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Abstract

A Latin square is reduced if its first row and first column are in natural order. For Latin squares of
a particular order n, there are four possible different parities. We confirm a conjecture of Stones and
Wanless by showing asymptotic equality between the numbers of reduced Latin squares of each possible
parity as the order n→∞.
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1. Introduction

The parity of permutations plays a fundamental role in group theory. Latin squares can
be thought of as two-dimensional permutations and they also have a notion of parity.
A Latin square has three attributes each of which can be even or odd, although any two
of these attributes determines the third. There are thus four different parities for Latin
squares of a given order. These parities account, for example, for the fragmentation of
switching graphs [5, 13] and the failure of certain topological biembeddings [9]. They
can also assist in diagnosing symmetries of Latin squares [6].

Unlike the case of permutation groups, there can be different numbers of Latin
squares of each parity. This difference is central to a famous conjecture by Alon and
Tarsi [1], which has ramifications well beyond its apparent scope [4, 8]. Nevertheless,
numerical evidence [5, 12, 13] suggests that within several natural classes of Latin
squares there are very close to the same number of each parity. The present note and [2]
are the first to prove that parities are asymptotically equinumerous (although [12] did
show a weaker result in this direction). An advantage of the present work over [2] is
that we prove a nontrivial result for all orders, whilst [2] only applies to even orders.

A Latin square of order n is an n × n array of n symbols such that each symbol
occurs exactly once in each row and exactly once in each column. We will take the
symbol set to be [n] := {1, 2, . . . , n}, matching the row and column indices. A Latin
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Table 1. Table of identities.

If n ≡ 0 or 1 (mod 4)

Ren = Rsen = R000
n + R110

n

Ron = Rson = R011
n + R101

n

Uen = Rcen = R000
n + R101

n

Uon = Rcon = R011
n + R110

n

Rren = R000
n + R011

n = Uen
Rron = R101

n + R110
n = Uon

R111
n = R100

n = R010
n = R001

n = 0
R011

n = R101
n

R011
n = R101

n = R110
n when n is even

If n ≡ 2 or 3 (mod 4)

Ren = Rson = R111
n + R001

n

Ron = Rsen = R100
n + R010

n

Uen = Rcon = R111
n + R010

n

Uon = Rcen = R100
n + R001

n

Rron = R111
n + R100

n = Uen
Rren = R010

n + R001
n = Uon

R000
n = R011

n = R101
n = R110

n = 0
R100

n = R010
n

R100
n = R010

n = R001
n when n is even

square is normalised if the first row is (1, 2, . . . , n). A Latin square is reduced if the
first row is (1, 2, . . . , n) and the first column is (1, 2, . . . , n)T . A Latin square L = (li j)
is unipotent if l11 = l22 = · · · = lnn.

Suppose that P is a property of Latin squares of order n. Let LP
n , RP

n and UP
n be the

numbers respectively of Latin squares, reduced Latin squares and normalised unipotent
Latin squares of order n with property P. If P is omitted, we count the whole class.

Let Sn denote the permutations of [n] and ζ : Sn 7→ Z2 the usual sign
homomorphism with kernel the alternating group. Given a Latin square L = (li j) of
order n, we can identify the following 3n permutations in Sn. For all i ∈ [n], define
σrow

i by σrow
i ( j) = li j. For all j ∈ [n], define σcol

j by σcol
j (i) = li j. For all ` ∈ [n], define

σ
sym
`

such that σsym
`

(i) is equal to the j for which li j = `. We call πrow :=
∑

i ζ(σrow
i ),

πcol :=
∑

j ζ(σcol
j ) and πsym :=

∑
` ζ(σsym

`
) the row-parity, column-parity and symbol-

parity of L, respectively. A Latin square is called even or odd if πrow + πcol ≡ 0 or
1 (mod 2), respectively. A Latin square is called row-even or row-odd if πrow ≡ 0 or
1, respectively. A Latin square is called column-even or column-odd if πcol ≡ 0 or 1,
respectively. A Latin square is called symbol-even or symbol-odd if πsym ≡ 0 or 1,
respectively. We define the properties

e = ‘is an even Latin square’,
o = ‘is an odd Latin square’,
re = ‘is a row-even Latin square’,
ro = ‘is a row-odd Latin square’,

ce = ‘is a column-even Latin square’,
co = ‘is a column-odd Latin square’,
se = ‘is a symbol-even Latin square’,
so = ‘is a symbol-odd Latin square’.

We define the parity of a Latin square L to be the ordered triple π = πrowπcolπsym.
Writing π as a superscript denotes that we are restricting to Latin squares with parity
π. Some of the basic relationships that are proved in [12] are summarised in Table 1.
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We use standard ‘∼’, ‘little-o’, ‘big-O’ and ‘big-Ω’ asymptotic notation, always in
the context of Latin squares with n→∞. The aim of this note is to confirm a conjecture
from [12] by proving the following result.

Theorem 1.1. Suppose that n→∞. For n ≡ 0, 1 (mod 4),

L000
n ∼ L011

n ∼ L101
n ∼ L110

n ∼ 1
4 Ln,

R000
n ∼ R011

n ∼ R101
n ∼ R110

n ∼ 1
4 Rn,

U000
n ∼ U011

n ∼ U101
n ∼ U110

n ∼ 1
4 Un.

For n ≡ 2, 3 (mod 4),

L111
n ∼ L100

n ∼ L010
n ∼ L001

n ∼ 1
4 Ln,

R111
n ∼ R100

n ∼ R010
n ∼ R001

n ∼ 1
4 Rn,

U111
n ∼ U100

n ∼ U010
n ∼ U001

n ∼ 1
4 Un.

For all n,

Len ∼ Lon ∼ Lren ∼ Lron ∼ Lcen ∼ Lcon ∼ Lsen ∼ Lson ∼
1
2 Ln,

Ren ∼ Ron ∼ Rren ∼ Rron ∼ Rcen ∼ Rcon ∼ Rsen ∼ Rson ∼
1
2 Rn,

Uen ∼ Uon ∼ Uren ∼ Uron ∼ Ucen ∼ Ucon ∼ Usen ∼ Uson ∼
1
2 Un.

In contrast, the Alon–Tarsi conjecture [1] asserts that Len , Lon for even n. Two
distinct generalisations of this are by Zappa [15], who suggests that Uen , Uon for all n,
and Stones and Wanless [12], who suggest that Ren , Ron for all n. These conjectures
are only known to be true in some very special cases (see [7, 11, 12] for details).

There is a natural action of Sn × Sn × Sn on Latin squares called isotopism.
Its orbits are called isotopism classes. In essence, the reason that the Alon–Tarsi
conjecture is restricted to even orders is that parity is an isotopism class invariant
for even orders but not for odd orders. Since it is known that asymptotically almost
all Latin squares have trivial stabiliser in the group of isotopisms [10], a corollary
of Theorem 1.1 is that for even n→ ∞ there are asymptotically equal numbers of
isotopism classes of Latin squares of each of the possible parities.

2. Parities are equinumerous

Whenever we use the word ‘random’ it will be implicit that we are referring to the
discrete uniform distribution (technically, a sequence of such distributions as n→∞).

A row cycle of length ` is a minimal (in the sense of containment) nonempty 2 × `
submatrix of a Latin square such that each row of the submatrix contains the same
symbols. We say that a row cycle is even or odd depending on whether its length ` is
even or odd, respectively. The two rows within a row cycle can be switched to give a
slightly different Latin square. By switching an odd row cycle, we change the column
parity and the symbol parity, while leaving the row parity unchanged [13]. This simple
observation will be the key to our result.
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Our aim is to find an odd row cycle that does not meet the first row or first column.
We want to show that a random reduced Latin square can be expected to have such a
cycle. However, we do this by first showing that a random Latin square also has such
a cycle. This allows us to employ techniques that may move beyond the set of reduced
Latin squares. The techniques in question were developed in [3] to study row cycle
lengths in a random Latin square. It will suit us to adapt the results of [3], which dealt
with the first two rows, to the last two rows instead. Similarly, [3] allowed conditioning
on the contents of a set F of columns. In that paper F comprised the last n–m columns,
but it will suit us to use a variable set of columns which includes the first column. The
results from [3] apply unchanged, given the symmetry between different columns and
between different rows.

We will consider random Latin squares of order n as n→∞. Soon we will want to
consider probabilities that are conditional on the Latin square including a set F of n–m
columns that includes the first column. A prerequisite for the methods of [3] is that F
must contain entire row cycles in its last two rows. We impose the extra condition that
F contains a single row cycle in its last two rows. With this assumption, it turns out
that F is unlikely to be too big.

Lemma 2.1. With probability 1 − o(1), a random Latin square of order n has no cycle
longer than n − log n within the last two rows.

Proof. Let p be the probability that a random permutation in Sn has a cycle of length
at least n − log n. Then

p =
1
n!

n∑
i=dn−log ne

(
n
i

)
(i − 1)!(n − i)! =

n∑
i=dn−log ne

1
i

= O
( log n

n

)
. (2.1)

Let ξ be the multiset of the lengths of the row cycles in the last two rows of a random
Latin square of order n. If ξ has an element of size at least n − log n, then ξ has at most
(log n)/2 + 1 elements. Hence, by (2.1) and [3, Corollary 4.5], the probability that ξ
has an element of size at least n − log n is at most n1/32(log n)/2+1 p = o(n−0.3). �

As foreshadowed, we now wish to condition on a random Latin square L containing
a set F of entries consisting of entire columns (including the first), where in the last two
rows the entries of F form a single row cycle. This framework is consistent with [3].
Let m be the number of columns that are not in F. Let ρ be the partition of m formed
by the lengths of the row cycles in the last two rows that are not in F. We will consider
m and ρ to be discrete random variables in the resulting probability space. Our results
will be phrased in terms of m and ρ but are otherwise independent of F. Note that with
high probability m→∞ as n→∞, by Lemma 2.1. From [3, Theorem 4.9], we have
the following lemma.

Lemma 2.2. There exists a constant c with 0 < c < 1 such that ρ has fewer than 9
√

m
parts with probability 1 − o(cm).
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Let P(m) denote the partitions of m into parts of size at least 2. Let

γ(λ) =
m!∏m

i=2 λi! iλi
(2.2)

be the number of derangements with cycle structure λ = (2λ2 , 3λ3 , . . . ,mλm ) ∈ P(m).
Here and henceforth, iλi denotes λi parts of size i, where we allow the possibility that
λi = 0. Let S (λ, F) denote the set of Latin squares that contain F and have ρ = λ.

Lemma 2.3. Let m be even and suppose that λ = (2λ2 , 4λ4 , . . . ,mλm ) ∈ P(m) has only
even parts, including one of size z, where z→ ∞ as n→ ∞. Let M be the set of
µ ∈ P(m) such that µ is obtained from λ by splitting a part of size z into two parts of
odd size. Then ∑

µ∈M

|S (µ, F)| = |S (λ, F)|Ω(log z).

Proof. Let µ = (2µ2 , 3µ3 , . . . ,mµm ) ∈ M be such that µ is obtained from λ by splitting
one part of size z into parts of sizes a and z − a, where a is odd (and thus z − a is too)
and a < z − a. Since λ has only even parts, λa = λz−a = 0 and µa = µz−a = 1. Moreover,
λz = µz + 1 > 1. By (2.2),

γ(µ)
γ(λ)

=
zλz

a(z − a)
.

By [3, Lemma 3.13], this implies that

|S (µ, F)| >
2zλz|S (λ, F)|

3a(z − a)
>

2z|S (λ, F)|
3a(z − a)

.

Thus, ∑
µ∈M

|S (µ, F)| >
2
3
|S (λ, F)|z

w∑
a=1

1
(2a + 1)(z − 2a − 1)

,

where w = b(z − 3)/4c is the largest integer satisfying 2w + 1 < z − 2w − 1. However,
1/((2x + 1)(z − 2x − 1)) is a decreasing function of x for 1 6 x 6 w, so

w∑
a=1

1
(2a + 1)(z − (2a + 1))

>

∫ w

1

dx
(2x + 1)(z − 2x − 1)

=
1
2z

log
(2w + 1)(z − 3)
3(z − 2w − 1)

= Ω

( log z
z

)
,

from which the result follows. �

We next show that with high probability there is an odd cycle that does not meet
the first row or column (assuming that n > 2). We deduce this first for general Latin
squares and then infer it for reduced Latin squares.

Theorem 2.4. With probability 1 − o(1), there is a part of odd size in ρ.
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Proof. By Lemma 2.1, we know that m > log n with probability 1 − o(1). By
Lemma 2.2, asymptotically almost surely, there are at most 9

√
m parts in ρ, so there is

some part of size at least
√

m/9. By Lemma 2.3, the probability of ρ having no odd
parts is at most O(1/ log m) = o(1), as claimed. �

Corollary 2.5. With probability 1 − o(1), in the last two rows of a random reduced
Latin square of order n there is a cycle of odd length that does not include the first
column.

Proof. We can reduce a Latin square by permuting the symbols so that the first column
is in order and then permuting the columns so that the first row is in order. These
operations do not affect whether the last two rows contain a cycle of odd length that
does not include the first column (note that the first column does not move). Also,
each reduced Latin square is produced the same number of times, namely n!(n − 1)!
times, when the above reduction is applied to all Latin squares. So, reduced Latin
squares have the same probability of having the property of interest as do general
Latin squares. �

Proof of Theorem 1.1. As already noted, by switching an odd row cycle we change
the column parity and the symbol parity. Hence, Corollary 2.5 provides us with an
involution, which acts on all but a negligible fraction of reduced Latin squares, and
which reverses column parity and reverses symbol parity. It follows that Rcen ∼ Rcon and
Rsen ∼ Rson . Table 1 then tells us that

R000
n ∼ R011

n ∼ R101
n ∼ R110

n ∼ 1
4 Rn for n ≡ 0, 1 (mod 4),

R111
n ∼ R100

n ∼ R010
n ∼ R001

n ∼ 1
4 Rn for n ≡ 2, 3 (mod 4)

as n→∞. The remainder of Theorem 1.1 is then easily deduced from Table 1 and
the following additional observations. Replacing each row of a Latin square by its
inverse (considered as a permutation) converts reduced Latin squares into normalised
unipotent Latin squares and vice versa. Hence, Rabc

n = Uacb
n for all parities π = abc and

all n. We also know two more facts from [12]. Firstly, for even n,

LP
n = n! (n − 1)! RP

n = n! (n − 1)! UP
n ,

whenever P ∈ {e, o, re, ro, ce, co, se, so} or P is any parity. Secondly, for odd n > 3,

L000
n = L011

n = L101
n = L110

n and L111
n = L100

n = L010
n = L001

n . �

3. Concluding comments

We have confirmed a conjecture from [12] and explained why the large components
have comparable size in the switching graphs studied in [13]. Our results do not
explain why the components in the switching graphs in [5] have comparable size. At
this stage we have no tools to study the lengths of cycles in random symmetric Latin
squares.
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A much stronger result than Theorem 1.1 seems very likely to be true. By
Wilf [14, page 209], the proportion of permutations in Sn that have no odd cycles is
2−nn!/(n/2)!2 ∼

√
2/(πn). It follows immediately that the proportion of derangements

with no odd cycles is also O(n−1/2). Hence, the proportion of derangements with at
most one odd cycle is O(n−1/2) if n is even and no more than

(n−1)!
n!

+
O(1)

n!

(n−3)/2∑
i=0

(
n

2i + 1

)
(2i)!(n − 2i − 1)!

(n − 2i − 1)1/2 =
1
n

+ O(1)
(n−3)/2∑

i=0

1
(2i + 1)(n − 2i − 1)1/2

if n is odd. Approximating the sum by an integral, we find that for all n the proportion
of derangements with at most one odd cycle is O(n−1/2 log n). If [3, Conjecture 6.1]
holds, then a similar statement would be true about the cycles in the last two rows
of a Latin square: namely there would be at least two odd cycles with probability
1 − O(n−1/2 log n). At least one of these cycles is switchable in the sense that it does
not hit the first column. Amongst the squares with no switchable odd cycle in the
last two rows, we can look for a switchable odd cycle in rows n − 3, n − 2, then in
rows n − 5, n − 4 and so on up to, but not including, the first row. Switching the
first switchable cycle that we find in this way would give us an involution, because
switching cycles in rows x and y never affects the cycle lengths between rows other
than x and y. The domain of the involution includes all reduced Latin squares that
have any switchable cycle in an appropriate pair of rows. It seems plausible that each
pair of rows would have a switchable cycle with something close to an independent
probability 1 − O(n−1/2 log n), meaning that the proportion of reduced Latin squares
outside the domain of our involution would be O(n−cn) for some constant c > 0. Hence,
for each given n, the numbers of reduced Latin squares with each of the four possible
parities are probably very much closer to each other than our work has demonstrated.
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