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Abstract

This paper concerns a nonlinear doubly degenerate reaction–diffusion equation which
appears in a bacterial growth model and is also of considerable mathematical interest.
A travelling wave analysis for the equation is carried out. In particular, the qualitative
behaviour of both sharp and smooth travelling wave solutions is analysed. This travell-
ing wave behaviour is also verified by some numerical computations for a special case.
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1. Introduction

Travelling waves have played a very important role in the studies of many spatially
diffusive models. Many pattern-forming processes in chemical and biological systems
are well described by reaction–diffusion equations. The equation that we consider in
this paper arises in population dynamics. It is a simplified version of a nonlinear
diffusion model of pattern formation during bacterial growth. In scaled form,
it reads

∂u

∂t
=
∂

∂x

(
(1− u)um ∂u

∂x

)
+ u(1− u), (1.1)

where m > 0. The unknown u is nonnegative and represents the bacterial density,
x is a space coordinate and t denotes time. This model equation appeared in the study
of spatio-temporal pattern formation by bacterial colonies exemplified by the growth
of bacteria of type Bacillus subtilis on the surface of thin agar plates [4]. Specifically,
equation (1.1) is derived by simplifying the following system of reaction–diffusion
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equations [4, 10] for a bacterium u(t, x) and a nutrient n(t, x):

∂u

∂t
= Du

∂

∂x

(
num ∂u

∂x

)
+ un, (1.2)

∂n

∂t
= Dn

∂2n

∂x2 − un. (1.3)

Equation (1.1) is obtained from (1.2) and (1.3) under the assumption Dn = 0, which
models the case of a so-called hard agar (a nutrient-poor solid agar). With this
assumption, (1.1) follows upon adding (1.2) and (1.3), using the conservation of total
mass in the system, namely

d

dt
(u + n)= 0, (1.4)

replacing n with 1− u, and a suitable rescaling.
Biologically, such nonlinear diffusion is a result of cooperative bacterial cell

motion. Mathematically, (1.1) may be classified as being of nonlinear degenerate
parabolic type. As a result, Satnoianu et al. [10], by means of numerical simulations
for the special case m = 1, verified the existence of a travelling wave front solution
of sharp type corresponding to a minimum wave speed. Such an existence result
for this case was also established by Malaguti and Marcelli [5] using comparison-
type techniques, by applying the upper and lower solutions method. There are also
a number of papers that study reaction–diffusion equations with degenerate diffusion,
in particular, in the case D(u)= u, where degeneracy occurs at only one point, u = 0
[3, 12, 13]. Garduno and Maini [3] used regular perturbation theory to calculate the
form of the sharp wave front when small changes are made to the diffusion coefficient,
in the form D(u)= u + εu2. Using singular perturbation theory, Sherratt [12] derived
an asymptotic approximation to the smooth wave fronts with speeds close to that of the
sharp front solution, and provided a comparison with earlier numerical results [13].

For an extensive review of the literature on sharp and smooth travelling wave fronts
in reaction–diffusion equations with degenerate diffusion, and applications to ecology
and cell biology, where density-dependent diffusion is a common feature of spatial
modelling, see [12]. In ecology, such wave fronts correspond to invasions. In cell
biology and bacterial colonies, they correspond to the edges of expanding populations.

The main purpose of this paper is to perform a travelling wave analysis of the
general model equation (1.1) involving doubly degenerate diffusion term, and to give
a more complete picture of the travelling wave behaviour of its solutions.

2. Travelling wave analysis

Both experimental data and numerical simulations [4, 7, 8, 10] indicate that the
reaction–diffusion process is characterized by wave fronts moving with constant speed.
Thus, we look for travelling wave solutions of (1.1) corresponding to a front and
satisfying the boundary conditions

u(−∞, t)= 1, u(∞, t)= 0. (2.1)
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To find such travelling wave solutions, we let

u(x, t)= u(z), z = x − ct, (2.2)

where c > 0 is the wave speed. Substituting (2.2) into (1.1) yields

−c
du

dz
=

d

dz

(
(1− u)um du

dz

)
+ u(1− u), (2.3)

with boundary conditions

u(−∞)= 1, u(∞)= 0. (2.4)

The standard method for analysing (2.3) with (2.4) is to write it as a phase plane
system. Therefore, we define

v = (1− u)um−1 du

dz
(2.5)

to obtain
du

dz
=

v

(1− u)um−1 , (2.6)

dv

dz
=−

(c + v)v + um(1− u)2

um(1− u)
, (2.7)

which is a singular ordinary differential equation (ODE) system. In order to resolve
this singularity of (2.6)–(2.7), one can use the following reparameterization. Let τ
be such that dτ/dz = 1/(um(1− u)) > 0 for all z. Then, in terms of τ , the system
(2.6)–(2.7) becomes

du

dτ
= uv, (2.8)

dv

dτ
=−(c + v)v − um(1− u)2, (2.9)

which is not singular. Moreover, given that 1/(um(1− u)) > 0 for 0< u < 1, the
dynamics given by systems (2.6)–(2.7) and (2.8)–(2.9) are the same in the half plane
{(u, v) | 0< u < 1,−∞< v <+∞}. Thus, we analyse the dynamics of (2.8)–(2.9).

The ODE system (2.8)–(2.9) has the following three stationary points:

p1 = (1, 0), p0 = (0, 0), pc = (0,−c).

Hence, searching for travelling wave solutions of (1.1) is equivalent to looking for
heteroclinic trajectories of (2.8)–(2.9), which connect the above stationary points.
This is also equivalent to looking for solutions in graph form v = v(u) < 0, 0< u < 1,
satisfying the ODE

dv

du
=−

(c + v)v + um(1− u)2

uv
. (2.10)
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Thus, to analyse the local behaviour of solution trajectories near the stationary points,
we use (2.8)–(2.9) as well as (2.10). A linear analysis of (2.8)–(2.9) about p1 shows
that p1 is a non-hyperbolic point, and the eigenvalues of the Jacobian matrix associated
with (2.8)–(2.9) at p1 are λ1 = 0 and λ2 =−c, with corresponding eigenvectors
e1 = (1, 0) and e2 = (1,−c). Clearly e2 points towards p1, so that any travelling wave
must originate from p1 along the e1 direction. Because of the nature of this point, we
can apply the centre manifold theorem [1] and use a Taylor expansion of (2.10) around
p1 to obtain an approximation of the trajectory locally around p1. Hence, we find that

v1(u)=−
(1− u)2

c
+ · · · . (2.11)

Then, in this case, from (2.8) we obtain

du

dτ
≈−

(1− u)2

c
,

so that u→ 1 as τ →−∞. Then (2.6) gives, for (u, v)≈ (1, 0),

du

dz
≈−

1− u

c
,

so that u→ 1 as z→−∞.
Linearizing (2.8)–(2.9) at pc shows that pc is a saddle point. The eigenvalues of

the Jacobian matrix associated with (2.8)–(2.9) at pc are λ3 =−c and λ4 = c, with
corresponding eigenvectors e3 = (1, 0) and e4 = (0, 1). In this case, a travelling wave
trajectory (type I solution) approaches pc along the eigenvector e3, being the tangent
to the right-stable manifold, giving, more precisely,

vc(u)=−c +
um

(m + 1)c
+ · · · . (2.12)

Hence, in this case we obtain

du

dτ
≈−cu +

um+1

(m + 1)c
,

so that u→ 0 as τ →∞. Then (2.6) gives, for (u, v)≈ (0,−c),

du

dz
≈−cu1−m,

so that u reaches zero at a finite value of z, i.e. zmin <∞. More precisely, we have the
asymptotic behaviour

u(z)≈ (mc(zmin − z))1/m .

A local analysis of (2.8)–(2.9) about p0 shows that p0 is a non-hyperbolic point.
The eigenvalues of the Jacobian matrix associated with (2.8)–(2.9) at p0 are λ5 = 0
and λ6 =−c, with corresponding eigenvectors e5 = (1, 0) and e6 = (0, 1). The centre
manifold theorem and Taylor expansion of (2.10) around p0 give the approximation of
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the trajectory locally around p0, in the form

v0(u)=−
um

c
+ · · · . (2.13)

In this case, any travelling wave trajectory (type II solution) must enter p0 along e5,
being the tangent to the centre manifold. Hence, (2.13) gives

du

dτ
≈−

um+1

c
and

du

dz
≈−

u

c
,

so that u→ 0 as τ →∞, and as z→∞.
For completeness, we use the monotonicity properties of the trajectories with

respect to the speed parameter c to establish the uniqueness of the trajectory connecting
p1 and pc (type I solution). From (2.11), we find that for any c > 0 and u < 1,

∂

∂c
v1(u, c)'

(1− u)2

c2 > 0.

Hence, v1(u, c) is strongly monotonically increasing in c for every 0< u < 1; see
Figure 1. Similarly, from (2.12) we have, for small u,

∂

∂c
vc(u, c)'−1−

um

(m + 1)c2 < 0.

Hence, vc(u, c) is strongly monotonically decreasing in c for every 0< u < 1.
Therefore, we deduce that if there is a solution trajectory connecting p1 to pc, then
this is a finite sharp travelling wave solution with a minimum speed cmin. All other
solutions are the trajectories (type II solutions) connecting p1 to p0, and corresponding
to smooth travelling wave solutions with speeds larger than the minimum speed. In
addition, by using arguments like that in [2], one can establish the existence of such
types of solution trajectories.

To conclude, we present an argument for the following result. This travelling wave
behaviour will also be shown numerically for special cases.

Equation (1.1) admits:

(i) a travelling wave solution u(x, t)= u(x − ct)= u(z) for a minimum speed
cmin > 0, satisfying u(−∞)= 1, u(z)= 0 for all z ≥ zmin, where zmin <∞,
du/dz(−∞)= 0, du/dz(zmin)=−cmin, and du/dz(z)= 0 for all z ≥ zmin;

(ii) a travelling wave solution u(x, t)= u(x − ct)= u(z) for speeds larger than the
minimum speed, satisfying u(−∞)= 1 and u(∞)= 0.

In order to determine speeds c and find trajectories corresponding to travelling
wave solutions, we solve numerically the phase trajectory equation (2.10) using an
adaptive step Runge–Kutta scheme of fourth order [9] for initial conditions that have
been estimated from (2.11). As a result, we compute the unique trajectory from p1 to
pc for the minimum speed cmin, and trajectories from p1 to p0 as the speed increases
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c = cmin

c = 0.6

c = 1.2

–0.35

–0.3

–0.25

–0.2

–0.15

–0.1

–0.05

–0.4

0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
u

0 1

FIGURE 1. The solution trajectories for the case m = 2 and different wave speeds.

beyond cmin. The minimum speed can be computed as follows. Taking δ1 = 0.0001
and usmall = 0.005, we start with ustart = 1− δ1, terminate at uend < usmall, and equate
v(usmall, c)= vc(usmall, c) by using the following iteration scheme [6]:

c = c − δ(v(usmall, c)− uc(usmall, c)),

where δ is the relaxation factor and uc(u, c) is given by (2.12), for c = c0. The
stopping criterion is as follows: choose a suitable δ, say δ = 0.3, and iterate until
|c − cmin|< ε, where ε is some tolerance value.

For the special case m = 1, the minimum speed was found to be cmin ≈ 0.561 465,
while for the special case m = 2 for which the plots are shown, cmin ≈ 0.318 015. It
is clear that the minimum speed of the sharp type wave front, cmin, decreases as m
increases. In Figure 1, we plot solution trajectories for different speeds, c = cmin and
c > cmin. Figure 2 shows the solution trajectory connecting p1 to pc with local forms
given by equations (2.11) and (2.12). Figure 3 shows the solution trajectory connecting
p1 to p0 with local forms given by equations (2.11) and (2.13).

To obtain approximations of the wave profiles corresponding to the solution
trajectories shown in Figures 1–3, we solve the ODE system (2.6)–(2.7) for
increasing z using the fourth-order Runge–Kutta method with step size control. The
initial values of u, v at some value of z, say z = 0, have been estimated from (2.11).
Figure 4 plots the numerical solution of (2.6)–(2.7) for the minimum speed, showing
a wave of sharp type. Figure 5 shows the solution of (2.6)–(2.7) for a speed larger
than the minimum speed, showing a smooth wave. The sharp and smooth travelling
waves established by this analysis are known solutions of (1.1). The transition from the
sharp type wave to the smoother waves can be shown by solving the partial differential
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FIGURE 2. The solution trajectory for the minimum speed, as in Figure 1, with the local forms (dashed
lines) around p1 and pc given by equations (2.11) and (2.12), respectively.
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FIGURE 3. The solution trajectory for the large speed c = 0.6, as in Figure 1, with the local forms (dashed
lines) around p1 and p0 given by equations (2.11) and (2.13), respectively.

equation problem for asymptotic initial conditions. If the initial conditions have decay
of the form u(x, 0)= exp(−ax), then the speed of the waves follows the dispersion
relation

c =

{
1/a, a < 1/cmin,

cmin, a > 1/cmin.
(2.14)
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FIGURE 4. The sharp travelling wave solution corresponding to the solution trajectory in Figure 2 in the
case m = 2, with the minimum speed cmin ≈ 0.318 015.
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FIGURE 5. The smooth travelling wave solution corresponding to the solution trajectory in Figure 3 in the
case m = 2, with speed c = 0.6> cmin.

This dispersion relation can be derived by applying leading edge analysis to the
evolving wave, similar to that performed in [10]. This form of wave speed dependence
on initial conditions is familiar from parabolic partial differential equations [11].

3. Conclusion

We have considered a doubly degenerate reaction–diffusion equation which appears
in a bacterial growth model that incorporates cell movement in the nonlinear diffusion
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term and cell proliferation in the reaction term. This model equation describes
the spatio-temporal pattern formation by a bacterium and a nutrient when assuming
conservation of total mass. We have performed a travelling wave analysis for the
equation. In particular, we have analysed the qualitative behaviour of both sharp and
smooth travelling wave solutions. To verify this travelling wave behaviour, we have
presented some numerical computations for a special case by solving the travelling
wave equation as an initial-value problem and using a suitable iteration scheme, giving
approximations of the minimum speed for which the wave is of sharp type, and smooth
wave profiles for speeds larger than this minimum speed. These results concerning the
travelling wave behaviour provide more understanding of the structure of the model
equation. In addition, our computations lead to accurate values for the minimum speed
of the sharp type wave front, in comparison with previous computations [4, 10].
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