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INTEGRATION BY PARTS FOR SOME GENERAL INTEGRALS

U. DAS AND A.G. DAS

The present work is concerned with an integration by parts formula for the Pk -integral
of De Sarkar and Das, and of the equivalent Pk -integral of Bullen. The process involves a
simpler and updated version of that for the Z^—i -integral of Bergin. If / is Pk — (Zit_l)-
integrable and G is of bounded fcth variation, then fG is P* — (Zi-i)-integrable.

1. INTRODUCTION

As soon as a new integral is defined, it is interesting to investigate the integration by
parts formula for that integral. For any integral, /-integral (say), the role of integration
by parts lies in the following question: if / is /-integrable on [a, 6] and F(x) = (/) J* f,
then for which G is it true that fG is /-integrable?

For the classical Perron integral we refer to a survey by Bullen [6] and also to a
simple proof by Bullen [5].

If / is P-integrable on [a,b] then F(x) = (P) f* f, and if G is of bounded
variation, then fG is P -integrable and

.b fb

(P) fG= F(b)G(b) - F{a)G{a) - (R) / FG'

Ja Ja

or equivalently,

, 6 .b

(P) fG = F(b)G(b) - F(a)G(a) - (RS) / FdG,
Ja Ja

where in the second formula, the right-hand side is to be interpreted as follows:

G(a) = G{a+), G(b) = G(b-), (RS) / fdG = Urn (RS) / FdG.

Bullen [3] and also De Sarkar and Das [14] obtained a fcth order generalisation
of the Perron integral which they called the Pk -integral. The former used Peano
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2 U. Das and A.G. Das [2]

derivatives and the latter used equivalent Riemann* derivatives. Peano, Riemann* and
ordinary derivatives of a function / at x , of order r , will be denoted by / ( r ) («) ,
Drf(x), and f(r)(x), respectively.

According to De Sarkar and Das [14], a function M continuous on [o, 6] is called

a Pk -major function of / on [a,b] if:

(i) DrM exists and is finite on [o, b] for 1 < r ^ k — 1;
(ii) D_kM{x) > f(x) a.e. in [a,b\;

(iii) DkM(x)> -oo n.e. in [a, 6];
(iv) DrM{a) = O, 0 < r < J f e - l .

If —TO is a Pk-major function of —/, then m is called a Pk-minor function of
/ on [a,b]. If -oo < inf{M(6)} = sup{m(6)} < +oo, then / is Pk-integrable on
[a,b] and the common value is called the Pk -integral of / on [a,b], and is denoted by

Following Bergin [1] and Remark 6 of De Sarkar and Das [14], we can say that

Dk~1 M is a (k — l)-majorant and Dk~1m is a (k — l)-minorant of / on [a,b] and

the finite common value in{{Dk~1 M(b)} = sup{Dk~1Tn(b)} is the Zk-\ -integral of / ,

(Zk-i) fa f • Bergin, however, does not assume condition (iv). If M* is a pre-majorant

of Bergin, it is sufficient to consider M(x) = M*(x) - £ * ! „ ((x - a)r/r\)DrM*{a).

Bergin's Zk -integral is equivalent to Burkill's Cj.P-integral (Proposition 6.1 of Bergin

[I])-
It is now evident that / is Pk -integrable if and only if it is Zk-\ -integrable.

Further, if F(x) = (Pk) J* f, then

(1) Dk-1F(x) = (Zk-1) Tf;

Ja

( Z , ) / -(Zh_a) (Zk^) f-
Ja Ja % Ja

(see Bullen [3, Theorem 16]).

Russell [15] introduced the fcth order generalisation of the classical concept of

functions of bounded variation which he calls functions of bounded fcth variation, BV^

functions.

Let / be a real-valued function defined in the closed interval [a, 6] and let A; be a

positive integer greater than one. If xo,Zi, • • • ,scjb are any k + 1 distinct points, not

necessarily in linear order, in [a, 6], then the fc th divided difference of / is defined by

i=o
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[3] Integration by parts 3

If, for all choices of distinct points x0, x\,..., xk in the interval [a, b] we have

Q(f; xo,X!,... ,xk) ^ 0, then / is called fc-convex on [a,6]- The number

n-fc
Vk{f\a,b) = sup V " (xi+k - xi)\Qk(f;xi,xi+1,...,Xi+k)\,

where the supremum is taken for all TT-subdivisions in [a, 6] of the form a ̂  x0 < x^ <

• • • < xn < b, is called the totai k th variation of / on [a, b]. If Vk(f; a, 6) < +oo, then

/ is said to be of bounded kth variation, BVk on [a,b] and we write / £ BVk[a,b].

In view of Therorm 1 of Russell [17], the class BVk[a, b] is given by

where / i and / 2 are 0—,1 —,. . . , fc-convex functions having right and left (fc — 1)th
ordinary derivatives at a and b respectively.

So, by Theorem 7 of Bullen [2], f^k~1) exists n.e. in [a,b\. Consequently, by

Theorems 9 and 12 of Russell [15], fk~1 is BV on E, where [a,b]\E is countable.

Again by Russell [18], if / £ BVk[a,b] and k ^ 1, then F(x) = J* f{t)dt G

BVk+1[a,b}.

Das and Lahiri [10] introduced the definition of absolutely kth continuous func-

tions, ACk functions, and showed that every ACk function is BVk . De Sarkar and

Das [11] showed that / £ BVk+1[a,b] implies / £ ACk[a,b], for k ^ 1. The present

authors [9] showed that the first integral of an ACk function is ACk+1, for k > 1 and

also, that every fc-fold Lebesgue integral is ACk . An equivalent descriptive definition

of the A:-fold integral given by them is as follows:

A function / on [a, b] is Lk -integrable on [a, b] if there is a function F on [a, 6]

such that:

(i) F^ix) = f(x) a.e. in [a,b] and
(ii) F is ACk on [a, b].

The function F (thus uniquely determined except for a polynomial of degree k — 1,

Das and Lahiri [10, Theorem 2]) is called the Lk -integralof / on [a,b].

It is desirable to reproduce the definitions of ACk functions and Riemann* deriva-

tive for easy reference.

The function / is said to be absolutely kth continuous, ACk on [a,b] if, for

arbitary e > 0, there exists a S(e) > 0 such that, for any system {.x;̂ - £ [a, b] : i =

1,2,...,n; j = 0,l,...,k} with Yl?=i(x',k ~ *i,o) < He) and with xitJ < ; r , j + ] and

Xi,k ^ z«+i,o j the inequality

n

\xi,k xifi) \Wk\J I*I,0 |II ,1I • • • >xt,k)\ v. £
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holds.

Let x, x j , . . . , Xfc be points of [a, 6] and let hi = z< — x, for i = 1,2, . . . , k, with

0 < \h\ | < |ft2| < • • • < |ft*| • Then define the k th Riemaaa* derivative of / at x by

Dkf(x) = k\ l i m l i m . . . l im Qk(f\x,xlf...,Xk)

if the iterated limit exists. The right and the left Riemann* derivatives Dk
vf{x) and

Dk_f(x), are defined in the obvious way. Taking lim sup (respectively lim inf) at

each stage, we get the upper derivative D f(x) (respectively the lower derivative

D_kf(x)). The one sided derivatives D+f(x), D.+ f(x) a n <i s o o n a r e obtained in

the usual way. It is worth noting that simply Dk
hf(x) = Dk_f(x) does not ensure

the existence of Dkf(x). However, if in addition, Dk~1f(x) exists, the existence of

Dkf(x) is ensured. Also, if D*"1 f(x) exists, then Dhf(x) = ™i{Dk
+f{x),Dk_f{x)}

and 1>kf(x) = sup{Dk
+f(x),I>h_f(x)}. Note that, if fw(x) exists, then Dkf{x) exists

and equals /(fc)(a;). The converse is true only when k = 1.

The purpose of the present paper is to formulate an integration by parts formula

for the Pk -integral, namely, if / is Pk -integrable and G is BVk on [a, 6], then fG is

Pk -integrable. The process involves a simple and up-dated version of the integration

by parts formula for the Zk-i integral of Bergin [1]. Furthermore, it is observed that

G can be allowed to be of bounded essential A; th variation as defined by De Sarkar and

Das [13].

2. INTEGRATION BY PARTS

We shall prove the following integration by parts formula for the Pk -integral.

THEOREM 1. Let k > 1. Let f be Pk -integrable on [a, 6] and let F(x) =

(Pk) J'f.IfGE BVk[a, b], then fG is Pk -integrable, and

(Pk) f fG + (P) I (P1*-1) I* D^FG' = F{b)G{b) - F(a)G(a)

r=l

In the process of the proof we shall also obtain the following theorem.

THEOREM 2. (see [1, Proposition 5.1]) Let k > 1. Let f be Zk-i -integrable on

[a,6], and let F(x) = (Zk-\) J* f • If G £ BVk[a, b], then fG is Zfc_i -integrable, and

,6 tb

(Zk-i) fG + (Zk-2) / FG' = F(b)G(b) - F(a)G(a).
Ja va
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We remark that if Theorems 1 and 2 hold for Gi and G2 , then they hold for all
AjGi + X2G2 where Aj and A2 are real constants. In view of (3) we can therefore
assume that G and G' are non-negative; however in the case k = 2 , G' exists n.e. in
[a,b].

We first prove two lemmas.

LEMMA 1. Let k > l,let M be a function on [a,b] such that M^k~1^ is continuous
on [a, 6], and let G G BVk[a,b]. Define

r = l

Then

5 ( t - 1 ) ( x ) = M(fc-1)(x)G(a;) for all x in [a,b].

PROOF: The integrals on the right exist. In particular, {M,G) € .RS;[a,6], 1
T ^ k (Russell [16] and/or Das and Das [7]) and

(4)

Using induction, it is not difficult, (see the proof of Lemma 5.4 of Bergin [1]), to show
that

r=0

fc-1

r=p+l

A f1

for p = 0, l , . . . , fc — 3 .
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For p — k — 3 , we have

fc-3
5<*-3) =

r = 0

fc-3

r M(?(fc-2)+(-I)*-1 (z2) r
Ja Ja

r = 0

fc-4

- 2){L) fX MG<-k-V + (-l)k-2(L2)
Ja

r = 0

+ (-l)fc~3(fe - 3)(L) I
Ja

+ {-lf-2(L2) I*M'
J a

Simplifying, we obtain

^

,=o

Hence

= (L) f
Ja

using integration by parts. Since M^k~^ and G are continuous, it follows that

and thus the lemma is proved. f{

LEMMA 2. Let k > 1, let Dk~1M exist on [a,b] and let G E BVk[a,b]. Then
there is a function S on [a,b] such that, for all x in [a,b]

Dk~1S{x) = Dk-1M(x)G(x).
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[7] Integration by parts 7

PROOF: Let x e [a,b] be arbitary. Define M(i) = M(t) - P{t), where P(t) =

E*=o ((* - x)r/r\)DrM(x) . Clearly then, £>rM(x) = 0 for r = 0 , 1 , . . . , fc - 1 so that

~M(t) = o((t - z )*" 1 ) as < -» x . Set

5(i) = M(0G(t) + ]T (-l

S{t) = M(0G(0 + ]£ (-l)r (^ " X W )
r=l V r /

Then

fc-i

r = l

Since P(k~1'(t) = Dk~1M(x) for all t in [a, 6], we can apply Lemma 1 so as to obtain

(5) (5 - S ) ^ 1 ^ ) = Dk-1M(x)G{t).

In particular,

(S-S){k-1\x) = Dh-1M(x)G{x),

which yields

(6) Dk~i(S-'S){x) = Dk-1M{x)G{x).

Now, since ~M(t) - o((t - a;)*"1) as t -> x it follows that S(<) = o((t - x)*"1) as

t —» x so that £>*~1S(x) = •S'(fc_i)(x) = 0. Consequently, from (6), we obtain

D1*-1 S(x) = D1'-1 M{x)G{x).

This proves the lemma. |

COROLLARY 1. Let M,G,S,S be as above. Then for x,xi,...,Xfc in [a,b],

I • • • / G'{uk)dyk

Jo Jo

where

Ufc = (1 - 2/i)x + (yi - 3/2)^1 -I 1- (i/fc-i - Vk)*k-\ + Vk-xi,.

PROOF: From (5), (S —IT) is AC on [a, b] and so the proof is a simple
adaption of Theorem 16 of Russell [15]. |

We prove the case fc = 2 of Theorems 1 and 2 separately in a lemma.
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LEMMA 3. (a) Let f be P2 -integrable on [a,b] and let F(x) = (P2) J* f • If
G e BV2[a,b], then fG is P2-integrable on [a,b] and

(P2) I fG + (P) f (P) f F'G' = F(b)G(b) - F(a)G(a) - (L) f FG1.
Ja Ja Ja Ja

(b) Let f be Zi-integrable on [a,b] and let F{x) = (Zt)£ f. If G e BV2[a,b], then
fG is Z\ -integrable on [a, b] and

(Zj) / fG + (Zo) / FG' = F(b)G(b) - F(a)G(a).
Ja Ja

(We recall that the Zo-integral is the classical P-integral.)

PROOF: (a) Let M be any P2-major function of / on [a,b]. By Lemma 2, there
is 5 = MG - (L) f* MG' such that

S'(x) = M'(x)G{x) for all x in [a,b].

It is also clear that S(a) — S'(a) = 0. Again, by Corollary 1, for x £ [a,b] where G'(x)
exists, we have, for xllx2 £ [a,6], that

j j ' G\u2)dy2,
o Jo

where u2 = (1 - t/i )x + (yt - y2)xt + y2x2 , and 5 = HG - (L) / j ~MG'. Since M(<) =

M(t) - {M (x) + (t- x)M'(x)}, we have ~S = ItG + o((< - z)2) a s t ^ x .

Since the functions 5 and S are continuous, we may assume X\ = x + h and
x2 = x + 2h. Then applying Lemma 4 of Russell [19] and noting that A2

lS(x) =
h22l Q2(S;x,X!,x2),we obtain

2! Q2{S;x,Xl,x2) = ±A2
hS(x) + 2!M\x) J j " G'(u2)dy

2M\x) J J G'(u2) dy2

In view of (3), we may assume G(x) and G'{x) both non-negative. We note that
G'(x) exists n.e. in [a,b]. Since M(x) - M (x) = 0 and S(x) exists, we have

R2S{x) > D2M(x)G(x) + M'{x)G'(x) n.e. in [a, 6].
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[9] Integration by parts 9

Consequently, since M is a P2 -major function of / on [a, 6], we have

D2S{x) > f{x)G(x) + M'{x)G\x) a.e. in [a, b]

and D?S(x) > -oo n.e. in [a, 6]. Since F is the Zx -integral (see(l)) and M' is the
Z\ -major function of / on [a, b], it follows that

JD2S(:C) > f(x)G(x) + F'{x)G'(x) a.e. in [a,b];

D2S(x) > -oo n.e. in [a,b].

Obviously then S(x) is a P2 -major fucntion of fG + FG'. We recall that G'
exists n.e. in [a, b] and for the P2 -integrability of a function it need only be finite or
indeed defined a.e.

Similarly, for any P2 -minor function m, the function
ft

s = mG - (L) f mG'
Ja

is a P2 -monor function of fG + F'G'. Given e > 0 we can choose M and m such
that 0 < 5(6) - s{b) < e . It therefore follows that fG + F'G' is P2 -integrable, and

(P2) f (fG + F'G') = [FG]b
a - (L) f" FG'.

Ja Ja

It is obvious that JF" is Zo -integrable, that is, P -integrable and G' is of bounded
essential variation on [a, 6]. Hence F'G' is P -integrable (see Bullen [6, Section 12,

P357]), and (P) £ (P) £ FG' = (P2) £ F'G'.
Consequently, fG is P2 -integrable and

(P2) f fG + (P) f (P) ( F'G' = F(b)G(b) - F{a)G(a) - (L) f FG'.
Ja Ja Ja Ja

This proves (a).

(b) Now let / be Z\ -integrable and let F(x) = (Zi) J* f. If M is a pre-majorant
and m is a pre-minorant, then define 5 = MG—(L) f* MG' and s = mG—(L) Jx mG'.

It is sufficient to note that S' is a Z\ -major function and s' is a Z\ -minor function
of fG + FG', and

\ ') = [FG]b
a.

Since F is Zo -integrable and G' is of bounded essential variation, it follows that FG'
is Zo -integrable, and since (Zo) J* FG' = (Zx) /* FG", we have

,6 ,6
(Z,) / fG + (Zo) / FG' = F{b)G(b) - F(a)G{a).

Ja Ja
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This proves (b). I

PROOF OF THEOREM 1: (k > 2) Let M be any Pk -major function of / on
[a,b] so that Dk~1M exists everywhere in [a,b] and M(a) = DrM(a) = O,for r =
1,2,.. . , k — 1. By Lemma 2, there is

5(<) = M(0G(0 + £ (-1

such that, for all t in [a, 6],

= Dk-lM{i)G{t).

Since Af(<) = oUt - a)1"1) as * -* a, it follows that S{a) = DrS(a) = 0 for r =

1,2,.. . , k — 1. For arbitary but fixed x G [a, b] define (as in the proof of Lemma 2)

M(0 - M(t) - P(t), P(t) =
r!

r=0

and

5(0 = M(t)G(t)
r = l

Since M ( 0 = o((t - x)*"1) as < -» K , it follows that 5(0 = o((< - a;)*"1) as t -+ x

(see the proof of Lemma 2).
By Corollary 1, since 5 and 5 are continuous in [a, 6], using the relation Ak

lS(x) =
hkk\ Qk(S;x,Xi,..., Xk) , Russell [19, p.458], we obtain

+ k \ D k - 1 M ( x ) f I' •••
Jo Jo

+ k\Dk~1M(x) / • • • / G'(i
Jo Jo Jo

using Lemma 4 of Russell [19]. By (3), G(x) can be taken as non-negative. Since
M(z) = Dr~M(x) = 0 for r = l , . . . , J f c - l , and since Dk~1S(x) exists, it follows that

DkS(x) > DkW(x)G(x) + Dk-1M(x)G'(x)

= DkM(x)G(x) + Dk-1M(x)G'{x) for all x in [a,b\.
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Since M is a Pk -major function of / , we obtain

DkS(x) > f(x)G(x) + Dk-1M{x)G'{x) a.e. in [a,6];

DkS(x)> -oo n.e. in [a, 6].

Also, Dk~1M is a Zk-i -major function of / on [a, 6] and Dk~1 F is the Zk-i -integral,
relation (1), and so we have

D_kS{x) > f(x)G(x) + Dk-1F(x)G'{x) a.e. in [a,b];

DkS(x) > —oo n.e. in [a,b\.

Consequently, 5 is a Pk -major function of fG + Dk~1FG' on [a,b]. Similarly, the

function
Jfc-i

s(t) = m(t)G(t) + ^2(-l

is a Pk -major function of fG + D*"1 FG1 on [a,b]. Hence, fG + Dk-1FG' is Pk-
integrable on [a, b] and

.6 fc-i ,k _ 1 s .6

Ja ^ V r J Ja

If k = 3 , we have that / G + I>2FG' is P3-integrable on [a,b]. Also, since Z?2P is
P2-integrable and G' e 5y2[«,6], using Lemma 3(a), D2FG' is P2-integrable. By
Theorem 15 of BuUen [3], D2FG' is P3-integrable on [a,b] and

(P3) f D2FG' = (P) / (P2) r £>2FG'.
Ja Ja Ja

Hence fG is P 3 -integrable on [a, 6] and

(P3) f fG + (P) / (P2) / D2FG' = F(b)G{b) - F(a)G(a)
Ja Ja Ja

So, using induction, since Dk~xF is P*"1-integrable and G' £ BVk_1[a, b] we have

that Dk-1FG' is P*" 1 -integrable. By Theorem 15 of Bullen [3], Dk~1FG' is Pk-

integrable and (Pk) J* D"'1 FG1 = (P) fi (P1-1) J* Dk->FG1. Hence / G is Pfc-

integrable, and

(Pk) f fG + (P) f (P*-1) f Dk~lFG' = [FG}b
a

Ja Ja Ja

r = l
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so the theorem is proved. |

We note that (P) J* (P1"1) J* D^FG' is stronger than (Pk) J* Dk~1FG', ifc >
2, since there are functions which are Zk-i -integrable on [a, b] but not Zk-2 -integrable
on [a, 6]. Furthermore, since G' can be taken to be non-negative whenever it exists,
the second integral on the left can be replaced by (•£*) Ja D

k~1FG' whenever Dk~iF
is non-negative (see Proposition 4.9 of Bergin [1]).

PROOF OF THEOREM 2: (k > 2) Let / be Zk-i -integrable and let F(x) =
(Zk-i) Ja f • If M is a pre-majorant and m is a pre-minorant for the Zk-i -integral of
/ on [a, b], then Dk~1 M and Dk~1m are respectively Zk-i -major and Zk-i -minor
functions of / on [a, b]. Define 5 and 3 as in the proof of Theorem 1 (k > 2). Then
Dk~1S and Dk~1s are Zk-i -major and minor functions of fG+FG' and so fG+FG'
is Zk-i -integrable on [a, b]. Obviously then,

') = [FG]b
a

In view of Lemma 3(b), we can assume that if /* is Zk-2 -integrable on [a,b] and
G* 6 BVk-i\a,6], then f*G* is Zk-2 -integrable. Here, since F is Zk-2 -integrable
and G' is BVk-i, it follows that FG' is Zk-2 -integrable on [a,b]. Consequently, by
Propositions 4.8 and 4.10 of Bergin [1], fG is Zk-i -integrable on [a, 6] and

(Zfc_,) / fG + (Zk-2) I FG' = \FG)h
a.

Ja Ja

This proves the Theorem. |

We remark that the proofs of Lemma 3(b) and Theorem 2 of this paper seem to be
simpler than those of Propositions 5.1(a) and 5.1(b) of Bergin [1]. However, we cannot
obtain Propositions 5.6 and 5.8 of Bergin [1] with G G JBVfc_1[a,6] and G e BV[a,b]
respectively. But the aim of the integration by parts formula is to express (/) Ja fG in
terms of stronger integrals and thus our consideration is consistent.

Since Dk- and Vk -integrals of De Sarkar and Das [14] and of Bullen and
Mukhopadhyay [4] are equivalent to the Pk -integral, Theorem 1 above also provides
an integration by parts formula for each of these integrals.

Furthermore, the Lr-integrals, (throughout), 1 ^ r ^ k — 1, can be replaced by
the r-fold Riemann integral, Rr -integral, say (see (4)). Thus we obtain:

THEOREM 3. Let k > 1. Let f be Pk -integrable on [a, 6] and let F(x) =
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(Pk) J'f.IfGt BVk[a, 6], then fG is Pk -integrable on [a, 6] and

(Pk) f fG + (P) I (P"-1) f Dk-lFG' = [FG]\
Ja Ja Ja

r = l

De Sarkar and Das [13] gave the definition of functions of bounded essential A; th
variation, BAVk functions. It has been proved that a function / is BAVk on [a, b] if
and only if it is BVk on E C [a,b] with mE = b — a. Also, to each / E -B^4VJt[a,6]
there exists F E BV/t[o,6] such that F = / on some E C [a,6] with mE = b — a. We
shall call F an extension of / .

Theorems 1, 2 and 3 can easily be extended to G E BAV^la,b]. We demonstrate
an analogue of Theorem 1 only; the others follow similarly.

THEOREM 4. Let k > 1. Let f be Pk -integrable on [a,b\ and let F(x) =

(Pk) f'f.HGe BAVk[a, b], then fG is Pk -integrable on [a, b].If~G is the extension

of G, then

="?£(Pk) f fG + (P) f (P"-1) [* D^FG1 = [FG]

PROOF: We proceed as in the proofs of Lemma 3(a) and Theorem 1 (k > 2) with

G replaced by G E BVk\a, b\ and obtain relations analogous to (7) and (8), namely

DkS(x) > f(x)G(x) + Dk~1F{x)^{x) a.e. in [a,6];

DkS{x)>-oo n.e. in [a, 6],

for k > 1. Since G(x) = G(x) a.e. in [a, 6], we obtain, for k > 1

DkS(x) > f(x)G(x) + Dk-1F(x)G'(x) a.e. in [a,b);

LrS(x) > -oo n.e. in [a, 6].

Obviously then, 5(a;) is a Pk-major (fc > l ) function of fG + Dk-1FG~' on [a,6]. The
rest is clear and thus the theorem is proved. |

We remark that Theorem 6 of Bullen [5] can now be stated as follows:
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Let / G P:p(a,b) and let F{x) = (Pa*p) J* / . If F G P(a,b) and G G BV2[a,b],
then fG is P*p -integrable and

(P:P) f fG = F(b)G(b) - F(a)G(a) - (P) f' FG'.
J a J a

(The integral on the right exists, see Section 12 of Bullen [6].)
Recently, De Sarkar, Das and Lahiri [12] introduced approximate extensions of D -

and Vk -integrals, the ADk - and AVk -integrals respectively. The present authors [8]
introduced approximate extensions of the Pfe-and CkD -integrals, the APk - and AkD-
integrals respectively. Integration by parts formulae for such approximate integrals will
be considered in a subsequent paper.
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