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There Is No Thermodynamic Arrow

Précis. The structure of equilibrium thermodynamics, in harmony with statistical
mechanics, does not contain a time asymmetry, except when it is trivially supple-
mented with one.

Our bodies, the planets and stars, and all traces of our existence will
eventually dissipate into the cosmos. According to orthodoxy, this march
towards equilibrium is the arrow of time.1 I have tried to defend and clarify
orthodoxy in earlier chapters of this book. But, in this case, I think orthodoxy
is indefensible: in this chapter, I will argue that there is no non-trivial sense
in which the approach to equilibrium in thermodynamics gives rise to a
time asymmetry.

The basic argument that I will give, summarised in the next section, is
that classical thermodynamics is not so different from its ‘partner’ theory,
statistical mechanics, in how it bears on the arrow of time. It is widely agreed
that in statistical mechanics, the approach to equilibrium is symmetric in
time, in that the laws predict evolution towards equilibrium with roughly
equal likelihood to the future and to the past. Or, in the language developed
in this book: the time translations of statistical mechanics admit a represen-
tation of time reversal symmetry. The occurrence of statistical mechanical
equilibrium in our future rather than in our past is not a fact about temporal
symmetry but about contingent initial conditions, contingent boundary

1 This is perhaps partly for historical reasons: Eddington (1928, pp.64–9) coined the term ‘arrow of
time’ to describe irreversible thermodynamic processes; see also the remarks at the beginning of
Chapter 5.
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140 There Is No Thermodynamic Arrow

conditions, and our special limited perspective as observers.2 I will argue
that classical equilibrium thermodynamics is no different.

In contrast, a well-known folklore has it that classical equilibrium ther-
modynamics, if it were true, would require a robust arrow of time. This
folklore was famously captured by Reichenbach:3

If the universe as a whole possesses at every moment a specific entropy, this value
is subject to the general law of [thermodynamic] entropy increase . . . . Although
this principle leads to the unwelcome consequence that someday our universe
will be completely run down and offer no further possibilities of existence to such
unequalized systems as living organisms, it at least supplies us with a direction of
time: positive time is the direction towards higher entropy. (Reichenbach 1956, p.54)

Reichenbach himself dismissed classical thermodynamics in favour of
the more fundamental and accurate tools of statistical mechanics. But, there
are good reasons to return to classical thermodynamics and what it says
about the arrow of time. In the first place, thermodynamics is a powerful
tool in a wide variety of sciences, from biochemistry to stellar astrophysics.
It has become an important technique for probing regimes in which the
microphysics is not yet known, such as in black hole thermodynamics. And,
a key requirement for understanding the reduction of thermodynamics to
statistical mechanics is to make sense of the supposed difference between
their temporal symmetries.

Uffink (2001, p.307) calls this problem of reconciling temporal symmetries
“the most profound problem in the foundations of thermal and statistical
physics”.4 Ludwig Boltzmann famously spent most of his career trying to
solve the problem. However, not everyone agrees about its significance.
Callender (1999, 2001) concludes that we should give up some aspects of
the reduction project: just use statistical mechanics to study what is funda-
mental, and deny that thermodynamics is “universally true and somehow
independent of the statistics of the micro-constituents of thermal bodies”
(Callender 2001, p.551). Others have recently argued that the difference
in temporal symmetries remains a problem that philosophical accounts of
reduction must face.5

I will argue that this is not a problem in the first place, because there is no
non-trivial thermodynamic arrow. Some of my arguments will follow and

2 An argument for this is set out in Section 5.3; see also Price (1996, Chapter 2).
3 It is echoed by Hawking (1994, p.348), Sklar (1993, §2.I.3) and Zeh (2007, p.5), among others.
4 The history of the problem is given by Brush (1976b); well-known philosophical discussions can be

found in Batterman (2002, Chapter 5), Reichenbach (1956, Chapter III), and Sklar (1993, Chapter 9).
5 Compare Dizadji-Bahmani, Frigg, and Hartmann (2010); North (2011); Robertson (2021); Valente

(2021); Werndl and Frigg (2015).
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6.1 Undirected Thermodynamics 141

(I hope) strengthen the work of Uffink (2001), who forcefully demonstrates
that the thermodynamic second law stands little chance of rigorously estab-
lishing a thermodynamic arrow. My conclusion is more general: I can see
no sense in which the structure of thermodynamics contains any basis at all
for an arrow of time, except in the trivial sense of inserting it by hand.

Section 6.1 summarises the basic idea using the simple example of gas
mixtures and addresses a proposal of Brown and Uffink (2001) to locate
the thermodynamic arrow in the approach to equilibrium. Section 6.2 then
motivates and summarises the mathematical structure of thermodynamics –
at least, before a second law is introduced – including how it describes time
and change. The remainder of the chapter will argue the temporal symmetry
of thermodynamics remains even when the second law is introduced, in any
of three classic formulations: that of Clausius (Section 6.3), of Kelvin and
Planck (Section 6.4), and of Gibbs (Section 6.5).

6.1 Undirected Thermodynamics

Doesn’t the second law say that entropy increases to the future? Reichenbach
(1956, p.49) calls the second law of thermodynamics “a principle that makes
possible the mathematical expression of a direction controlling the course
of physical occurrences”.6 The idea is to argue from the second law of
thermodynamics that entropy is increasing and then define the direction of
time as the direction of that increase.

However, virtually all formulations of thermodynamics agree that
entropy increase is not an axiom of thermodynamics: it is at most derived
as a consequence of the axioms, or in some cases taken to be the ‘essence’
of a thermodynamic system, all things considered. Of course, one can also
skip these derivations entirely and just declare that entropy increases to
the future. I fully support this practice when it serves the theoretician.
But, when a time asymmetry is inserted in this way, as a bald addition
to an otherwise time symmetric theory, I will refer to it as a trivial time
asymmetry.7 The thesis of this chapter is that, if thermodynamics has a
time asymmetry, then it is trivial. Nothing about the formal structure of
thermodynamics requires it, just as in a time symmetric theory like statistical
mechanics or Newtonian gravitation. As Uffink (2007, p.938) aptly remarks:
“[T]he Second Law has often been understood as demanding continuous

6 Similar remarks can be found in Davies (1977, §2.1) and Sklar (1993, §2.I.3), among many other
places.

7 In Section 5.1, I called this kind of ‘arrow’ a Heuristic misfire: an informal extra-theoretic judgement,
with no justification in terms of any well-supported physics.
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142 There Is No Thermodynamic Arrow

Figure 6.1 Two separated gases and their mixture.

monotonic increase of entropy in the course of time . . . . There is, however,
no basis for this demand in orthodox thermodynamics”.

How can thermodynamics be symmetric in time? The basic idea can be
illustrated using the simple example of a box that is isolated from any
outside influences and which contains two gases in chambers separated by
an impenetrable barrier. In a similar system with the barrier removed, where
the system is assumed to be ‘settled down’ into equilibrium, the result is a
mixture whose properties can be determined by the properties of the original
gases, as shown in Figure 6.1. For example, the mole number of the mixture
can be determined on the basis of the component mole numbers; and the
entropy of the mixture can be determined on the basis of the component
entropies. All predictions in equilibrium thermodynamics have more or less
this character: one set of equilibrium systems determines another.8

What I would like to point out is that these constraints are fundamentally
directionless in time: in this example, as long as the component gases are
viewed as ‘parts’ of the composite, they constrain it in exactly the same
way, whether that composite is to the future or to the past. Nothing about
the structure of thermodynamics determines that the arrow in Figure 6.1
can only point in one temporal direction. If there is any time asymmetry in
thermodynamics, it arise purely from the additional postulate that special
initial conditions, or the special perspective of an observer, are associated
with one direction in time. But this is just to assume at the outset what we
were originally trying to prove.

The situation is strikingly similar to the temporal symmetry that one
finds in statistical mechanics.9 Typical counting arguments in statistical
mechanics establish not only that a system will evolve with overwhelming
probability to a higher-entropy equilibrium state but also that the system
will have evolved from such a state in the past. Like the exploration of a

8 This interpretation of thermodynamics has been developed in detail by Callen (1985); see Wills
(2022) for philosophical remarks about it.

9 See Section 5.3.
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house with a thousand blue rooms and one red room – the next room you
will visit is probably blue! One scenario is much more likely than the other,
no matter which direction in time one looks in. The predictive mechanism
of thermodynamics is similar in spirit: a collection of equilibrium systems
determines another equilibrium system (their composite) that maximises
entropy, no matter how it is directed in time. In this sense, there is complete
harmony between the temporal symmetries of equilibrium thermodynamics
and statistical mechanics.

But, doesn’t thermodynamics still say that equilibrium happens to the future?
A number of careful authors have noticed that the approach to equilibrium
itself is not a consequence of the second law, but an independent assump-
tion.10 For example, in the mixing process for a pair of gases, one must first
assume that the two unmixed gases can be associated with a third gas that
is an equilibrium mixture of the two; only then can one apply reasoning
typically associated with the second law in order to argue that the mixture
maximises entropy.

This led Uffink (2001, fn. 93) and Brown and Uffink (2001) to introduce
a new postulate into the axioms of thermodynamics, which they call “the
Minus First Law”:

An isolated system in an arbitrary initial state within a finite fixed volume will
spontaneously attain a unique state of equilibrium. (Brown and Uffink 2001)

The Minus First Law is unquestionably an important part of modern physics.
In a sense, it is the starting point for a variety of approaches to thermody-
namics developed in the twentieth century, often called ‘non-equilibrium
thermodynamics’, which explicitly associate the approach to equilibrium
with a continuous time parameter. This approach is used in the study
of a variety of physical processes like the relaxation time, mass-flux, and
biological cellular processes.11 But, is the equilibriation process it describes
really asymmetric in time?

10 See Uhlenbeck and Ford (1963, §I.3), and especially Brown and Uffink (2001), Marsland III, Brown,
and Valente (2015), and Uffink (2001, 2007).

11 The reciprocity relations of Onsager (1931a,b) provided a framework for studying thermal
fluctuations away from equilibrium using techniques pointed out by Einstein (1910) and led to what
is known as ‘Linear Irreversible Thermodynamics’ and ‘Extended Irreversible Thermodynamics’
(García-Colín and Uribe 1991). An alternative, axiomatic approach sometimes called ‘Continuum
Thermodynamics’ or ‘Rational Thermodynamics’ was developed by Truesdell (1984), although it
has been remarked that, “[i]f there is something ‘rational’ about Rational Thermodynamics it is
certainly well hidden, and interest in it has not stood the test of time”. (Lavenda 2010, p.ix). See
Haslach Jr. (2011) for a recent overview of non-equilibrium techniques, which are tangential to my
purposes here.
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144 There Is No Thermodynamic Arrow

Brown and Uffink conclude that it is. Their argument is that when a system
approaching equilibrium is time reversed, the result is a system deviating
from equilibrium; thus, insofar as this is prohibited by thermodynamics
with a Minus First Law, the theory is not time reversal invariant:12

[T]ime reversal . . . should then correspond to a world in which processes occur
which look like those occurring in a film of our world but played backwards.
In particular, the reversal of the spontaneous adiabatic expansion of a gas . . .

would correspond to a spontaneous adiabatic contraction. But this behaviour
is inconsistent with . . . the Minus First Law, which as we have seen rules out
spontaneous deviations from equilibrium. (Brown and Uffink 2001, p.536)

Time asymmetry here depends on the assumption that a spontaneous
decrease of entropy is “inconsistent” with the Minus First Law’s statement
that equilibrium must be attained. But, inconsistency does not necessarily
follow.

The Minus First Law, and any other axiom requiring that a physical
system ‘attain’ equilibrium, is not intrinsically directed in time. The theo-
retician begins with one description: in equilibrium thermodynamics, it is
a collection of equilibrium systems, like the separated gases in Figure 6.1;
in non-equilibrium thermodynamics, it is a system out of equilibrium. The
Minus First Law only guarantees that this description determines a unique
state of equilibrium. This is perfectly consistent with that equilibrium state
appearing in both time directions: the initial description is associated with
an equilibrium state, which may occur in either the past or the future. The
box of separated gases determines an equilibrium state associated with
their mixture, whether it occurs in the future or in the past, as in Figure 6.2.
Time asymmetry plays no essential role in the requirement that such an
equilibrium state exists.

There is no mystery as to why we typically associate one of these scenarios
with the future: in practice, one commonly inserts temporally directed lan-
guage to this description, by referring to an ‘intervention’ or ‘manipulation’

Figure 6.2 An equilibrium state is determined no matter which temporal
direction is chosen.

12 This argument has enjoyed some support: compare Marsland III, Brown, and Valente (2015),
Myrvold (2020b, Forthcoming), and Valente (2021).
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6.1 Undirected Thermodynamics 145

that removes the barrier between the gases in a temporally-directed way.
When such language is included, one may be inclined to call the mixture
the ‘effect’ or ‘future’ of the intervention. There is nothing wrong with
that. However, it would be misleading to call such an insertion a ‘thermo-
dynamic arrow’, since there is nothing about the structure of equilibrium
thermodynamics that encodes it. Inserting the language of intervention
reflects a contingent human perspective, of the kind discussed extensively
in Chapter 5, and not an asymmetry of time itself.

A position very similar to mine has been developed by Myrvold (2020c).
Viewing thermodynamics as a theory that relates heat reservoirs to inter-
ventions on “manipulable variables”, Myrvold develops all the essential
structure of thermodynamics, including the zeroth, first, and second laws,
in a way that makes no mention of the approach to equilibrium. For my
purposes, I prefer to avoid the language of ‘manipulation’, which might
suggest a temporally directed structure that does not exist in the structure
of equilibrium states. However, Myrvold is right to identify Brown and
Uffink’s Minus First Law as lying outside the “province” of thermody-
namics, properly conceived. Of course, time asymmetric statements may
still be formulated using thermodynamic language.13 But, these invariably
arise from the assumption that the approach to equilibrium is associated
with a temporal direction, which is not part of the structure of equilibrium
thermodynamics. His diagnosis of the widespread confusion about this is
similar to that of Brown and Uffink (2001):

There is a tendency to conflate the second law of thermodynamics with the tendency
of systems to relax to a state of thermal equilibrium, and this has encouraged the
idea that the study of equilibration does fall within the scope of thermodynamics.
These are not the same thing, however. (Myrvold 2020c, p.1243)

That said, one might still choose to add a time asymmetric axiom to
thermodynamics: an axiom which states that systems are associated with
not just an equilibrium state but one that occurs in one time direction and
not the other. This assumption is implicit in Brown and Uffink’s discussion
of the Minus First Law. However, this amendment to the ‘temporally
symmetric Minus First Law’ that I have characterised above is no longer
a deep structural requirement of thermodynamic theory but the insertion
of a time asymmetry of a kind that I call ‘trivial’. This is not enough to

13 Myrvold (2020c, §9) identifies his statistical version of the Clausius inequality as an example (his
Proposition 2) but points out that all the thermodynamic assumptions that go into it are temporally
symmetric. Thus, temporal asymmetry enters when a temporal direction is associated with the
approach to thermal equilibrium, which lies outside the scope of the theory.
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distinguish the temporal symmetries of thermodynamics from other time
symmetric theories.

In a nutshell, this is the sense in which I will argue that there is no
thermodynamic arrow of time. To make this argument precise, and to
square it with the many thermodynamic arrows that have been proposed,
a more careful treatment of equilibrium thermodynamics will be needed.
In particular, I will aim to show that on a rigorous understanding of the
structure of equilibrium thermodynamics, including the first and second
laws, there is no thermodynamic arrow of time. So, we begin in the next
section with a brief review of the structure of thermodynamics.

6.2 Equilibrium Thermodynamics

The Soviet mathematical physicist Vladimir Arnol’d once began an article
by declaring, “Every mathematician knows it is impossible to understand
an elementary course in thermodynamics”. This quote was often passed
around by other mathematically-inclined philosophers and physicists when
I was a graduate student, as evidence that thermodynamics is a chimera
beyond our reach.14 But, when I finally read the article myself, I found
that Arnol’d goes on in the second sentence to say: “The reason is that the
thermodynamics is based – as Gibbs has explicitly proclaimed – on a rather
complicated mathematical theory, on the contact geometry” (Arnol’d 1990,
p.163). In other words, it is possible to understand an advanced course in
thermodynamics!

So, in the remainder of this chapter, I will try to discuss the structure
of equilibrium thermodynamics in a mathematically and conceptually rig-
orous way, at the cost of sometimes introducing a little more differential
geometry than is typical.15 I begin with a brief overview of the structure of
thermodynamic state space; I will then discuss two senses in which time
and change enter into thermodynamic thinking.

6.2.1 Heat, Entropy, and Temperature

In a simple mechanical system, like a mass sitting on top of a hard block
of volume V , energy U is completely determined by the force of pressure:
dU = −PdV . This situation changes strikingly when the block is replaced

14 Cf. Uffink (2001, p.310).
15 A ‘light’ version of this approach can be found in the textbook of Callen (1985). Myrvold (2020c)

builds a conceptual foundation for thermodynamics that is very close to what I present here.
A more detailed development of geometric thermodynamics can be found in Arnol’d (1990),
Bravetti (2018), Hermann (1973), or Mrugała (1978); see J. Wills (2021, “Representing mixtures”,
Unpublished manuscript) and (2022) for philosophical remarks.
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with a gas: when we apply pressure to the gas, it gets hotter to our touch!
Since this heating effect can be harnessed to produce energy, local energy
conservation would require that there be further ‘hidden’ degrees of free-
dom into which energy can flow. And of course nowadays we know that
there are, such as the microscopic motions of the molecules in the gas.16 But,
never mind the nature of those hidden degrees of freedom: let us embrace
our ignorance and refer to those hidden contributions to energy as ‘heat’.

Classical equilibrium thermodynamics is the study of the relationship
between contributions to energy like pressure and volume, which are
directly observable and are called work, and those that are not directly
observable in this way, which are called heat. Burke (1985) calls the latter
‘unexamined’ degrees of freedom; I will refer to them as ‘hidden’. The state
space used to describe these degrees of freedom and their structure is what
characterises a model of thermodynamics. And, it is this state space that
I will argue has no non-trivial time asymmtry.

A state of a thermodynamic system is a point in a smooth (for our purposes
C∞) real manifold N of dimension n. Each state represents a physical
description of the system when it is ‘settled down’ into stable equilibrium.
The energy of the system is an exact one-form17 dU , where we view U as
a smooth function of the manifold. The various contributions of work to
energy, such as pressure and volume, chemical potential and mole number,
and so on, all have the form PidXi for some smooth functions Xi and Pi . (So,
our previous V and P are an example: say, P1dX1 := PdV .) We assume at this
stage that the functions representing degrees of freedom that are observable
or ‘not hidden’, (U,X1, . . . ,Xn−1), form a coordinate system for N , with each
Pi : N → R a smooth function. Since heat is by definition a contribution
to energy, the discussion above suggests that it can be represented by a
one-form too; a standard convention is to write it with a ‘slash’, as d̄Q, to
emphasise that it might not be exact. We thus arrive at an expression of our
conclusion above, that energy can be written as a sum of heat d̄Q and work∑

i=1 PidXi , namely,

dU = d̄Q +
∑
i=1

PidXi . (6.1)

Eq. (6.1) is called the first law of thermodynamics.18

16 Feynman’s ‘ping pong ball’ analogy explains this in simple terms: the compression of a piston into
the gas, like a moving ping pong paddle, increases the kinetic energy of the particles that collide
with it (Feynman 1963a, §1–2).

17 A one-form on a manifold N is a smooth field of covectors, which at each point maps each vector at
that point to a real number. A one-form ω is exact if and only if there exists a smooth function
f : N → R such that ω = df , where d is the exterior derivative.

18 If d̄Q is any one-form on a manifold for which coordinate variables are given by (U,X1, . . . ,Xn−1),
it can always be expressed as in Eq. (6.1). So, the argumentation above can be viewed as establishing
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148 There Is No Thermodynamic Arrow

For our purposes, an important formal question is whether the heat one-
form d̄Q can be expressed in the same way as the other contributions to
energy PidXi , in the sense that there exist smooth functions S : N → R

and T : N → R such that d̄Q = T dS. The function T is then formally
known as an integrating factor. The physical significance of this property is
that, whatever degrees of freedom give rise to the ‘hidden’ contributions to
energy in the form of heat, they can all be represented by single parameter
S called thermodynamic entropy and a parameter T called thermodynamic
temperature. These functions might not exist in general: Myrvold (2020c)
presents thermodynamics in a way that does not assume this. However,
many applications of thermodynamics apply only to situations in which
they do exist.

Carathéodory (1909) gave an influential argument that a one-form repre-
senting physical heat should have an integrating factor, given the existence
of “adiabatically inaccessible points” in every neighbourhood of each point.
His assumption, known as Carathéodory’s principle, is that in every neigh-
bourhood of every point p ∈ N , there exists a point that is not accessible by
any piecewise-smooth curve γ satisfying the adiabatic (‘no heat exchange’)
condition d̄Q(γ̄ ) = 0 for every tangent vector γ̄ . Intuitively, this encodes a
sense in which processes involving heat exchange are ‘always available’ in
thermodynamics; and, from this it was shown that there are indeed smooth
functions T and S satisfying d̄Q = T dS to characterise temperature and
entropy, respectively.19 This relation of adiabatic accessibility is unexpect-
edly powerful: in a remarkable series of papers, Lieb and Yngvason (1998,
1999, 2000, 2013) showed that nearly all of thermodynamics can be recovered
from axioms characterising adiabatic accessibility, including Carathéodory’s
principle itself.

Since adiabatic accessibility can be an asymmetric relation, there has been
some discussion as to whether it might give rise to the time asymmetry of
thermodynamics (Uffink 2001, §9). In short, it does not. One of the central
results of Lieb and Yngvason (1999) is a representation theorem, according
to which an ‘entropy’ function S exists that increases with the adiabatic

that, whatever the nature of heat is, N is indeed the correct manifold on which to formulate it, as a
one-form obeying Eq. (6.1).

19 The proof of Carathéodory (1909) that d̄Q = T dS was significantly simplified by Bernstein (1960),
who pointed out that Carathéodory only established his conclusion in some local neighbourhood of
each point. Conditions for a global integrating factor were obtained by Bernstein (1960) and by
Boyling (1968, 1972).
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accessibility relation, in that S(p) ≥ S(q) if and only if state p is adiabatically
accessible from state q. But, as Uffink (2001) has emphasised, the axioms
used to establish this are completely symmetric in time.20 Marsland III,
Brown, and Valente (2015) have pointed out that as a consequence of this,
the representation theorem equally establishes the existence of a decreasing
entropy function −S as well.

More importantly for our purposes, there is a different and more per-
spicuous argument for the existence of an integrating factor, which uses
only energy conservation. No asymmetric orderings are needed for entropy
and temperature to be defined. This clear-headed approach is due to Jauch
(1972) and based on an argument of Tatiana Ehrenfest–Afanassjewa (1925).
It can be formulated as follows.

Proposition 6.1 (Afanassjewa–Jauch) Let (U,X1, . . . ,Xn−1) be a complete set
of smooth coordinate functions of a manifold N of dimension n, and let d̄Q be a one-
form on N , which implies that dU = d̄Q + ∑n−1

i=1 PidXi for some smooth functions
(P1, . . . ,Pn) of N . Suppose that W := ∑n−1

i=1 PidXi is ‘conserved on adiabats’, in
that for every closed, piecewise-smooth curve γ with tangent vector field γ̄ satisfying

d̄Q(γ̄ ) = 0, we have, ∫
γ

W = 0. (6.2)

Then there exist smooth functions S : N → R and T : N → R such that d̄Q = T dS

and T = ∂U/∂S.

The interpretation of the theorem is as follows. Recalling that ‘work’
degrees of freedom are not enough to capture all the contributions to energy
in a thermodynamic system when heat is present, the Afanassjewa–Jauch
theorem assumes conversely that, roughly speaking, there are no further
contributions to energy besides work and heat. More precisely: when heat
exchange is absent, the total work on a closed curve vanishes, as in the
classic expression of energy conservation.21 From this assumption, which
I have presented above as the very definition of heat in the formulation of
the first law, the theorem ensures that entropy and temperature exist as the

20 Lieb and Yngvason (1999, §2.6) formulate an additional axiom to guarantee entropy is a
concave function, which gives rise to an entropy maximisation principle in the sense of Gibbs
(Section 6.5). They also formulate a ‘thermal contact’ axiom for the description of equilibration
(Lieb and Yngvason 1999, §4.1). I conjecture that, insofar as either of these additional axioms
are time asymmetric, the time symmetry can be relaxed along the lines suggested in
Section 6.1.

21 See Roberts (2013b) for an interpretation of this statement and its relation to time reversal invariance.
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formal constituents of that heat. It turns out that Carathéodory’s principle
of adiabatic inaccessibility follows as a corollary of this theorem.22

6.2.2 Thermodynamics on Contact Manifolds

This completes the conceptual underpinnings of heat in thermodynamic
systems. We are now ready to set out the formal structure of thermo-
dynamics, as it might appear in an ‘advanced’ course. When energy is
conserved, the description of a thermodynamic system requires a manifold
M of dimension m = 2n+1: in local coordinates there is a coordinate function
U characterising energy and a set of 2n independent coordinate functions Pi

and Xi , where the special variable P0 = T is the temperature and X0 = S is
the entropy. Thermodynamics is about situations in which those variables
satisfy the first law, dU = ∑n

i=0 PidXi , with each Pi = ∂U/∂Xi characterising
the ‘rate of change of energy’ with respect to the degree of freedom Xi . For
example, pressure P = ∂U/∂V is the rate of change of energy with respect
to volume, while temperature T = ∂U/∂S is the rate of change of energy
with respect to entropy.

We will characterise these statements in terms of a particular one-form θ ,
called the Gibbs one-form,

θ := dU −
n∑

i=0

PidXi . (6.3)

At each point of the manifold, there is a special subspace of vectors v of
dimension n such that θ (v) = 0, and it is on this subspace that the first law
of thermodynamics holds. So, it would be appropriate to formulate thermo-
dynamics on an n-dimensional submanifold N ⊂ M whose vectors v have
this property, θ (v) = 0. The contact manifold approach to thermodynamics
is built around this idea.

We begin with some background definitions, in order to identify the
essential properties of a surface on which the Gibbs one-form vanishes.
When each point of M is smoothly assigned a codimension-1 hypersurface,
meaning a subspace of dimension 2n of the ‘total’ (2n + 1)-dimensional
tangent space of that point, the result is called a field of hypersurfaces. It
can always be locally characterised by a one-form η such that η(v) = 0 for
each vector v in a hypersurface. A contact structure is a field of hypersurfaces

22 The converse of Carathéodory’s principle is that if a heat form d̄Q has an integrating
factor d̄Q= T dS, then there are adiabatically inaccessible points in every neighbourhood of
every point. This well-known statement has a comparatively simple proof (cf. Boyling 1968).
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satisfying a non-degeneracy condition called23 ‘maximum non-integrability’:
(dη)n ∧ η � 0. The pair (M,η), where M is a smooth manifold and η is a
contact structure, is called a contact manifold.

The physical significance of maximal non-integrability is that it selects a
surface N that is ‘as large as it can be’, while still satisfying the first law on a
manifold of dimension 2n+1; and, it turns out that N must have dimension n,
capturing an essential property of the first law. If a submanifold N ⊂ M is in
‘contact’ with a field of hypersurfaces, in that each of its tangent vectors v is
tangent to a hypersurface η(v) = 0, then it is called an integral submanifold of
the field. An integral submanifold of maximal dimension is called a Legendre
submanifold. And, on a (2n + 1)-dimensional contact manifold, a Legendre
submanifold always has dimension n (cf. Arnol’d 1989, Appendix 4). So,
this is just what we need to define an n-dimensional submanifold on which
the first law holds.

In particular, the Gibbs one-form θ of Eq. (6.3) is an example of a contact
structure; conversely, every contact structure η can be expressed in local
coordinates in the form of the Gibbs one-form (Arnol’d 1990, p.167). So, the
essential structure of the first law really is captured by a contact manifold
of dimension 2n+ 1, together with a Legendre submanifold of dimension n,
which characterises a maximal surface on which the first law holds, θ = 0.
The contact manifold (M,θ) is often referred to as a thermodynamic phase space
and the choice of a Legendre submanifold as a ‘representation’, such as the
energy or entropy representation. This allows for a precise definition of a
model of thermodynamics, originally proposed by Hermann (1973, p.264):

Definition 6.1 An ‘equilibrium thermodynamic system’ is a triple (M,θ,N ),
where M is a (2n + 1)-dimensional manifold, θ is a contact structure, and N is
an n-dimensional Legendre submanifold.

Writing the contact structure in local coordinates as the Gibbs one-form,
and expressing the energy variable U as a function of the n coordinate
variables on a Legendre submanifold, we now get what Gibbs (1873) called
the ‘fundamental relation’ of a thermodynamic system:

U = f (X1, . . . ,Xn). (6.4)

Taking derivatives, we get dU = (∂f/∂X1)dX1 + · · · + (∂f/∂Xn)dXn, and
defining Pi := ∂U/∂Xi for each i = 1, . . . n, we recover the first law.

23 This condition gets its name from the concept of an ‘integrable’ field of hypersurfaces, characterised
by the condition that dη ∧ η = 0. A manifold can only satisfy maximal non-integrability if it is of odd
dimension; for an introduction, see Arnol’d (1989, Appendix 4).
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The n equations for Pi are known as ‘equations of state’. For example, a
simple gas has thermodynamic phase space given by the five-dimensional
manifold M , with the Gibbs one-form θ = −dU + T dS − PdV . The two-
dimensional Legendre submanifold is characterised by the coordinate
functions (V,S), and the equations of state are determined by calculating
P = ∂U/∂V and T = ∂U/∂S. The statement that V and S are ‘extensive’ or
scale with the energy of the system is captured by a further assumption24

that U is a first-degree homogeneous function, f (λV,λS) = λf (V,S) = λU

for all λ > 0. The remaining variables P and T are called ‘intensive’.
Virtually all aspects of equilibrium thermodynamics can be treated using

this geometric foundation as a starting point. Gibbs (1873) himself pointed
out that even the description of phase transitions can be captured by the
study of the boundaries of convex surfaces, of the kind discussed in Sec-
tion 6.5.25 More recent work has approached this through the study of
an additional metric and its curvature singularities (cf. Quevedo 2007;
Quevedo et al. 2011). But, this is more or less where the consensus about the
foundations of thermodynamics ends. We have so far said nothing about
dissipation or the second law, or their bearing on the arrow of time. We will
review these matters in the remaining sections. But first, let me develop one
more piece of background material: the nature of time and time reversal in
thermodynamics.

6.2.3 Time and Time Reversal in Thermodynamics

It is well-known that the description of time is an awkward part of equilib-
rium thermodynamics: in spite of the name, the theory does not describe
time and change in the way that most dynamical theories do:

In contrast to mechanics, thermodynamics does not possess equations of motion.
This, in turn, is due to the fact that thermodynamical processes only take place after
an external intervention on the system (such as: removing a partition, establishing
thermal contact with a heat bath, pushing a piston, etc.). (Uffink 2001, p.315)

This latter fact led Wallace (2014) to argue that thermodynamics is “mis-
named” and better viewed as part of the general study of interventions
using control theory. In a similar spirit, Myrvold (2011) formulates it as a
theory relative to the “means” available to the experimentalist, referring
to thermodynamics as a “resource theory” (Myrvold 2020b, Forthcoming).

24 We will return to this assumption in Section 6.5.
25 For an introduction, see Wightman (1979).

https://doi.org/10.1017/9781009122139.007 Published online by Cambridge University Press

https://doi.org/10.1017/9781009122139.007


6.2 Equilibrium Thermodynamics 153

Other authors refer to large parts of thermodynamics as ‘thermostatics’ (cf.
Tribus 1961). Nevertheless, there are at least two ways that time evolution
is routinely represented in thermodynamics, which I will refer to as the
quasistatic process approach and the constraint approach.

My discussion of each approach will adopt the perspective developed
in earlier chapters, which I have called the Representation View: instead of
studying time as a coordinate variable, we study time translations and view
time evolution in a physical theory as a representation of those time trans-
lations on a state space.26 In this way, studying the properties of time
translations on state space can be used to determine the symmetries of time
itself. As in earlier chapters, we take a representation of time translations to
be a homomorphism ϕ from a (possibly local) Lie group of time translations
G to the automorphisms of a theory’s state space. The set of automorphisms
of an equilibrium thermodynamic system (M,θ,N ), which we denote by
Aut(M,θ,N ), consists of contact transformations, or smooth maps φ : M → M

that preserve the contact structure, φ∗θ = θ ; we assume also that they
preserve the Legendre submanifold N .

The Quasistatic Process Approach
The quasistatic process approach, advocated by Carathéodory (1909)
and Ehrenfest–Afanassjewa (1925); Ehrenfest-Afanassjewa (1956), views a
piecewise-smooth curve through thermodynamic phase space (M,θ) as an
approximate representation of ‘quasistatic’ change: a process for which the
system can at all times be approximated as being in an equilibrium state. This
occurs, for example, when the volume of a box of gas is very slowly increased.
There is some philosophical work to do in clarifying exactly how this
representation is supposed to work (see Lavis 2018; Norton 2014, 2016b).27

However, that debate is tangential to my purposes, which will aim to deter-
mine whether there is any sense of irreversibility in this perspective on time
translations.

Viewing time as associated with the Lie group G = (R,+), a representa-
tion of time translations of this kind is given by any map t �→ ϕt to the contact
transformations28 of (M,θ,N ) that is continuous, preserves N , and satisfies
ϕt+t ′ = ϕt ◦ϕt ′ . This allows us to apply the account of time reversal developed
in Chapter 2, as an extension of the group of time translations to include an

26 See Section 2.3.
27 Norton (2016b) points out that this concern goes back at least to Duhem (1903, §58) and offers an

interesting clarification; see Valente (2017) for an alternative view.
28 Strictly speaking, it is only each smooth part of the flow ϕt that defines a (local) representation of

time translations; the piecewise-smooth flow ϕt may then represent a finite sequence of
representations of time translations corresponding to a sequence of successive processes.
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element that reverses time translations, t �→ −t . When our representation
can be extended to include time reversal, it transforms a curve representing
a quasistatic process to one that ‘flows in the opposite direction’ with the
reverse tangent vector field, and we say that the theory is time reversal
invariant; otherwise, it is time reversal violating. This recovers one standard
approach to time reversal in thermodynamics (cf. Uffink 2001, §3).

Most who argue that thermodynamics is time asymmetric adopt the qua-
sistatic process approach to time and time reversal: this is the case for both
Clausius (discussed in Section 6.3) and Planck (discussed in Section 6.4).
In the next sections, I will argue that they do not succeed. But first, let me
review a very different approach to change in thermodynamics.

The Constraint Approach
The constraint approach is an alternative view of thermodynamic predic-
tion, which finds its natural home in the work of Gibbs (1876, 1877), and
more recently in the textbook by Callen (1985), who writes:

The single, all-encompassing problem of thermodynamics is the determination of
the equilibrium state that eventually results after the removal of internal constraints
in a closed, composite system. (Callen 1985, p.26)

This approach is fundamentally about the relationship between two sets of
equilibrium systems. The first is a collection of thermodynamic systems,
often interpreted as subject to some ‘constraint’; the second is a single
equilibrium system that is taken to be determined by the first collection,
usually by the removal of that constraint. We saw a paradigm example of
this above: two gases separated by a barrier can be viewed as determining a
mixture when the barrier is removed and once the gases have settled down
into an equilibrium state again.

The constraint approach to equilibrium thermodynamics has the advan-
tage of avoiding the awkward appearance of non-equilibrium states. Instead,
we describe a process in two stages: one characterising a collection of
separate equilibrium systems, and another characterising the single equilib-
rium system that they determine. We can make predictions by associating
these two stages with two moments in time, as when we first observe two
separate gases and then later observe a mixture. We can even introduce
structure that captures the fact that the entropy of the unconstrained system
maximises the entropy of the constrained ones (see Section 6.5). However,
this introduction of a temporal direction is entirely independent of the con-
straint approach because nothing about the relationship it describes between
systems requires them to occur in any particular time-order. On the contrary,
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a collection of equilibrium systems determines another equilibrium system,
regardless of whether the latter occurs at an earlier or later time.

Remarkably, the constraint approach provides a ‘timeless’ view of ther-
modynamics. We can use it to model changes in time if we wish and can
even supplement it with a temporal direction. But, these are at best trivial
additions of a thermodynamic arrow, in the sense of ad-hoc additions not
required by the otherwise undirected structure of equilibrium states. In
the remaining sections, I will argue that even the classic expressions of the
second law have this character: when they can be rigorously formulated at
all, they are fundamentally undirected in time.

6.3 The Clausius Inequality

Most arguments in support of a thermodynamic arrow begin with the
second law and then argue that entropy is non-decreasing in just one
temporal direction. Perhaps the oldest and most well-known argument of
this kind is due to Clausius.29 The Clausius argument for increasing entropy
suffers from conceptual problems, as Uffink (2001) has pointed out. In this
section I will give a precise reconstruction of it and argue that its use as
evidence for a thermodynamic arrow is completely unfounded.

The Clausius approach adopts less structure than the complete thermo-
dynamic state space introduced in Section 6.2.2. In particular, we begin with
a manifold N of dimension n on which the first law holds but without
assuming at the outset that there is a global entropy function S that can
be viewed as a coordinate variable. Thus, as in Section 6.2.1, we write the
first law as dU = d̄Q + ∑n−1

i=1 PidXi , where (U,X1, . . . ,Xn−1) are coordinate
functions for N , each Pi is a smooth functions of N , and d̄Q is a one-form
representing heat. A central part of this argument is now to assume that it
is possibly the case that d̄Q � T dS for all smooth functions T : N → R

and S : N → R – and so, by the Afanassjewa–Jauch theorem, energy is not
necessarily conserved in the sense that Eq. (6.2) fails! But let us press forward
for now. Then, the Clausius inequality says: given any ‘physically possible’
cycle described by a closed curve c, together with a function T representing
temperature and a one-form d̄Q representing heat, we have that∫

c

d̄Q/T ≤ 0. (6.5)

29 This argument was introduced by Clausius (1865); see Uffink (2001) for a detailed review and
Henderson (2014) and Valente (2021, §4.1) for recent supportive remarks.
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Clausius argued that this inequality follows from what is now known as the
‘Clausius version’ of the second law, that “[h]eat cannot of itself pass from
a colder to a hotter body without some other change, connected herewith,
occurring at the same time” (see Uffink 2001, p.333).

Two definitions are now needed: we say that a curve γ is thermodynamically
reversible with respect to a one-form d̄Q if and only if d̄Q has an integrating
factor when it is restricted to that curve, in that there are smooth functions
T and S such that d̄Q = T dS at least on every tangent vector to γ , though
not necessarily in general. Otherwise, we will say that γ is thermodynami-
cally irreversible. If a closed curve c is thermodynamically reversible, then,
since the integral of an exact one-form is path-independent, the Clausius
inequality becomes identically zero. In short, strict inequality only holds on
a closed curve that is thermodynamically irreversible with respect to d̄Q.

The Clausius argument that ‘entropy does not decrease’ can now be
reconstructed as follows:

Proposition 6.2 Let T be a smooth function on a manifold N , and let d̄Q be a
one-form. Let γ be a smooth curve from pi to pf that is adiabatic (d̄Q(γ̄ ) = 0 for all
tangent vectors γ̄ ) but not necessarily reversible with respect to d̄Q. If the Clausius
inequality is satisfied,

∫
c
d̄Q/T ≤ 0 on all closed curves, and if there exists a curve

γ ′ from pf to pi along which d(d̄Q) = 0, then d̄Q = T dS on γ ′ for some smooth
function S, and any such function must satisfy S(pi) ≤ S(pf ).

Proof The fact that d(d̄Q/T ) = 0 along γ ′ says that d̄Q/T is a closed one-
form on the contractible manifold γ ′, and so the Poincaré lemma implies
that d̄Q/T is exact on γ ′, in that there exists a smooth function S such that

d̄Q/T = dS for all tangent vectors γ̄ ′.
A closed curve c now runs from pi to pf along γ and then back along γ ′

from pf to pi , as in Figure 6.3. Therefore, applying our adiabatic assumption
and the Clausius inequality,∫

γ ′
d̄Q/T =

∫
γ

d̄Q/T

︸ ︷︷ ︸
=0

+
∫

γ ′
d̄Q/T =

∫
c

d̄Q/T ≤ 0. (6.6)

pi

γ
pf

γ ′

Figure 6.3 The closed curve c.
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But, we also have by definition that∫
γ ′

d̄Q/T =
∫ S(pi )

S(pf )
dS = S(pi) − S(pf ). (6.7)

Combining Eqs (6.6) and (6.7) thus establishes that S(pi) ≤ S(pf ). �

In summary, the precise sense in which Clausius argues that entropy
is non-decreasing is: if thermodynamics is equipped with the structure
of a second law in the form of the Clausius inequality, then any (pos-
sibly thermodynamically irreversible) adiabatic process γ from pi to
pf can be supplemented with a smooth function S, which behaves like
entropy with respect to a different, reversible process γ ′ and is such that
S(pi) ≤ S(pf ).

As Uffink (2001, p.339) has emphasised, this argument is not perfectly
general because of its restriction to adiabatic processes; and, one might be
concerned about whether a reversible path γ ′ exists on which entropy is
defined or, if it does, whether it represents any physically realistic process.
I think the situation for Clausius is much worse: the conceptual problems
with this argument are so severe that I do not see any way to justify, on this
basis, Clausius’ conclusion that entropy tends to increase. Here are three
problems with the argument.

Problem 1
The Clausius argument applies only to systems with a heat form d̄Q

that does not admit global temperature and entropy functions for which
d̄Q = T dS. By definition, this is required for the existence of an irreversible
curve. The problem is that this also implies a violation of local energy conser-
vation, since otherwise we would have d̄Q = T dS by the Afanassjewa–Jauch
theorem. That might be taken as evidence that entropy can only increase
in ‘open’ systems, for which local energy conservation can be expected to
fail. But, then the often-repeated dictum of Clausius that “[t]he entropy of
the universe tends to a maximum” would be false, insofar as the universe is
by definition a closed system.30 This means that it is not an argument that
establishes a direction of time for the universe as a whole, but at best for
local subsystems.

30 Clausius writes, “Die Entropie der Welt strebt einem Maximum zu” (Clausius 1867, p.44). Followers
of Clausius like Planck were aware of difficulties with this statement; see Uffink (2001, pp.338–9).
Earman (2006) has argued that such statements about the entropy of the universe are not even false,
but meaningless.
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Problem 2
A second, more serious problem is that the Clausius argument only estab-
lishes the existence of an increasing entropy function with respect to the
curve γ ′: why is the function S associated with this reversible curve chosen,
and not some other? Even worse, the smooth function S constructed to
represent the ‘entropy’ of an irreversible curve γ in Proposition 6.2 is
questionable: it deserves the name at best on the reversible curve γ ′ for
which d̄Q = T dS but not on the irreversible curve γ for which d̄Q does not
generally take this form. When this d̄Q is not exact, it is not associated with
any global entropy function at all. So, the choice to interpret this particular
function S as the entropy of a ‘possibly irreversible’ adiabatic process is
totally arbitrary, since a different choice of reversible curve γ would have
led to a different entropy function. That this arbitrary function is standardly
referred to as unqualified ‘entropy’ is a remarkable sleight of hand.

Let me make the arbitrariness stark: we could equally have chosen the
function S ′ = −S to represent entropy along the (possibly) irreversible
curve γ . This is a function for which entropy is non-increasing from pi to
pf . The very same curve γ ′ running in the opposite direction from pf to pi

undergoes a positive increase in entropy with respect to this new function
S ′. It is hard to see why this reversed path should be impossible from the
perspective of the Clausius argument, since γ ′ represents a reversible pro-
cess by construction. Of course, one could avoid the problem by postulating
that S ′ = S = 0. But, then the argument would just result in entropy being
constant and not that it ‘tends to increase’.

Problem 3
This last problem suggests that on general symmetry considerations, the
Clausius inequality cannot establish a general increase of entropy, even for
adiabatic processes. Suppose we say that every ‘physically possible’ cycle
is described by a triple (d̄Q,T ,c(t)) that satisfies the Clausius inequality∫
c(t) d̄Q/T ≤ 0, where I now write the explicit parametrisation of the

curve t �→ c(t). For each such system, simple properties of integrals31

imply that (d̄Q,−T ,c(−t)), (−d̄Q,T ,c(−t)), and (−dQ,−T ,c(t)) satisfy the
Clausius inequality as well, where t �→ c(−t) denotes the parametrisation
of the curve c(t) in the reverse direction. The former two of these triples
describe a process unfolding along the same curve c, but in the reverse
direction. So, if entropy is increasing along some portion of that curve in the

31 Namely,
∫
c(t) d̄Q/T = − ∫

c(−t) d̄Q/T = ∫
c(−t) dQ/(−T ) = ∫

c(−t)(−dQ)/T .
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cycle (d̄Q,T ,c(t)), then entropy is decreasing in these other two cycles. This
problem was pointed out by Ehrenfest–Afanassjewa (1925), who ruled it out
by the further postulate of a positive temperature function T > 0. However,
I do not see any way to rule out any of these systems without assuming by
fiat what we were originally trying to prove: that entropy must increase to
the future, not to the past.

I agree that the Clausius inequality does provide a substantial addition
to the structure of thermodynamics. However, I can find no physically
meaningful sense in which it establishes an increase in entropy, let alone
a general arrow of time. Indeed, although Clausius suggested that his
inequality implies that the entropy of the universe tends to increase in
his earlier papers, it is not surprising that he appears to have deleted any
mention of this some years later when those papers were collected into a
book.32

6.4 Planck’s Argument

Another popular approach to arguing that entropy is non-decreasing is
due to Planck (1897b). Planck produced a series of related arguments in the
eleven successive editions of his influential book on thermodynamics, which
have been carefully reconstructed and evaluated by Uffink (2001, §7, §10.1).
Planck’s arguments are even less rigorous than the Clausius argument I have
presented above and suffer from similar conceptual problems. It is enough
for my purposes to review one of them here. For, as Uffink (2001, p.376)
points out, even the final version does not give a substantial improvement
on the earlier ones.

Like Clausius, Planck adopts the continuous process approach to describ-
ing the passage of time. So, if he can show that a continuous curve from one
state to another is such that no physical process exists that can restore the
original state, then he will have established an arrow of time. Planck calls
such a curve ‘irreversible’, which differs from the usage of Clausius, who
adopts this word specifically to describe curves on which the heat form fails
to admit an integrating factor, d̄Q � T dS.

Planck’s style of argument requires one to say which continuous curves
are ‘physically impossible’, which is not found in the structure of thermo-
dynamics presented in Section 6.2. For this, Planck, adopts an expression of

32 This was pointed out by Kuhn (1987); see Uffink (2001, pp.339–340).
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the second law of thermodynamics, which he takes to prohibit the existence
of a perpetuum mobile of the second kind. This is known as:

Kelvin’s Principle: No cyclic process exists whose effect on the environment “consists
of nothing other than the production of work and the absorption of the equivalent
heat.”33

Here, one considers a description of two thermodynamic systems, one
representing the ‘target’ of investigation and the other the ‘environment’.
In the environment, since the energy one-form is exact, a closed curve will
satisfy

∫
c
dU = 0, and so the first law implies that − ∫

c
d̄Q = ∫

c
W , where d̄Q

and W = ∑
i PidXi represent heat and work done on the environment,

respectively. Kelvin’s principle of no work or heat loss can now be interpreted
formally as the statement that − ∫

c
d̄Q = ∫

c
W ≤ 0. Like in the Clausius

argument, we must assume here that the heat one-form d̄Q is not exact,
violating local energy conservation by the Afanassjewa–Jauch theorem,
since otherwise the inequality would be identically zero.

Planck’s style of argument is now to consider a process along which
entropy increases and to present a reductio ad absurdum of the hypothesis
that some physical process is described by a curve that leads back to the
original low-entropy state. To be concrete, I will review just one of Planck’s
examples. Consider the mixing of two gases of the same temperature, one
of which has higher pressure, and which are initially separated by a barrier,
as in the example of Section 6.1. Here is a summary of the process Planck
(1897b, §118–124) describes and which is illustrated in Figure 6.4.34

Figure 6.4 Planck’s procedure for producing work violating Kelvin’s
principle from an entropy-decreasing process.

33 Planck (1897b, p.81) writes: “eine Veränderung, die in nichts Anderem besteht als in Erzeugung von
Arbeit und Absorption der äquivalenten Wärme”. For a discussion of its origin in the work of
Clausius and Kelvin, see Uffink (2001, §5).

34 Uffink (2001, p.352) refers to this argument as Planck’s “Lemma 6”.
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• First stage: Two unmixed gases are assumed to have the same temperature
but one having higher pressure, and the ‘environment’ is assumed to be
associated with some large amount of heat.

• Second stage: The gases are slowly (quasistatically) transformed into a mix-
ture, while absorbing heat from the environment and losing work in equal
amounts, with the temperature of the gases remaining the same through-
out. The environment correspondingly loses heat and gains work in equal
amounts, which we interpret as ‘heat and work exchange’ between the
system and its environment.

• Third stage: The mixture is now completely isolated from the environment,
and the reductio hypothesis is applied: we assume there is an entropy-
decreasing process that restores the mixture to its original low-entropy
state as two unmixed gases. The environment remains in its previous state
of having lost heat and gained work.

The result is that the gases complete a cycle, and the environment loses heat
and gains work in the sense that − ∫

c
d̄Q = ∫

c
W > 0, thus violating Kelvin’s

principle. The conclusion by reductio is that the entropy-decreasing process
that restores the original state is impossible, and so time reversal invariance
is violated.

As Uffink (2001, §7.5) points out, there are a number of problems with
this approach: for example, Planck does not manage to give meaning to the
concept of ‘entropy’ in arbitrary non-equilibrium systems; and, his formu-
lation of the second law is not clearly justified for arbitrary thermodynamic
processes.

However, the problems with the Clausius argument discussed in
Section 6.3 apply to Planck’s argument as well. In the first place, the
heat one-form d̄Q is not exact by assumption, and so Planck’s systems do
not satisfy local energy conservation. This means that his argument at best
establishes a time asymmetry of open systems and not for closed systems
or for the universe as a whole. In the second place, the fact that there is
not generally a function S such that d̄Q = T dS means that the association
of an entropy function with Planck’s proposed irreversible descriptions is
questionable at best. Although his discussion is less formal than the one
of the previous section, this does not relieve him of the burden of giving
meaning to concepts he uses.

Finally, there is a symmetry argument here too, which makes it hard to
see how Planck’s thinking could ever give rise to a time asymmetry. The key
assumption, Kelvin’s principle, says that whatever initial thermodynamic
system we begin with, we must attain a new system in which there is no
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net increase in work and heat loss in the environment. Formulated in this
way, Kelvin’s principle is similar to the Minus First Law’s requirement that
every system ‘attain’ a state of equilibrium. This sort of statement is not
intrinsically directed in time: it can be consistently applied whether the
system attained is in the past or in the future. At its core, the principle only
expresses that a target and environment system determine a ‘new’ target
and environment system, in which there is no net increase in work and heat
loss in the new environment. But, if this principle can be applied at all, then
it can be applied whether that ‘new’ pair of systems is in the future or in
the past.

In other words, the structure of thermodynamics can be retained, even
with the addition of Kelvin’s principle, without introducing a temporal
direction. If one particular temporal direction is chosen, then this appears
to be due to a special human understanding of what it means to be an
intervention, or to special initial and boundary conditions. But, this is what
I have called a ‘trivial’ introduction of a time asymmetry, which arises from
heuristic considerations from outside the theory.

6.5 Concavity, Convexity, and Gibbs

Our final discussion of time asymmetry in thermodynamics involves the
Gibbs formulation of the second law. Gibbs (1876, 1877) set out his great
vision of thermodynamics in a monograph-length work, which spanned
over 300 pages in two journal issues. The mathematician Robert Hermann
had a positive view of this work and an impressively negative view of the
work that followed:

After much reading on the subject, I would say that Gibbs understood, in about
1870, the mathematics of thermodynamics – even in its most ‘modern’ form –
better than almost all of the authors who followed him. Unfortunately, physicists
and chemists think that a reasonable statement of the mathematics which they are
trying to apply is an ‘axiomatization,’ and therefore should be avoided as a bad
thing which inhibits the creative mind. (Hermann 1973, p.261–2)

In particular, the Gibbs formulation of the second law provides an elegant
and conceptually clear addition to the mathematics of thermodynamics,
which retains the basic character of the second law as a ‘principle of entropy
maximisation’. However, the prospects for this approach to establish tem-
poral asymmetry have been succinctly captured by Uffink (2001, p.361):
“Obviously, there are no implications for the arrow of time in the second
law as formulated by Gibbs”. I agree. However, it is helpful to briefly review
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the Gibbs approach, as a step towards clarifying how it is possible for
thermodynamics to have no arrow of time.

A modern view of the Gibbs approach begins with an equilibrium ther-
modynamic system (M,θ,N ). The Legendre submanifold N is described in
terms of a fundamental relation, which I will write in coordinate form as
U = f (S,X1, . . . ,Xn−1), where f is smooth and is a bijective function of
entropy S when all the other variables are held fixed. I will continue to
make this argument using coordinate variables, since this will allow me to
make the point in relatively simple language. However, deep approaches
also exist that are entirely geometrical.35

To motivate a second law, we will make just three physical assumptions
about a system that has attained equilibrium. I will state these assumptions
first and then comment on their interpretation. Perhaps surprisingly, these
are all that we need to derive an entropy maximisation principle:

1. Temperature is positive T := ∂U/∂S > 0.
2. Energy is (positively) first-degree homogeneous, in that when viewed as a

function of the other variables U (S,X2, . . . ,Xn), it satisfies U (λS,λX1, . . . ,

λXn−1) = λU (S,X1, . . . ,Xn−1) for all λ > 0.
3. Energy has a strongly stable ground state with a global minimum and no

other local minima or maxima; in other words, U is a convex function. A
convex function of one variable is defined by the property that U

(
αS1 +

(1 − α)S2
) ≤ αU (S1) + (1 − α)U (S2) for all α ∈ (0,1), which implies that it

has the expected shape illustrated in Figure 6.5.

Let me now interpret these statements. The requirement that temperature
T := ∂U/∂S is positive implies that energy is a monotonically increasing
function of entropy. As far as I can see, whether it is increasing or decreasing
is conventional. However, the statement that temperature is monotonic is
a substantial empirical postulate about the degrees of freedom associated
with heat, which by definition are not available to intervention. Postulate 2
says that when energy changes with respect to those degrees of freedom, the
entropy function S used to capture them never reaches a local extremum.
This need not be true of all physical systems;36 however, equilibrium thermo-
dynamics can be viewed for our purposes as a theory about those systems
for which it is.

35 For geometric approaches to these same ideas, see especially the treatment of convexity by
Hermann (1973, §6.6), as well as Bravetti (2018), Mrugała (2000), and Weinhold (1975).

36 Onsager (1949) predicted both positive and negative statistical mechanical temperatures associated
with a local entropy maximum in fluids with no stable steady flow, and Ramsey (1956) postulated
them for classical thermodynamics, although they are not associated with any equilibrium states
and so fall outside the scope of equilibrium thermodynamics.
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U (S)

S

U

Figure 6.5 A convex function U (S).

The statement that energy is a first degree homogeneous function is also
substantial. But it is a natural assumption about thermodynamic systems
that have attained equilibrium. Roughly speaking, it expresses the idea
that such a system consists of ‘similar stuff’ in all of its parts, with all
inhomogeneities smoothed out. First-degree homogeneity expresses this
property in a clever way: we assume that when we scale a thermodynamic
system by some factor, such as by doubling the volume and entropy of an
ideal gas, the energy is scaled by the same factor.

Finally, we have assumed that energy has a stable ground state in a certain
strong sense, expressed by the requirement of convexity. This assumes,
as one would typically do, that energy has a global minimum. But, our
assumption demands an even stronger sense of stability: that no amount of
perturbation will send the system into a ‘local’ ground state characterised
by a local minimum or maximum. Again, there is no requirement that every
physical system will satisfy this assumption. But, it is a plausible restriction
on the domain of application of thermodynamics; let us restrict our study
to systems that are stable enough to satisfy this requirement.

These assumptions, remarkably, are enough to establish an entropy max-
imisation principle. To manage notation, let me write X = (U,X1, . . . ,Xn−1)
to denote a set of values of energy and the other non-entropy extensive
variables. Then we have the following result.37

37 Compare Wightman (1979, pp.xiv–xvi) and Wills (2022) for similar ideas.
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Proposition 6.3 Let U = f (S,X1, . . . ,Xn−1) be a smooth function, bijective in S,
such that,

1. (positive temperature) T = ∂U/∂S > 0;
2. (homogeneity) U (X) = f (S,X1, . . . ,Xn−1) is first-degree homogeneous; and
3. (strong stability) U = f (S,X1, . . . ,Xn−1) is convex.

Then S(X) = S(U,X1, . . . ,Xn−1) is concave, and for any fixed value of
X = (U,X1, . . . ,Xn−1),

S(X) = sup
{
S(X̄) + S(X̃)

}
, (6.8)

where the supremum ranges over all points X̄ and X̃ such that X = X̄ + X̃.

Proof The function U is a smooth, convex bijection of S, and so it is strictly
monotonic in S. Since ∂U/∂S > 0, this means that it is strictly increas-
ing, which by an application of the definitions implies that its inverse
S(U,X1, . . . ,Xn−1) is concave. Since S is the inverse of a homogeneous func-
tion, it is also homogeneous.

Now, viewing S as a function of X := (U,X1, . . . ,Xn−1), an elementary
property of first-degree homogeneous functions S(X) guarantees that S is
concave if and only if

S(X̄ + X̃) ≥ S(X̄) + S(X̃), (6.9)

for all values of X̄, X̃ (Rockafellar 1970, Theorem 4.7). For any fixed value of
X, this means that S(X) is an upper bound for the set

{
S(X̄)+S(X̃) | X̄+X̃ =

X
}
. Moreover, if u ≤ S(X) is any other upper bound, then since S(X/2) +

S(X/2) is an element of the set, homogeneity implies

u ≥ S(X/2) + S(X/2) = S(X)/2 + S(X)/2 = S(X) (6.10)

and hence that u = S(X) is a supremum. �

Let me comment briefly on the interpretation of this theorem. For a given
thermodynamic state with fixed values of energy and the ‘work’ degrees of
freedom, X = (U,X1, . . . ,Xn), we can consider any pair of states X̄ and X̃ that
sum to the original (X̄ + X̃ = X) to be ‘possible contributions’ to that state.
We might now imagine that each of these various possible contributions
could in fact occur and note that when we sum the entropies S(X̄) + S(X̃) of
each pair of contributing states, we will get a variety of different values. But,
the theorem says that when systems achieve equilibrium in the strong sense
of our three postulates – positive temperature, homogeneity, and a strong
sense of stability – then the only possible contributions that actually occur
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are those that render the total entropy as large as it can be. The entropy of a
given state is the supremum of the possible contributing entropies.

Entropy maximisation in this ‘Gibbs sense’ has a wide range of applica-
tions in equilibrium thermodynamics. It is sufficient, for example, to identify
the entropy increase of a pair of mixing gases (cf. Wightman 1979). Wills
(2022) has shown that it can be applied in the resolution of a well-known
thermodynamic puzzle, the Gibbs paradox.

However, entropy maximisation in the Gibbs sense has no implications
about the direction of time. The principle might be viewed as describing how
the entropy of possible contributions or ‘parts’ of a system are related to the
whole. But, this is a statement about what philosophers call ‘mereology’,
or the nature of parthood relations, and not about the way things change
over time.

As a result, when Gibbs entropy maximisation is applied to describe time
developments, it remains temporally symmetric. To go back to our paradigm
example from Section 6.1: if a mixture in equilibrium is viewed as arising
from a pair of separate gases, that mixture will achieve a maximum entropy
state, whether it is viewed as occurring in the future or in the past. That is,
Gibbs entropy maximisation is most naturally viewed from the ‘constraint’
perspective on prediction in thermodynamics introduced in Section 6.2.3,
that a collection of thermodynamic systems constrains another equilibrium
system to achieve maximum entropy, whether that maximum occurs in the
future or in the past.

6.6 Summary

In spite of the heterodox thesis of this chapter, most of what I have said is
already suggested by the work of Uffink (2001) and Brown and Uffink (2001):
a direction of time is not encoded in the formal structure of thermodynamics
in its first or second laws. Insofar as a time asymmetry is found there, it is
‘trivial’, in the sense of an ad hoc addition that is not required by the theory.
Their argument is only further supported by the presentation I have given
of the formal structure of thermodynamics: of the work of Carathéodory,
and of the second law as it appears in the work of Clausius, Planck, and
Gibbs. When the latter arguments are made precise, any semblance of a
thermodynamic arrow of time disappears.

To reach my conclusion, one only needs to take Brown and Uffink’s
observations about the second law and apply them equally to the ‘approach
to equilibrium’ encoded in their Minus First Law. Like the second law, the
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association of each collection of thermodynamic systems with a unique
equilibrium system does not require a temporal direction. All the formal
foundations and predictive structure of thermodynamics can be constructed
in its absence. Of course, one can still postulate temporal asymmetry in a
trivial way, as in every temporally symmetric theory, by supplementing it
with the explicit postulate that change occurs asymmetrically in time. But,
if we do not indulge in trivialities, then there is no thermodynamic arrow
of time.
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