t, 0)
,

where h(t, u) is defined as in (10) and

h

(
t,

1

ε

)
= exp

{
−t

(
a + b

ε

)
+ µb2t3

3

} ∫
R

h0

(
ν + 1

ε

)
exp{−(ν − bµt2)2/4µt}√

4πtµ
dν,

h0

(
ν + 1

ε

)
= exp

{
− 1

2µ

∫ ν+1/ε

0
ξ(x) dx

}

= exp

{
− 1

2µ

∫ 1/ε

0
ξ(x) dx

}
exp

{
− 1

2µ

∫ ν+1/ε

1/ε

ξ(x) dx

}
,

h(t, 0) = exp

{
−ta + µb2t3

3

}

×
∫

R

exp

{
− 1

2µ

∫ ν

0
ξ(x) dx

}
exp

{
− (ν − bµt2)2

4µt

}
dν√

4πµt
.

Thus, for every ε > 0 and t > 0,

1

2µ

∫ 1/ε

0
u(t, x) dx − tb

ε
= 1

2µ

∫ 1/ε

0
ξ(x) dx − R′

ε,
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where

R′
ε = log

{∫
R

exp

{
− (ν − bµt2)2

4µt
+ ςε(ν)

}
dν

}

− log

{∫
R

exp

{
− (ν − bµt2)2

4µt
+ ς(ν)

}
dν

}

and the identically distributed random variables ςε(ν) and ς(ν) are defined as in (15). We
arrive at the following generalization of Rosenblatt’s reduction principle in the presence of a
linear external potential � of the form (9).

Theorem 3. Let u(t, x), t > 0, x ∈ R, be a solution of the initial-value problem in (1) and
(14) with linear external potential � of the form (9). Suppose that Conditions A and A′ are
satisfied. Then, the limiting behavior (as ε → 0) of the average process

1

Aε

∫ x/ε

0
[u(t, y) − 2tbµ − E ξ(y)] dy, x > 0, (18)

is the same as that of the average process

1

Aε

∫ x/ε

0
[ξ(y) − E ξ(y)] dy, (19)

in the sense of finite-dimensional distributions.

Next, consider the Burgers equation (1) with quadratic external potential � of the form (11).
In this case, using (5) again, we obtain the following identity:

1

2µ

∫ 1/ε

0
u(t, x) dx = −log

h(t, 1/ε)

h(t, 0)
,

where now h(t, u) is defined as in (11) and, consequently,

h

(
t,

1

ε

)
= exp

{
−at − √

b

(
1

ε

)2 tanh(ωt)√
4µ

}

×
∫

R

h0

(
ν + 1/ε

cosh(ωt)

)
exp

{
− ν2

√
µ/b sinh(2ωt)

}
dν,

h0

(
ν + 1/ε

cosh(ωt)

)
= exp

{
− 1

2µ

∫ 1/ε cosh(ωt)

0
ξ(x) dx

}

× exp

{
− 1

2µ

∫ (1/ε+ν)/ cosh(ωt)

1/ε cosh(ωt)

ξ(x) dx

}
,

h(t, 0) = exp{−at}
∫

R

exp

{
− 1

2µ

∫ ν/ε cosh(ωt)

0
ξ(x) dx

}

× exp

{
− ν2

√
µ/b sinh(2ωt)

}
dν.

Therefore, for every ε > 0 and t > 0,

1

2µ

∫ 1/ε

0
u(t, x) dx =

√
b

4µ
tanh(ωt)

1

ε2 + 1

2µ

∫ 1/ε cosh(ωt)

0
ξ(x) dx − R′′

ε ,
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where

R′′
ε = log

{∫
R

exp

{
− ν2

√
µ/b sinh(2ωt)

+ ζ̃ε(ν)

}
dν

}

− log

{∫
R

exp

{
− ν2

√
µ/b sinh(2ωt)

+ ζ̃ (ν)

}
dν

}
,

and the random variables ζ̃ε(ν) and ζ̃ (ν) are identically distributed and defined as

ζ̃ε(ν) = − 1

2µ

∫ (1+εν)/ε cosh(ωt)

1/ε cosh(ωt)

ξ(y) dy, ζ̃ν = − 1

2µ

∫ ν/ cosh(ωt)

0
ξ(y) dy,

with ω as defined in (13).
We arrive at the following result.

Theorem 4. Let u(t, x), t > 0, x ∈ R, be a solution of initial-value problem (1), (14), with
quadratic external potential � of the form (11). Suppose that Conditions A and A′ are satisfied.
Then, the limiting behavior (as ε → 0) of the average process

1

Aε

∫ x/ε

0

[
u(t, y) − 2y

√
bµ tanh(ωt) − E ξ(y)

cosh(ωt)

]
dy, x ≥ 0, (20)

is the same as that of the average process

1

Aε

∫ [x/cosh(ωt)](1/ε)

0
[ξ(y) − E ξ(y)] dy, x ≥ 0, (21)

in the sense of finite-dimensional distributions.

4. Self-decomposability and OU processes

This section mainly reviews a number of results discussed in Barndorff-Nielsen (1998a),
(2001).

4.1. Infinite divisibility

Recall that a random variable y is infinitely divisible if its cumulant function has the Lévy–
Khinchin representation

C{ζ ‡ y} = iaζ − 1
2bζ 2 +

∫
R

(eiζu − 1 − iζ τ(u))Q(du), ζ ∈ R, (22)

where a ∈ R, b > 0, and

τ(u) =
{

u if |u| ≤ 1,

u/|u| if |u| > 1,

and where the Lévy measure Q is a Radon measure on R\{0} such that Q({0}) = 0 and∫
R

min(1, u2)Q(du) < ∞.

Example 1. (Gaussian distribution.) The random variable y has the normal distribution
N(a, b) if Q = 0 in the representation (22).
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Example 2. (Normal inverse Gaussian distribution.) The density function of an NIG(α, β,

µ, δ) random variable y is given by

nig(u) = α

π
exp{δ

√
α2 − β2 + β(u − µ)}K1(δαg((u − µ)/δ))

g((u − µ)/δ)
, u ∈ R,

where δ > 0, 0 ≤ |β| < α, g(x) = (1 + x2)1/2, and Kν is the modified Bessel function of
the third kind of order ν (see, e.g. Watson (1944)). The distribution is symmetric around µ,
provided that β = 0. The normal distribution N(µ, σ 2) appears as a limiting case for β = 0,
α → ∞, and δ/α = σ 2, and the Cauchy law appears as limiting case of NIG(α, 0, 0, 1) for
α → 0. Note that

E y = µ + δρ/(1 − ρ2)1/2, var y = δ2/ᾱ(1 − ρ2)3/2,

where ρ = β/α and ᾱ = δα. If y1, . . . , ym are independent NIG(α, β, µi, δi), i = 1, . . . , m,
random variables, then

y1 + · · · + ym ∼ NIG(α, β, µ1 + · · · + µm, δ1 + · · · + δm).

We also note that NIG(α, β, δ, µ) has semiheavy tails, specifically,

nig(u) ∼ const × |u|−3/2 exp{−α|u| + βu} as u → ±∞.

Assuming that µ = 0, we obtain the cumulant function of the NIG(α, β, µ, δ) distribution in
the Lévy–Khinchin form:

C{ζ ‡ y} =
∫

|u|≥1
(eiζu − 1)f (u; α, β, δ) du

+
∫

|u|<1
(eiζu − 1 − iζu)f (u; α, β, δ) du

+ 2iζ

π
δα

∫ 1

0
sinh(βx)K1(αx) dx,

where
f (u; α, β, δ) = π−1δα|u|−1eβuK1(α|u|). (23)

A stochastic process z(s), s ≥ 0, is said to be a Lévy process if it has independent increments,
càdlàg sample paths, and is continuous in probability. If the increments are stationary, z is said
to be homogeneous. In the following, we take the term ‘Lévy process’ to mean a homogeneous
Lévy process z such that z(s)

p−→ 0 as s ↓ 0.
If z is a Lévy process then the cumulant function z satisfies C{ζ ‡ z(s)} = s C{ζ ‡ z(1)}.

Note that to any infinitely divisible random variable y there corresponds a Lévy process z such
that y

L= z(1); we refer to z as the Lévy process generated by y, where
L= means equality in

law. If y has representation (22), then (a, b, Q) will be called the characteristics of the Lévy
process z(s), s ≥ 0.

4.2. Self-decomposability

An infinitely divisible random variable y (or its law) is self-decomposable if its characteristic
function φ(t) = E exp{ity}, t ∈ R, has the property that, for every c ∈ (0, 1), there exists a
characteristic function φc such that φ(t) = φ(ct)φc(t) for all t ∈ R. Equivalently, y is self-
decomposable if its Lévy measure is Q(du) = q(u) du with q(u) = |u|−1c(u), where c(u) is
increasing on (−∞, 0) and decreasing on (0, ∞).
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Example 3. The NIG(α, β, µ, δ) law is self-decomposable, as follows from the representation
(23) and the fact that the Bessel function K1 is decreasing.

Let y be a self-decomposable random variable with Lévy measure Q of the form Q(du) =
q(u) du with q(u) = |u|−1c(u). As it is self-decomposable, y is representable as

y =
∫ ∞

0
e−s dz̀(s),

where z̀ is a Lévy process whose law is determined uniquely by that of y. The Lévy measure
W of z̀(1) is related to the Lévy density q of y by the formula

W+(u) = W([u, ∞)) = uq(u)

for u > 0, and
W−(u) = W((−∞, u]) = |u|q(u)

for u < 0.
Furthermore, if the Lévy density q of y is differentiable, then W has density w – with respect

to Lebesgue measure – given by

w(u) = −q(u) − uq ′(u),

where a prime denotes differentiation. The process z̀(u), u ≥ 0, is termed the background
driving Lévy process (BDLP) corresponding to y.

In the following, y will stand for a self-decomposable random variable whose Lévy density
q is differentiable, and z(t), t ≥ 0, will denote the Lévy process generated by y (see Section 3),
i.e. the Lévy process such that z(1)

L= y. The BDLP determined by z(1) is denoted by z̀. The
BDLP of z(u) is equivalent in law to z̀(us), s ≥ 0.

We will use the notation
κ́(ζ ) = C{ζ ‡ y}.

For any u > 0 and λ > 0, we may rewrite the representation (22) as

y =
∫ ∞

0
e−λs dz̀(λs) =

∫ u

0
e−λs dz̀(λs) + e−λu

∫ ∞

0
e−λs dz̀(λ(s + u))

and, here, ∫ ∞

0
e−λs dz̀(λ(s + u))

L= y.

Consequently, y is representable as

y = e−λuy0 + wu,

where y0 and wu are independent, y0
L= y, and

wu =
∫ u

0
e−λs dz̀(λs).
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4.3. Ornstein–Uhlenbeck-type processes

In fact, a stronger statement is true (see, e.g. Barndorff-Nielsen (1998b) and references
therein): for any λ > 0, the stochastic differential equation

dy(u) = −λy(u) du + dz̀(λu)

has a stationary solution y(u) such that y(u)
L= y. This stochastic differential equation is solved

by

y(u) = e−λuy(0) +
∫ u

0
e−λ(u−s) dz̀(λs).

A stationary process y(u) of this kind is said to be an Ornstein–Uhlenbeck-type (OU-type)
process. When y(u) is square integrable with E y(u) = 0, it has correlation function r(u) =
exp{−λu}, u > 0.

The stationary process y(u), u ≥ 0, can be extended to a stationary process on the whole real
line. To do so, we introduce an independent copy of the process z̀(λ)(u)

L= z(λu), u ≥ 0, but
modify it to be càglàd, i.e. continuous from the left, with limits from the right, thus obtaining a
process z̀

(λ)
1 (u). Now, for u < 0, respectively define z̀(λ)(u) and y(u) by z̀(λ)(u) = z̀

(λ)
1 (−u)

and

y(u) = e−λ|u|y(0) + e−λ|u|
∫ 0

u

eλ|s| dz̀(λ)(s).

Then, z̀(λ)(u), u ∈ R, is a (càdlàg) Lévy process and y(u), u ∈ R, is a strictly stationary
process of OU type with correlation function (if it exists)

r(u) = e−λ|u|, u ∈ R. (24)

The integrated process can be represented as follows:

Sε(x) =
∫ x/ε

0
y(u) du = 1

λ

{
z̀(1)

(
λ

x

ε

)
− y

(
x

ε

)
+ y(0)

}
.

Example 4. The NIG(α, β, µ, δ) distribution is self-decomposable. Thus, there exists a sta-
tionary OU-type process y(u), u ∈ R, such that y(u) ∼ NIG(α, β, µ, δ) for every u ∈ R,
whatever the value of the parameter λ > 0, and with correlation function (24). For µ = β = 0,
we have E y(u) = 0.

First, consider the OU-type stationary process y(u), u ∈ R, with marginal NIG(α, 0, 0, δ)

and correlation function ry(u) = e−|u|, u ∈ R. It is easy to see that ε1/2y(x/ε) → 0,
ε1/2y(0) → 0 in probability as ε → 0, and

lim
ε→0

E exp

{
iζ

√
εz̀(1)

(
x

ε

)}
= lim

ε→0
[E exp{iζ√

εz̀(1)(1)}]x/ε

= exp{− 1
2ζ 2xσ 2},

σ 2 = E[z̀(1)(1)]2, ζ ∈ R.

Then by Slutsky’s lemma, as ε → 0,

√
ε

∫ x/ε

0
y(u) du → σb(x), x ≥ 0,
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in the sense of convergence of finite-dimensional distributions, where b(x), x ≥ 0, is standard
Brownian motion.

A modification of the above argument shows that, for the OU-type stationary process y(u),

u ∈ R, with marginal NIG(α, β, 0, δ) distribution and correlation function ry(u) = e−λ|u|,
u ∈ R, we have, as ε → 0,

√
ε

∫ x/ε

0

[
y(u) − δβ√

α2 − β2

]
du → σ́ b(x), x ≥ 0, (25)

in the sense of convergence of finite-dimensional distributions, where

σ́ 2 = α2δ

λ(α2 − β2)3/2 .

4.4. SupOU processes

A SupOU process is a stochastic process obtained by superposition (i.e. addition) of in-
dependent OU-type processes. The stationary process with NIG marginal distribution and
long-range dependence considered in Theorem 5, next, is a supOU process that was introduced
in Barndorff-Nielsen (1998a).

Let ϑ(s) = ∑∞
k=1 k−s , s > 1, be the Riemann zeta function.

Theorem 5. Lety(k)(u), u ∈ R, k = 1, 2, . . . , be a sequence of independent OU-type processes
such that, for all k and u ∈ R, the marginal distribution of y(k)(u) is NIG(α, β, 0, δk) with

δk = 1

k1+2(1−H)
, k = 1, 2, . . . , H ∈ (0, 1),

and let

δ =
∞∑

k=1

δk = ϑ(1 + 2(1 − H)). (26)

Suppose, moreover, that the processes y(k)(u) all have the correlation function (24).
Then, the process

y(u) =
∞∑

k=1

y(k)(k−1u), u ∈ R, (27)

is stationary and well defined as an L2 limit, the marginal distribution of y(u) is NIG(α, β, 0, δ)

(where δ is defined as in (26)), the correlation function of the process y(u) is of the form

r̄(τ ) = [ϑ(1 + 2(1 − H))]−1
∞∑

k=1

e−|τ |λ/k

k1+2(1−H)

= 1

|τ |2(1−H)

�(2(1 − H))

λ2(1−H)ϑ(1 + 2(1 − H))
(1 + o(1)), 1

2 < H < 1, (28)

as |τ | → ∞, and the normalized spectral density is

f̄ (µ) = (λ/π)

ϑ(1 + 2(1 − H))

∞∑
k=1

1

k2(1−H)

1

(λ2 + µ2k2)
, µ ∈ R. (29)
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Furthermore, the normalized integrated process

Yε(s) = εH

∫ s/ε

0

[
y(u) − δβ√

α2 − β2

]
du → σ0bH (s), s ≥ 0, where (30)

σ 2
0 = δα2�(2(1 − H))

(α2 − β2)3/2ϑ(1 + 2(1 − H))λ2(1−H)H(2H − 1)
. (31)

Here, convergence is in the sense of finite-dimensional distributions as ε → 0, and bH (s),

s ≥ 0, is fractional Brownian motion with fractional index H , i.e. a Gaussian process with
zero mean and correlation function

1
2 {|s|2H + |t |2H − |t − s|2H }.

Sketch of proof. For simplicity, we put λ = 1 and β = 0. Then, from (26), we obtain

var
∫ s/ε

0
y(u) du = var y(0)

ϑ(1 + 2(1 − H))

∫ s/ε

0

∫ s/ε

0

[ ∞∑
k=1

δke−|u−w|/k

]
du dw

= var y(0)

ϑ(1 + 2(1 − H))H(2H − 1)
�(2(1 − H))(s/ε)2H (1 + o(1))

because

F(τ) =
∞∑

k=1

δke−|τ |/k = F ∗(τ )

|τ |2(1−H)
,

where, letting γ = 2(1 − H) ∈ (0, 1),

F ∗(τ ) = τ 2(1−H)
∞∑

k=1

1

k1+2(1−H)
e−τ/k ∼ τγ

∫ ∞

1
x−1−γ e−τ/x dx =

∫ τ

0
e−yyγ−1 dy

as τ → ∞.
Statement (30) can now be proved by such standard methods as the discretization procedure

and the Lindeberg–Feller central limit theorem.

Remark 3. The spectral density (29) satisfies the following asymptotic relations:

f̄ (µ) = c1

|µ|1−2(1−H)
(1 + o(1)), |µ| → 0, 1

2 < H < 1, (32)

and

f̄ (µ) = c2

|µ|2 (1 + o(1)), |µ| → ∞,

where c1, c2 > 0 are some constants. Equation (32) indicates long-range dependence.

5. Scaling laws: NIG-OU and NIG-supOU initial conditions

As was shown in Section 3, the limiting behavior of the average processes (16), (18), and
(20) is the same, respectively, as that of the average processes (17), (19), and (21).
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From (25) and Theorems 2–5, we obtain Theorem 6, as follows.

Theorem 6. Let u(t, x), t > 0, x ∈ R, be a solution of the initial-value problem (1), (4) in
which ξ(x), x ∈ R, is a stationary random process that has locally integrable sample paths.
Suppose that one of the following conditions holds:

(a) ξ(x), x ∈ R, is an OU-type process with marginal NIG(α, β, 0, δ) distribution and
correlation function (24);

(b) ξ(x), x ∈ R, is a supOU process with zero mean, correlation function (28), and marginal
NIG(α, β, 0, δ) distribution as described in Theorem 5.

Then, for ε → 0, we have the following convergence of random processes, in the sense of
finite-dimensional distributions.

(i) If the external potential vanishes, i.e. � = 0, then

ε1/2
∫ x/ε

0

[
u(t, y) − δβ√

α2 − β2

]
dy → σ́ b(x), x ≥ 0,

when (a) holds, where σ́ 2 is as defined in (25) and b is Brownian motion. When (b) holds,

εH

∫ x/ε

0

[
u(t, y) − δβ√

α2 − β2

]
dy → σ0bH (x), x ≥ 0, H ∈ ( 1

2 , 1),

where σ 2
0 is as defined in (31) and bH is fractional Brownian motion.

(ii) If the external potential � is linear, as in (9), then, when (a) holds,

ε1/2
∫ x/ε

0

[
u(t, y) − 2tbµ − δβ√

α2 − β2

]
dy → σ́ b(x), x ≥ 0,

while, when (b) holds,

εH

∫ x/ε

0

[
u(t, y) − 2tbµ − δβ√

α2 − β2

]
dy → σ0bH (x), x ≥ 0, H ∈ ( 1

2 , 1).

(iii) If the external potential � is quadratic, as in (11), then, when (a) holds,

ε1/2
∫ x/ε

0

[
u(t, y) − 2y

√
bµ tanh(ωt) − δβ

cosh(ωt)
√

α2 − β2

]
dy

→ σ́ b

(
x

cosh(ωt)

)
, x ≥ 0,

while, when (b) holds,

εH

∫ x/ε

0

[
u(t, y) − 2y

√
bµ tanh(ωt) − δβ

cosh(ωt)
√

α2 − β2

]
dy

→ σ0bH

(
x

cosh(ωt)

)
, x ≥ 0, H ∈ ( 1

2 , 1).

From Theorem 6, we can see the differences and similarities between the homogeneous and
inhomogeneous Burgers turbulence problems when the external potential is linear or quadratic.
More specifically, the inhomogeneous problem contains some trends or centering functions
under the averaging and, in the quadratic-potential case, the limiting processes depend on time.
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