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Vertical displacement normal modes in shaped tokamak plasmas are studied analytically,
based on the reduced ideal-magnetohydrodynamic model. With the help of quadratic
forms, and using the appropriate eigenfunction for vertical displacements with toroidal
mode number n = 0 and dominant elliptical-angle mode number m = 1, a dispersion
relation is derived, including the effects of ideal or resistive walls through a single
parameter, Dw(γ ), which is, in general, a function of the complex eigenfrequency γ =
−iω. For the resistive-wall case, the dispersion relation is cubic in γ . One root corresponds
to the well-known, non-rotating resistive-wall vertical mode, growing on the resistive-wall
time scale. The other two roots are weakly damped by wall resistivity, but oscillate with a
frequency below the poloidal Alfvén frequency, which makes them immune to continuum
damping, but subject to possible instability due to resonant interaction with fast ions.
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1. Introduction

Tokamak plasma discharges with non-circular cross-section are common features in
modern-day magnetic fusion experiments. An important advantage of such configurations
is higher instability thresholds, in terms of toroidal plasma current and beta
(=kinetic/magnetic pressure) values, against ideal-magnetohydrodynamic (MHD) modes.
Furthermore, plasma shaping is associated with magnetic divertors, which ameliorate
the problem of plasma–wall interaction and allow access to high confinement regimes
(so-called H-modes, Wagner et al. 1982). On the other hand, elongated plasmas are prone
to an instability, initiated by an axisymmetric perturbation with toroidal mode number
n = 0, leading to vertical displacement events (VDEs) (Strait et al. 1991; Granetz et al.
1996; Albanese, Mattei & Villone 2004; Riccardo & JET EFDA Contributors 2009),
where the entire plasma shifts vertically until it touches the vacuum chamber. Uncontrolled
VDEs must be avoided, as they lead to plasma current disruptions, which are dangerous
in that they can severely damage the first wall of the vacuum chamber and the mechanical
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structure of the tokamak device. For this reason, a vast amount of literature has been
dedicated to the theoretical study of vertical plasma displacements, starting from the
pioneering work by Laval, Pellat & Soule (1974), and continuing throughout the years
(Okabayashi & Sheffield 1974; Haas 1975; Rebhan 1975; Perrone & Wesson 1981; Lazarus,
Lister & Neilson 1990; Fitzpatrick 2009; Zakharov, Galkin & Gerasimov 2012; Portone
2017; Clauser, Jardin & Ferraro 2019; Krebs et al. 2020 provide a non-exhaustive sample),
up until very recently, where the impact of magnetic divertor X-points on n = 0 modes was
analysed within the framework of the ideal-MHD model (Yolbarsop, Porcelli & Fitzpatrick
2021; Yolbarsop et al. 2022).

The focus of this article is, however, somewhat different. We derive analytically the
dispersion relation for vertical displacement normal modes, and focus our attention on
the oscillatory solutions, with a discrete frequency of oscillation in the poloidal Alfvén
frequency range. These discrete modes, which we will refer to as ‘vertical displacement
oscillatory modes’ (VDOM), are different from the well-known global Alfvén eigenmodes
(Villard & Vaclavik 1997) with toroidal mode number n = 0, as discussed more at
length in the Conclusion section. The VDOM are weakly damped by wall resistivity. The
existence of these lightly damped solutions was noted before, see, e.g. Olofsson (2022)
and Pfefferlé & Bhattacharjee (2018); however, in those references, the emphasis was
on the growth and control of the usual, non-rotating vertical resistive wall mode, while
the importance of the oscillatory solutions was played down. In fact, in our view, the
VDOM solutions of the relevant dispersion relation are very interesting, as their oscillatory
character opens the possibility that they are driven unstable by the resonant interaction
with energetic particles, see also Barberis, Porcelli & Yolbarsop (2022). Observations of
saturated n = 0 oscillations were reported in recent JET experiments where energetic fast
ion populations were produced by intense auxiliary plasma heating (Oliver et al. 2017;
Kiptily et al. 2021).

Thus, this article contains two main results. The first result is a fully analytic derivation,
based on the reduced MHD model, of the cubic dispersion relation for n = 0 vertical
modes with elliptical-angle mode number m = 1, valid for arbitrary values of the
ellipticity parameter e0 (defined in (2.2) below), in the presence of a resistive wall. As far
as we are aware, our analytic derivation is new and adds valuable insight into the frequency
and spatial structure of the relevant n = 0 modes. Analytic progress was possible thanks
to the choice of a much idealized equilibrium, but we do hope that our analytic theory will
motivate numerical work using more realistic tokamak geometries. The second result is a
detailed discussion of the n = 0 VDOM.

Our analysis adopts the same equilibrium configuration as Laval et al. (1974), where the
plasma boundary and the nearby wall of the containment vacuum chamber are assumed
to be confocal ellipses. Based on the ideal-MHD energy principle, it was concluded
in Laval et al. (1974) that a perfectly conducting, ideal wall is capable of passively
stabilizing vertical plasma displacements. Adding to the work of Laval et al. (1974) and of
subsequent publications, our article presents the analytic derivation of the mode structure
and cubic dispersion relation for vertical modes with toroidal mode number n = 0 and
elliptical-angle mode number m = 1. This dispersion relation is valid for arbitrary values
of the ellipticity parameter; it includes the effects of a resistive wall through a single,
frequency-dependent parameter, Dw(γ ), defined in (4.29) below. An in-depth discussion of
the three relevant roots of the dispersion relation is presented. Under relevant experimental
conditions, two of the three roots have a frequency of oscillation just below the poloidal
Alfvén frequency and are weakly damped by wall resistivity. The third root, instead, is
purely growing on the wall resistivity time scale; this third root is the usual, non-rotating
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FIGURE 1. Schematic diagram of the heuristic model for the vertical instability.

vertical resistive-wall mode, which can be suppressed by active feedback stabilization
(Lazarus et al. 1990; Lister et al. 1990; Albanese et al. 2004; Portone 2017).

This article is organized as follows. The cubic dispersion relation for n = 0 modes is
first derived heuristically in § 2. In § 3, the normal-mode spatial structure is resolved based
on the reduced ideal-MHD model. The most original results are presented in § 4; in this
section, first, a general dispersion relation is obtained with the use of quadratic forms; then,
relevant solutions of the dispersion relation are obtained for three scenarios of interest: the
no-wall case, the ideal wall limit and the case of a resistive wall. Conclusions are presented
in § 5.

2. Heuristic model

Insight into the mechanism and time scales of the vertical instability can be gained with
the help of a simple heuristic model, involving currents flowing in three parallel rectilinear
wires. This toy model is well known, and a simple derivation of the relevant dispersion
relation for the case of an ideal wall can be found, e.g. in Yolbarsop et al. (2021, 2022)
and Pfefferlé & Bhattacharjee (2018). This calculation is repeated here for the reader’s
convenience, together with its extension to the case of a resistive wall.

With reference to figure 1, let y be the vertical direction. The currents flow along the
z direction, which mimics the toroidal direction of a tokamak plasma. The two ‘external’
currents, IExt, are equal and positive and are fixed at y = ±l, while the ‘plasma’ current, Ip,
can drift along the vertical direction. A vacuum surrounds the three wires. Clearly, y = 0
is an unstable equilibrium point for the plasma wire. Also shown in figure 1 are magnetic
X-points located at y = ±ly < l.

The equation of motion for the plasma wire is

μm ÿ = 4 IP IExt

c2

y
l2 − y2

, (2.1)

withμm the linear mass density, c the speed of light and an over-dot denotes time derivative
(c.g.s. units have been adopted). Neglecting self- and mutual induction currents, IP and IExt
remain constant as the plasma wire is displaced. For small y � l, the solution of (2.1) is
y = y0 eγH t, where y0 is an initial displacement, and γH = (1/l)(4IPIExt/μmc2)1/2.

If, instead of a plasma wire, we consider a vertically elongated plasma with uniform
current density up to an elliptical magnetic surface with minor semi-axis a and major
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semi-axis b, then, according to the analysis of Porcelli & Yolbarsop (2019), a relationship
is found involving the currents IP and IExt and the distance l: IExt/IP = [(b − a)/(b + a)]
[l2/(a2 + b2)]. With this expression, γH turns out to depend only on the plasma current IP
and on the semi-axes a and b, but not on IExt and l. Also, μm can be replaced by μm →
π a b �m, where �m is the volume mass density. After straightforward algebra, and taking
the limit of small ellipticity, e0 � 1, where

e0 = b2 − a2

b2 + a2
, (2.2)

the growth rate can be written as

γH = e0
1/2τA

−1, (2.3)

where τA
−1 = BP

′/(4π �m)
1/2 is the inverse Alfvén time, and BP

′
is the radial derivative

of the poloidal magnetic field on the magnetic axis. Note that, for a circular plasma
cross-section, e0 = 0 and the growth rate γH vanish. Considering typical values of
present-day tokamak experiments, γ −1

H is indeed a swift growth time of the order of a
few microseconds.

A perfectly conducting wall close to the plasma can provide passive feedback
stabilization of the vertical instability. The stabilization mechanism is explained as follows.
When the plasma is displaced from its equilibrium position, image currents are induced at
the wall. The sign of these currents is such that the corresponding net force opposes the
motion of the plasma wire. In the heuristic model, we can model this effect by assuming
two currents of opposite sign, ±δI, proportional to the displacement of the plasma column,
and localized at y = ±l. Then,

Lδİ = LDIExtẏ/l, (2.4)

where L is an effective inductance and D is a dimensionless proportionality constant,
which, in the case of a tokamak plasma, can be determined in terms of the wall geometry
(see § 4 here below). After straightforward algebra, and taking the limit y � l, the equation
of motion modified by the feedback currents becomes

μm c2 ÿ ≈ 4IPIExt (1 − D)y/l2. (2.5)

Thus, the vertical instability is suppressed when D > 1, which, in the actual tokamak case,
translates into a criterion related to the proximity of the wall to the plasma column. As we
shall see in § 4, for the special case where the plasma boundary and the wall are modelled
by confocal ellipses, the marginal stability criterion corresponds to the magnetic X-points
lying on the wall, while feedback stabilization, D > 1, requires the X-points to lie beyond
the wall. In the latter case, (2.5) implies that the plasma oscillates vertically with frequency

ω = ±ωH = ±√
D − 1 γH. (2.6)

These two solutions with frequency ω = ±ωH are a first indication of what we dub the
VDOM.
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For the more realistic case of a resistive wall, (2.4) is modified into

RδI + Lδİ = LDIExtẏ/l. (2.7)

After straightforward algebra, and again in the limit y � l, we find

μmc2...
y = 4IPIExtẏ/l2 − 4IPδ̇I/l. (2.8)

Eliminating δ̇I, we obtain the third-order differential equation for y

...
y + 1

τR
ÿ + ω2

Hẏ − 1
τR

ω2
H

D − 1
y = 0, (2.9)

where τR = L/R is the resistive-wall penetration time.
We restrict the discussion that follows to the limit D > 1. Thus, searching for solutions

of the type y(t) ∼ y0eγ t, a cubic dispersion relation for complex γ is obtained

γ 3 + 1
τR
γ 2 + ω2

Hγ − 1
τR

ω2
H

D − 1
= 0, (2.10)

where ωH is defined in (2.6). In the limit of small wall resistivity, ωHτR � 1, the two
VDOM oscillatory roots of the ideal wall case turn out to be damped; setting γ = −iω,
the two damped modes have a complex frequency

ω = ±ωH − iD
2(D − 1)τR

. (2.11)

On the other hand, the third root corresponds to a purely growing resistive instability with
a growth rate

γ = 1
(D − 1)τR

≡ γR. (2.12)

For this non-rotating, unstable mode, the inverse growth rate scales with τR, which, for
typical tokamak parameters, gives rise to a characteristic growth time of the order of a
few milliseconds. It is then possible to counter the growth of the resistive-wall vertical
instability by means of active feedback control associated with currents flowing outside
the tokamak vacuum chamber (Lazarus et al. 1990; Lister et al. 1990; Albanese et al. 2004;
Portone 2017). We point out that, as long as the VDOM are damped, and as long as their
oscillation frequency is well separated from the bandwidth of the vertical stabilization
closed loop, they are not expected to have an impact on the active feedback stabilization
system applied to the non-rotating, vertical resistive-wall mode.

In § 4, a more general dispersion relation, valid for arbitrary values of e0, is obtained
based on a complete solution of the ideal-MHD normal-mode problem applied to n = 0
perturbations. In the limit of small ellipticity, the general dispersion relation reduces to the
cubic equation (2.10), confirming in this way the validity of the heuristic model.

3. Vertical rigid-shift mode structure

The analysis of this section follows that already published by us in Porcelli et al.
(2021) and Yolbarsop et al. (2021, 2022), which we briefly summarize here for the
reader’s convenience. An adequate model for the normal-mode analysis of the vertical
instability is the well-known reduced ideal-MHD model (Strauss 1976). For axisymmetric
modes, toroidal effects do not play an important role and, therefore, the straight-tokamak
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approximation is adopted. The magnetic field is B = ez × ∇ψ + Bz ez, where ez is the
unit vector along the ignorable z-direction, which mimics the toroidal coordinate, and Bz
is constant. The plasma flow is v = ez × ∇ϕ + vz ez. In the standard low-β limit for a
tokamak plasma, the fields Bz and vz decouple from the fields ψ and ϕ. Therefore, the
magnetic flux function, ψ , and the streamfunction, ϕ, obey the model equations (Strauss
1976)

∂ψ

∂t
+ [ϕ,ψ] = 0, (3.1)

∂

∂t
∇ · (�∇ϕ)+ [�, (∇ϕ)2] + [ϕ, �]U + [ϕ,U] = [ψ, J] . (3.2)

In these equations, all quantities are dimensionless, brackets are defined as [χ, η] = ez ·
∇χ × ∇η, J = ∇2ψ is the normalized current density and U = ∇2ϕ is the normalized
flow vorticity. Space and time are normalized as r̂ = r/r0, where r0 = a b/[(a2 + b2)/2]1/2

is a convenient equilibrium scale length, and t̂ = t/τA, where τA is the poloidal Alfvén
time defined below (2.3). The dimensionless fields are normalized as ψ̂ = ψ/(Bp

′r2
0), ϕ̂ =

(τA/r0
2)ϕ; the plasma density is normalized to its on-axis value, �̂ = �m/�m0, and the

current density is Ĵ = (4π/cBp
′)Jz. In order to simplify the notation, over-hats are actually

dropped in (3.1) and (3.2), and in the following.
At equilibrium, fields are stationary, and, by assumption, the equilibrium plasma

velocity is negligibly small. The current density, Jeq, is assumed to be uniform up to
an elliptical boundary with minor semi-axis a and major semi-axis b, and to drop to
zero beyond that boundary, where vacuum is assumed. Clearly, the elliptical boundary
must be a magnetic flux surface, which lies necessarily within the region bounded by
the magnetic separatrix. In elliptical coordinates (μ, θ), where x = A sinh(μ) cos(θ) and
y = A cosh(μ) sin(θ), with A = √

b2 − a2, the elliptical boundary corresponds to μ = μb,
such that a = A sinhμb and b = A coshμb. The equilibrium current density is Jeq(μ) =
2H(μb − μ), where H(x) is the Heaviside unit step function.

According to the analysis of Porcelli & Yolbarsop (2019), in the plasma region inside
the elliptical boundary, where μ < μb and ψ = ψ−

eq, the solution of ∇2ψ−
eq = 2 that is well

behaved on the magnetic axis and that reduces to a constant on the elliptical boundary is
best written in terms of Cartesian components

ψ−
eq(x, y) = 1

2

(
x2

b2
+ y2

a2

)
. (3.3)

In the vacuum region outside the elliptical boundary, where μ > μb, the equilibrium
flux ψeq = ψ+

eq satisfies ∇2ψ+
m = 0. Here, and in the following, the superscripts ‘−’ and

‘+’ indicate the plasma and vacuum regions, respectively. As we assume no equilibrium
current sheets, ψeq and its derivative along the normal to the boundary must be continuous
across the boundary. The relevant analytic solution is

ψ+
eq(μ, θ) = 1

2
+ α2

{
μ− μb + e0

2
sinh [2(μ− μb)] cos(2θ)

}
(3.4)

with α2 = ab/r2
0 and e0 the ellipticity parameter defined in (2.2). Magnetic flux

surfaces ψeq(μ, θ) = const. exhibit a magnetic separatrix at ψeq(μ, θ) = ψX = μb α
2,

with X-points located at μ = μX = 2μb and θ = θX = π/2 ± nπ.
The equilibrium plasma density profile is also assumed to be uniform up to the elliptical

boundary μ = μb, i.e. �eq = H(μb − μ). Thus, this model equilibrium, where the plasma
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terminates well before the magnetic separatrix, and a wall is present, resembles more
closely a limiter tokamak scenario, with the equilibrium magnetic X-points that may
lie either outside the plasma containment chamber, or in the vacuum region inside the
chamber.

Two main reasons justify the choice of this particular equilibrium. First, we intend
to carry out a fully analytic treatment of the normal-mode problem, which can be
done if the starting point is a relatively simple equilibrium. The second is that, based
on previous studies of the vertical stability problem, effects associated with gradients
of the equilibrium plasma current density are not expected to play an important role.
Furthermore, the equilibrium adopted in this article is the same as that used in Laval
et al. (1974). On the other hand, equilibrium flows are neglected in this article and ought
to be considered in future studies.

For stability considerations, set ψ(μ, θ, t) = ψeq(μ, θ)+ ψ̃(μ, θ) eγ t and ϕ(μ, θ, t) =
φ̃(μ, θ) eγ t, where the over-tilde denotes small perturbed quantities and γ = −iω. The
linearized versions of (3.1) and (3.2) are

γ ψ̃ + [
ϕ̃, ψeq

] = 0, (3.5)

γ ∇ · (�eq∇ϕ̃) =
[
ψ̃, Jeq

]
+
[
ψeq, J̃

]
. (3.6)

In the region μ < μb, the streamfunction corresponding to a rigid vertical shift is
represented in elliptical coordinates by

ϕ̃(μ, θ) = γ ξ a
sinhμ
sinhμb

cos θ, (3.7)

where ξ is the vertical displacement of the plasma column. From the flux freezing
condition (3.5) we obtain the corresponding perturbed magnetic flux

ψ̃−(μ, θ) = −ξ
b

coshμ
coshμb

sin θ. (3.8)

Since Ũ, J̃, ∇�eq and ∇Jeq all vanish inside the elliptical boundary, (3.6) is trivially
satisfied. Note that in elliptical coordinates, ∇2χ = h−2(∂2χ/∂μ2 + ∂2χ/∂θ 2), where
h = 1/|∇μ| = 1/|∇θ | is a scale factor, with h2 = A2(cosh 2μ+ cos 2θ)/2.

When an ideal or resistive wall is present, the rigid-shift solutions (3.7) and (3.8) for
the streamfunction and the perturbed flux in the plasma region retain their validity, while,
in the vacuum region, the perturbed flux satisfies ∇2ψ̃+ = 0, whose solution can be best
represented as

ψ̃+(μ, θ) = −ξ∞
b

exp [−(μ− μb)] sin θ + ξext

b
coshμ
coshμb

sin θ. (3.9)

In this expression, ξ∞ is the amplitude of the rigid vertical displacement in the limit where
the wall is moved to infinity, and the term proportional to ξext represents the contribution
to the perturbed flux due to the image currents that form on the wall when this is at a finite
distance from the plasma boundary. Continuity of flux at the plasma boundary requires that
ξ = ξ∞ − ξext, and so the actual vertical displacement ξ is reduced, as compared with the
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no-wall case, by the amount ξext. A perturbed current sheet forms at the plasma boundary

J̃(μ, θ) = j̃b(θ)δ(μ− μb) = 1
h2

(
∂ψ̃+

∂μ
− ∂ψ̃−

∂μ

)∣∣∣∣∣
μb

δ(μ− μb), (3.10)

where δ(x) is the Dirac delta function. A staightforward calculation yields the
elliptical-angle modulation of the current sheet

j̃b(θ) = 2(a + b)
b2(a2 + b2)

ξ∞ sin θ
1 + e0 cos 2θ

. (3.11)

Note that j̃b(θ) depends only on ξ∞ and not on ξext, as the current sheet at the plasma
boundary does not depend on the wall image currents.

4. Dispersion relation and quadratic forms

In this section, with the help of quadratic forms, we derive a dispersion relation for n = 0
vertical modes, which depends on geometrical parameters, a and b, and on a function,
Dw(γ ), determined by the geometry and the resistivity of the wall, which becomes
independent of γ in the ideal wall limit.

Let us introduce the auxiliary streamfunction ϕ̃†, such that it equals the
complex-conjugate streamfunction in the volume occupied by the plasma (up to μ =
μb + ε, i.e. including the perturbed current sheet at the plasma boundary), that we denote
by the symbol Ω , while ϕ̃† equals zero in the vacuum region. We multiply the perturbed
plasma equation of motion (3.6) by ϕ̃†/2γ ∗ and integrate it over the whole volume
extending to infinity. After standard manipulations, we obtain

− γ 2 1
2

∫
Ω

d3 xρeqξ · ξ ∗ = − 1
2

∫
Ω

d3 xξ ∗ ·
[
(J̃ × Beq)+ (J eq × B̃)

]
, (4.1)

where ξ = ez × ∇ϕ̃/γ is the displacement vector. Thus, the dispersion relation can be
written as

− γ 2 = δW/δI, (4.2)

where

δI = 1
2

∫
Ω

ρeqξ · ξ ∗ d3x, (4.3)

and

δW = − 1
2

∫
Ω

ξ ∗ · F (ξ) d3x, (4.4)

with F (ξ) = [(J̃ × Beq)+ (J eq × B̃)] the force density operator in the limit where β
effects are negligibly small. Note that, even though the potential energy integral is
extended to the volume occupied by the plasma, wall effects are included in δW through
the perturbed magnetic flux, which depends also on the contribution due to image currents
that flow on the wall as the plasma boundary is displaced. As it will be shown in the
following, δW is a real quantity, independent of the mode frequency, in the limit of an
ideal wall, but it becomes frequency dependent when the wall is resistive.
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Straightforward algebra, using d3x = h2 dθ dμ dz, leads to

δI = 1
2

∫
Ω

d3 xρeq
∇ϕ̃ · ∇ϕ̃∗

|γ |2 = π

2
abLzξ

2, (4.5)

where Lz is the length of the straight tokamak. Without loss of generality, we can take ξ to
be real and to correspond to the amplitude of the vertical displacement introduced in the
previous section. The perturbed energy integral is

δW = 1
2

∫
Ω

d3 x
(

ez × ∇ϕ̃∗

γ ∗

)
· (J̃∇ψeq + Jeq∇ψ̃). (4.6)

The last term can be further manipulated, using the results for the perturbed streamfunction
and the perturbed magnetic flux obtained in § 3. δW is written as the sum of two terms.
The first term is

1
2

∫
Ω

d3 xJ̃∇ψeq ·
(

ez × ∇ϕ∗

γ ∗

)

= Lz

2

∫ 2π

0
dθ
∫ μb+ε

0
dμ h2 j̃b(θ)δ(μ− μb)∇ψeq ·

(
ez × ∇ϕ†

γ ∗

)
= π

2
a + b

b3
Lzξ∞ξ.

(4.7)

The second term can be expressed as

1
2

∫
Ω

d3 xJeq∇ψ̃ ·
(

ez × ∇ϕ∗

γ ∗

)

= Lz

2

∫ 2π

0
dθ
∫ μb+ε

0
dμ h2Jeq∇ψ̃− ·

(
ez × ∇ϕ∗

γ ∗

)
= −π

2
a2 + b2

ab3
Lzξ

2. (4.8)

It is convenient to introduce the quantity

Dw = ξext

ê0ξ∞
, (4.9)

where ê0 = e0b/(a + b). Then, combining (4.7), (4.8) and (4.9), remembering that ξ =
ξ∞ − ξext, we obtain

δW = −π

2
Lz

1 − a/b
ab

1 − Dw

1 − ê0Dw
ξ 2. (4.10)

Thus, (4.2) yields the dispersion relation

γ 2 = 1 − a/b
a2b2

1 − Dw

1 − ê0Dw
. (4.11)

This dispersion relation is ‘general’, in the sense that it can be applied to the three cases of
interest, i.e. the no-wall limit, the ideal wall case and the resistive-wall case, as wall effects
are included in (4.11) through the single stability function, Dw. In (4.11), parameters a and
b are normalized to the scale length r0 defined below (3.2). Reintroducing dimensions, the
dispersion relation (4.11) takes the form

(γ τA)
2 = r4

0

a2b2

(
1 − a

b

) 1 − Dw

1 − ê0Dw
. (4.12)

Thus, the mode’s stability depends on the quantity Dw, which is determined once the
location of the wall and its nature, whether ideal or resistive, is decided. As shown in
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§§ 4.1 and 4.2, if the wall is perfectly conducting, Dw is a real quantity, independent of γ ,
that reduces to the parameter D introduced in the heuristic model of S 2. In this case, the
relevant dispersion relation is quadratic in γ , and the sign of γ 2, which depends on the
sign of 1 − D, determines the stability of vertical displacements in the ideal-MHD limit.
However, if a resistive wall is considered, then Dw = Dw(γ ) and the dispersion relation
becomes cubic in γ , as discussed in § 4.3.

4.1. Wall at infinity
The first case we investigate is the no-wall limit, or equivalently, the case where the wall
is moved to infinity. The analysis of § 3 shows that, in this case, ξext = 0, hence Dw = 0.
The vertical mode is unstable, with γ 2 a positive real value (for b > a), which reduces to
zero in the circular limit, a = b. The mode growth rate is

γ = r2
0

ab

(
1 − a

b

)1/2
τ−1

A ≡ γ∞, (4.13)

and γ 2 can also be written in terms of the ellipticity parameter,

γ 2 = (1 − e0)(1 + e0 −
√

1 − e2
0 )τ

−2
A ≡ γ 2

∞. (4.14)

We remark that this result is valid for arbitrary values of e0 in the interval 0 � e0 � 1. In
the limit of small ellipticity, γ∞ reduces to γH in (2.3) and the mode growth rate agrees
perfectly well with the heuristic result of § 2.

4.2. Passive feedback stabilization: ideal wall
Assume that the wall is represented by an elliptical coordinate surface, μ = μw, confocal
to the elliptical plasma boundary at μ = μb, with μw � μb. If the wall is ideal, the
perturbed flux in (3.9) must vanish at μ = μw, i.e. ψ̃+(μw, θ) = 0. It follows that

ξext

ξ∞
= exp(−(μw − μb)) coshμb

coshμw
= 1 + exp (2μb)

1 + exp (2μw)
. (4.15)

Now, let us use

aw = A sinhμw, bw = A coshμw, (4.16a,b)

a = A sinhμb, b = A coshμb, (4.17a,b)

where A = √
b2

w − a2
w = √

b2 − a2, with bw and aw the major and minor semi-axes of the
elliptical wall, respectively. It follows that

e2μb = b + a
b − a

, (4.18)

e2μw = bw + aw

bw − aw
. (4.19)

Using (4.15)–(4.19) and the definition of Dw in (4.9), we obtain

Dw = b2 + a2

(b − a)2
bw − aw

bw
≡ D. (4.20)

Note that, as the wall is moved further away from the plasma boundary, it becomes
more and more ‘circular’, due to the assumption of confocality with the elliptical plasma
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boundary. Therefore, as bw/b → ∞, bw → aw and D → 0, as it should. We also observe
that, apart from the extra term ê0D in the denominator of (4.11), the dispersion relation
(4.11) with Dw = D agrees very well with the heuristic dispersion relation obtained in § 2.
We can conclude that, if D > 1, γ 2 is negative, and thus the vertical mode oscillates with
a real frequency

ω = ±ω0 = ±
[

D − 1
1 − ê0D

]1/2

γ∞, (4.21)

which reduces to ωH defined in (2.6) in the limit of small ellipticity. The dispersion relation
is quadratic and the only solutions that can be extracted, in the limit D > 1, are the VDOM
solutions. Thus, an ideal elliptical wall, confocal with the elliptical plasma boundary, can
provide passive feedback stabilization of the vertical instability when Dw = D > 1.

The term ê0D can be neglected if it is small as compared with unity, but in fact it plays
an important role if the wall coincides with the plasma boundary. Indeed, D reaches its
maximum value in this limit, where μw = μb, D = Dmax = (a + b)/(e0b) = 1/ê0 and the
denominator in (4.21) vanishes. Therefore, in this special limit, the oscillation frequency
goes to infinity, but also, the amplitude of the displacement, ξ = ξ∞ − ξext, goes to zero,
as ξext → ξ∞. As a numerical example, take aw = a, bw = b and b/a = 1.8. In this case,
Dmax ≈ 2.9. As the wall is placed further away from the plasma boundary, the value of
D decreases monotonically, and a purely oscillatory solution is found for as long as D
remains larger than unity.

It can be easily checked, using (4.15)–(4.19), that the marginally stable value, D = 1,
is obtained when μw = 2μb, which corresponds to the elliptical wall intercepting the
X-points. Thus, our model indicates that values of D < 1, for which no passive feedback
stabilization is possible, are found when the X-points lie inside the volume bounded by
the wall. We point out that this result is in perfect agreement with that obtained by Laval
et al. (1974) on the basis of the ideal-MHD energy principle. However, this result holds
true for the special case of confocal wall and plasma boundaries. For different wall shapes
that fit more tightly with the plasma boundary, passive feedback stabilization due to the
ideal wall does not necessarily require that the X-points lie beyond the wall. Furthermore,
in real tokamak plasmas, additional coils and/or short-circuited plates located inside the
vacuum chamber can contribute to passive feedback stabilization (Albanese et al. 2004;
Portone 2017).

Finally, we point out that, as shown in Yolbarsop et al. (2021, 2022), if the plasma
extends to the magnetic separatrix, as is normally the case for a divertor tokamak plasma,
axisymmetric plasma currents associated with vertical displacement perturbations are
driven in the vicinity of the magnetic X-points. As a consequence, these currents can
also contribute to passive feedback stabilization of the vertical instability.

4.3. Passive feedback stabilization: resistive wall
Lastly, we consider the more realistic case of a resistive wall. In this situation the perturbed
magnetic flux is not zero at the wall, but can diffuse across on the resistive-wall time
scale. We identify three different regions: inside the elliptical boundary, μ � μb, where
the perturbed flux ψ̃ equals ψ̃− given by (3.8); the vacuum region between the plasma
boundary and the wall, μb � μ � μw, where ψ̃ equals ψ̃+ given by (3.9); and the vacuum
outside the wall, where ψ̃ = ψ̃out is the solution of ∇2ψ̃out = 0 that decays to zero at
infinity. Focusing on vertical displacements with elliptical mode number m = 1, the
relevant solution is

ψ̃out(μ, θ) = ψ0 exp(−(μ− μw)) sin θ for μ � μw + δw, (4.22)
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where δw is a small parameter representing the average width of the thin wall.
Two conditions at the wall determine the parameter ψ0 and Dw; the latter will turn

out to be a function of complex γ . The first condition is continuity of flux at the wall,
ψ̃+(μw, θ) = ψ̃out(μw, θ), which gives

ψ0 = −ξ∞
b

exp(−(μw − μb))+ ξext

b
coshμw

coshμb
. (4.23)

The second condition involves the current flowing along the wall. Consider the resistive
Ohm’s law for the perturbed magnetic flux within the wall, ∂ψw/∂t = (ηc2/4π)∇2ψw,
where η is the wall resistivity. After proper normalization, we obtain

∇2ψ̃w = γ

εη
ψ̃w, (4.24)

where εη = (ητAc2)/(4πr2
0) is the inverse of the relevant dimensionless Lundquist number.

Since the wall is relatively thin, we can neglect the dependence on μ of the perturbed flux
at the right-hand side of (4.24). This approximation is similar to the standard constant-ψ
approximation used in magnetic reconnection theory. Set ψ̃ = ψ̂(μ) sin θ . We assume the
ordering ∂2

μψ̂ ∼ ψ̂/μwδw � ψ̂ . Then, (4.24) can be approximated as

d2ψ̂

dμ2
= h2 γ

εη
ψ0. (4.25)

Integrating across the thin wall,∫ μw+δw

μw

d2ψ̂

dμ2
dμ =

∫ μw+δw

μw

h2 γ

εη
ψ0 dμ. (4.26)

The scale factor h is defined below (3.8). Strictly speaking, h depends on both μ and
θ . However, in the limit of small wall ellipticity, which is assumed in the following, the
θ modulation of h along the wall is small, so that we can approximate h(μw, θ) ≈ bw.
Carrying out the integration, we find(

dψ̂out

dμ
− dψ̂+

dμ

)∣∣∣∣∣
μw

= γ δwb2
w

εη
ψ0, (4.27)

or equivalently

−ξ∞
b

exp(−(μw − μb))− ξext

b
sinhμw

coshμb
=
(

1 + γ δwb2
w

εη

)
ψ0. (4.28)

Equations (4.23) and (4.28) are two equations that can be used to determine the two
parameters,ψ0 ∝ ξ∞, and ξext/ξ∞ ∝ Dw, cf. (4.9). After straightforward algebra, we obtain

Dw(γ ) = D
γ τη

1 + γ τη
, (4.29)

and

ψ0 = −ξ∞
b

bw

(a + b)
e0D

(1 + γ τη)
. (4.30)

In these equations, D was defined in (4.15), and τη = [b3
w/(aw + bw)]δw/εη is the

resistive-wall time (normalized to the relevant Alfvén time). Notice that the stability
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parameter Dw depends on γ due to finite wall resistivity. In the ideal wall limit, τη → ∞,
Dw(γ ) → D reduces to the parameter D discussed in § 4.2. Also, (4.30) shows that the
perturbed flux at the wall goes to zero in the ideal wall limit, as it should.

Substituting Dw(γ ) in (4.11), one obtains the dispersion relation for vertical
displacements in the case of feedback stabilization via a resistive wall

γ 3 + γ 2 1
τη

1
1 − ê0D

+ γω2
0 + ω2

0
1
τη

1
1 − D

= 0, (4.31)

with ω0 defined in (4.21). It is reassuring that (4.31) agrees very well with the dispersion
relation found heuristically in § 2, cf. (2.10). This is particularly true in the small ellipticity
limit, where the term ê0D can be neglected and the frequency ω0 reduces to ωH , cf. (2.6).

The three roots of this cubic dispersion relation are easily determined in the realistic
limit ω0τη � 1. After straightforward algebra, for D > 1, one obtains two damped
oscillatory roots and an unstable growing solution (γ = −iω)

ω = ±ω0 − i
1

2τη

D(1 − ê0)

(D − 1)(1 − ê0D)
, (4.32)

γ = 1
(D − 1)τη

. (4.33)

The two oscillatory, weakly damped roots of (4.32) correspond to the two VDOM that
oscillate with a frequency slightly below the poloidal Alfvén frequency, as already found
in § 4.2. The effect of a resistive wall is to introduce a small damping rate of the order of
the inverse resistive-wall time. The third root, (4.33), corresponds to an unstable mode,
growing on the resistive-wall time scale. Typical values of the resistive wall time in
tokamak devices are of the order of a few milliseconds. As we have already pointed out
in § 2, due to its slow growth, this non-rotating, unstable mode is normally suppressed by
means of active feedback control systems (Albanese et al. 2004).

5. Conclusions

In this article, the dispersion relation for vertical plasma displacement normal modes
has been derived analytically. Vertical displacements are axisymmetric modes of a toroidal
tokamak plasma, with toroidal mode number n = 0. They cause an up–down motion of the
entire plasma column, and as such are dominated by Fourier components with elliptical
mode number m = 1. The up–down symmetry implies that the perturbed streamfunction
is an even function of the elliptical angle θ (θ = 0 corresponds to the horizontal direction),
while the perturbed magnetic flux is an odd function of θ . Our derivation is based on the
reduced ideal-MHD model and on a simple, ‘straight-tokamak’ equilibrium, that assumes
an elliptical plasma boundary and a uniform current density profile. This assumption is
motivated by two considerations. Firstly, it is known that the stability and growth rate of
vertical displacements depends on plasma shaping and on the total plasma current, but not
on details of the current density profiles. Secondly, the assumed equilibrium is essentially
the same as that used in the pioneering article by Laval et al. (1974). In that article, vertical
stability was analysed based on the ideal-MHD energy principle. In our analysis, we carry
out the complete normal mode analysis, which provides a solution for the mode structure
and for the relevant dispersion relation, given by (4.12).

The method of quadratic forms, adopted in this article, together with the normal-mode
solution for the mode structure, are shown to be an expedient way to obtain the relevant
dispersion relation. The latter contains a parameter, Dw(γ ), which is a function of the
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complex mode eigenvalue, γ = −iω, for the case of plasma confined by a resistive wall,
see (4.29); Dw reduces to a constant D parameter in the limit of an ideal wall, see (4.20).
Furthermore, when the wall is moved to infinity (the no-wall case), D → 0. Consequently,
the relevant dispersion relation is quadratic in γ for the case of an ideal wall (including
the no-wall limit), while it is cubic in γ for the case of a resistive wall. Thus, an additional
root (compared with the ideal wall limit) is found for the resistive-wall case. This root
corresponds to a zero frequency, purely growing mode, with a growth time of the order of
the resistive-wall time. Active feedback control systems applied to tokamak experiments
concentrate on the suppression of this purely growing mode (Albanese et al. 2004).

The other two roots, that we have dubbed VDOM, are purely oscillatory for the case
of an ideal wall, provided the parameter D is larger than unity, which sets a condition
on the distance of the ideal wall from the plasma. These oscillatory modes are actually
weakly damped by wall resistivity, see (4.32). Therefore, if their oscillation frequency is
sufficiently well separated from the bandwidth of the vertical stabilization closed loop,
these modes do not have a significant impact on the active feedback control systems.
Nevertheless, we would like to bring the attention of the tokamak physics community
on the importance of these oscillatory solutions. As we have shown in this article (see
also Porcelli et al. 2021; Barberis et al. 2022), their oscillation frequency is slightly below
the poloidal Alfvén frequency, which makes these modes immune to Alfvén continuum
damping. Thus, these modes are only weakly damped by wall resistivity. On the other
hand, they can interact resonantly with fast ion populations, which are present in a
tokamak plasma due to auxiliary heating and/or as fusion reaction products. Under special
circumstances, discussed in some detail in Barberis et al. (2022), this resonant interaction
may drive the VDOM unstable.

Indeed, the theory presented in this article is motivated in part by the observation
of saturated n = 0 fluctuations, with a frequency of the order of the poloidal Alfvén
frequency, in recent JET experiments where fast ions are produced by auxiliary heating
(Oliver et al. 2017; Kiptily et al. 2021). In those articles, the observations were tentatively
interpreted in terms of a saturated n = 0 global Alfvén eigenmode (GAE) (Villard &
Vaclavik 1997). It is early for us to conclude whether, in fact, the mode observed at JET is a
VDOM driven unstable by the fast ion resonance, rather than a GAE: more experiments are
required, but also, the theory presented here ought to be developed further. Nevertheless,
we can indicate the main points of distinction between GAE and VDOM that may facilitate
the experimental identification. These are basically three. First, the GAE mode frequency
for n = 0 is given by (Villard & Vaclavik 1997) ωGAE = vA/qR = τ−1

A , where τA is the
poloidal Alfvén time as defined below (2.3) of this article. On the other hand, the VDOM
mode frequency is given by (4.32), and, taking the parameter D above unity, but anyway
of order unity, it falls below the GAE mode frequency, since the ellipticity parameter e0
is typically small. Secondly, the VDOM frequency scales as the square root of e0, while
the n = 0 GAE mode frequency is independent of elongation. Indeed, the GAE would
survive in the circular limit, while the VDOM would not. Thirdly, and perhaps most
importantly, the VDOM mode structure is different from that of the GAE. The VDOM
is a vertical mode, corresponding to a vertical oscillation of the plasma cross-section, with
the relevant perturbed flux an odd function of the poloidal angle. This signature would
be easily detected by magnetic perturbation coils placed on top and bottom of the plasma
column. The GAE mode structure favours instead a ballooning type of parity, with the
perturbed flux being an even function of the poloidal angle.

A numerical estimate of the VDOM frequency for realistic JET parameters can be
provided as follows. Let us consider the JET discharges discussed in Oliver et al. (2017),
where saturated n = 0 oscillations driven unstable by fast ions were observed. For these
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discharges, the main plasma species was deuterium, ion density ni ≈ 4.0 × 1019 m−3 and
B′

P ≈ 1.0 T m−1, yielding a poloidal Alfvén time τA ≈ 0.4 μs. The elongation parameter
was κ = b/a ≈ 1.3, corresponding to ellipticity e0 ≈ 0.26 and to the no-wall growth rate
γ∞ ≈ 1.2 × 106 s−1. In order to estimate the parameter D appearing in (4.21), let us
take aw/a = 1.2 and bw/b = 1.1 (since, for confocal ellipses, b2

w − a2
w = b2 − a2). Then,

D ≈ 5.2, ê0D ≈ 0.77 and ω0 ≈ 4γ∞ ≈ 5 × 106 s−1, or ω0 ≈ 800 kHz, which is within
a factor of two of the observed frequency of saturated n = 0 modes in the mentioned
JET experiment. However, JET plasmas are bounded by the divertor separatrix and a
more appropriate estimate of the theoretical mode frequency should take into account
X-point effects, as argued in Yolbarsop et al. (2021). Clearly, an accurate determination
of the theoretical VDOM frequency also requires more realistic equilibrium profiles and
numerical work.

It is reassuring to see that the dispersion relation derived in this article, (4.12), agrees
fairly well with the heuristic result of § 2, see (2.9), in the limit where the ê0D appearing
in the expression for ω0 is small.

Finally, the case where a magnetic divertor separatrix limits the plasma was not
discussed in this article, but was treated in some detail in Yolbarsop et al. (2021, 2022).
The main result of that work is that, even for the no-wall case, axisymmetric current sheets
localized in the vicinity of the magnetic X-point(s) on the divertor separatrix, induced by
vertical displacement perturbations, lead to passive feedback stabilization. The reason is
that X-points are resonant points for ideal-MHD perturbations with toroidal mode number
n = 0. As a result, flux pile-up will occur in the presence of ideal-MHD flows having
the appropriate symmetry around the resonant points, and this is indeed the symmetry of
interest for vertical displacements. Flux pile-up is the reason for the occurrence of current
sheets, which have the appropriate sign and magnitude to ‘push back’ the plasma drifting
vertically towards a magnetic X-point. In this sense, these X-point currents have the same
effect on the plasma as that of currents induced by vertical displacements on an ideal (or
nearly ideal) wall. It remains to be seen what will happen to the zero-frequency unstable
root resonating on magnetic X-points when the effect of finite plasma resistivity is taken
into account.
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