BULL. AUSTRAL. MATH. SOC. 42A18, 43R22
VOL. 7 (1972), 321-335.

Isomorphisms of some convolution

algebras and their
multiplier algebras

U.B. Tewari

Let Gl and 62 be two locally compact abelian groups and let

1 =p <® ., We prove that G1 and 62 are isomorphic as
topological groups provided there exists a bipositive or isometric
algebra isomorphism of M(Ap(Gl)) onto M(AP(G2]) . As a
consequence of this, we prove tHat Gl and 62 are isomorphic
as topological groups provided there exists a bipositive or

isometric algebre isomorphism of Ap(Gl) onto Ap(G2) . Similar

results about the algebras Ll n Lp end Ll n CO are also

established.

1. Introduction

Let G be a locally compact asbelian group and let 1 <p < ® ,
(Llan}(a) is the Banach algebra L,(G) n Lp(G) with the norm

Wiy p = 17y + AL, (F € 2y (@It (6)

and the convolution as multiplication. Similarly, (Lln(,'o](c) is the

Banach algebra Ll(G) n CO(G) with the norm

Iy o = Ay + A, (€2 (c)ncy(e))
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and the convolution as multiplication. Ap(G) is the Banach algebra
consisting of all those functions f € Ll(G) such that 7 ¢ Lp(a) vhere
G denotes the dual group of G . The multiplication in AP(G) is the

convolution and the norm is given by

IF1Z = £, + 171, (f e AP(G))

A multiplier T on a commutative semi-simple Banach algebra A is a
function on 4 to A4 such that (Tx)y = T(ay) = z(Ty) for all
x, Yy €A . It is well known that a multiplier T of A4 is a continuous
linear operator on A and the set M(4) of all multipliers of A forms a
commutative Banach algebre with multiplication as composition and the norm
as operator norm. The properties of multipliers are discussed in Larsen
[5] and for any definitions and results not mentioned in this paper we

refer the reader to [5].
In this paper we are concerned with some subalgebras 4 of l}l(G)

For such an algebra A , a multiplier 7 of A is said to be posgitive if
Tf = 0 almost everywhere whenever f = 0 almost everywhere and f € 4

Let Gl and G2 be two locally compact abelian groups and let A] and

A2 be linear subspaces of Ll(Gl] and Ll(Gz) respectively. A linear

transformation S : 4, + A, is called bipositive whenever Sf = 0 almost

everywhere if and only if f = 0 almost everywhere. The bipositive

mappings between spaces of multipliers are defined analogously.
The main theorem of this paper is the following:

THEOREM 1. Let G» G be locally compact abelian groups and

2

lsp<>. G and G, are isomorphic as topological groups rrovided
there exists a bipositive or isometric algebra isomorphism of M(Ap (Gl))

onto M (Ap (GZ) )

As a consequence of Theorem 1 we shall prove that Gl and G2 are

isomorphic as topological groups provided there exists & bipositive or

isometric algebra isomorphism of Ap[Gl) onto AP[GQ] .
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Similar results about the algebras l}l n Lp and Ll n C‘O are also

established.

The proof of our Theorem 1 heavily depends on the techniques of Gaudry

in proving his Theorems 1 and 2 in [1].

2. Multipliers of AP(G)
In this section we characterize norm preserving and positive
multipliers of Ap(G) . We prove two other propositions which are used in
proving Theorem 1.

PROPOSITION 1. Let G be a compact abelian group and let T be a

norm preserving multiplier of AP(G) . Then there exists a € G and a
complex number X of absclute value 1 such that T = )\'ra where T,
denotes the operator of translation by amount a .

Proof. Let Yy € G . Then Y *Y =Y and hence
T(y) = T(y*y) = Py * Y . Therefore T(y) = ¢(y)y where o¢(y) is a
complex number. Since T is norm preserving it follows that lda(‘{)l =

Now, for any trigonometric polynomial Z aiYi , we have
1

"T(g aqu;}”p - “;21 aiT(Yi)’l + (;f la;oly,) 'p}l/P
=N4§%n]l+@!%wlm

On the other hand, since T 1is norm preserving
n 4
Jrlf ecns) - 1 =
] T

W
ax.l +
1 vty

1/p

i}

£ 1e:¥]

Therefore

ot <cxl, - oo

1
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Since trigonometric polynomials are norm dense in Ll(G) we conclude
that there exists a unique norm preserving multiplier 7T' of Ll(G) such
that T'f=Tf for each f € Ap(G) . Hence by Theorem 3 of Wendel [7] it
follows that there exist A and a as desired such that

If = M f (F € AP(G)) .

REMARK. It can be easily seen that Proposition 1 is true for
arbitrary locally compact abelian groups G . The analogues of the
proposition for the algebras Ll n Lp and Ll n C, ere elso valid.

The case of Ap(G) for noncompact G is exactly similar to that of
Ll n Lp and Ll n CO . We give a proof for the case Ll n Lp « The crux
of the matter is that in each of these cases the multiplier algebra is
isomorphic to the measure algebra M(G) (see Larsen [5]).

Let T be a norm preserving multiplier of (Llan) (G) . Then there
exists a measure U € M(¢) such that
If=uwf (f €@y )@)
and Jlull =1 . Now
hueslly 5 = luefll, + Mu*fllp .
Also ”u*f”l,p = "f”l,p . Therefore

(1) ueflly + ||u*fllp = |Ift, + IIfllp .

Since |lull =1 , (1) implies
huaslly = Il G € (5,08,)(0)) -
Since (Llan) (G) 1is norm dense in L,(G) we get the desired result, once

again by Wendel's Theorem 3 in [7].

PROPOSITION 2. Let G be a compact abelian growp and let T be a
positive multiplier of Ap(G) . Then there exists a unique positive

measure W € M(G) s8uch that Tf =y + f for every f € Ap(G) .
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Proof. From Theorem 6.2.2 of [5] it follows that there exists a
unique pseudomeasure 0 such that 7f =0 = f for each f in Al(G) .

To show that O is actually a positive measure we shall show that O
defines a positive multiplier of L2(G) , that is 0 %= £ 2 0 almost

everywhere for every [ € L2(G) such that f =2 0 almost everywhere, and

then an application of Theorem 3.6.1 of [5] will imply that o is a

positive measure.
Let now f € L2(G) such that f =2 0 almost everywhere. From Theorem

33.12 of [4] it follows that Ll(G) admits an approximate unit {ua}aGI

such that Uy, 2 0 almost everywhere and ﬁa has compact support. Clearly

uy € Al(G) for each a € I . Since L2(G) c Ll(G) therefore

U, * f ¢ Al(G) and U, * f =2 0 almost everywhere. Therefore

0 *u * f =20 almost everywhere for each " € I . Since

o % f € L2(G) c Ll(G) it follows that O * u % f converges to O * f in

the norm of Ll . Therefore there exists a sequence {ua } such that
n’a el
n

o *u, * f converges to O * f almost everywhere. Hence o0 % f 20
n

almost everywhere and O 1is a positive measure. Since 0 « f = Tf for
each f in AL(G) and Al(G) is norm dense in AP(G) it follows that

o « f=Tf for each f € Ap(G) . This completes the proof of the
proposition.

REMARK. It can be easily seen that Proposition 2 is true for
arbitrary locally compact abelian groups G . The analogues of the

proposition for the algebras Ll n Lp and Ll n CO are also valid. Once

again the case of Ap(G) for noncompact G 1is exactly similar to that of
L1 n Lp and Ll n CO and the crux of the matter lies in the fact that in
each of these cases the multiplier algebra is isomorphic to the measure

algebra M(G) . The proof is easy and hence omitted.

PROPOSITION 3. Let G be an infinite compact abelian growp and
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1 =p<eo. Let {m]}

;Yo be anmet in M{AP(G)) such that {(m.}. . is

bounded in the norm of M(AP(G)] . Then there exists a subnet {mk } of
7

{mi} such that

1in [ [ )] w0ar = [ (atn) o

A

for each f € Al(G) . &y denotes the Haar measure on G .

Proof, Case 1. 1 p = In this case there exists a continuous

2
algebra isomorphism of M(AP(G)) onto P(G) , where P(G) denotes the set

IA

of all pseudomeasures on G (see Corollary 6.4.1 of [5]). If m € Ap(G) s

then 0 1is the unique pseudomeasure such that

f (m(f))A(Y)dY =(f, o) for every f € Al(G)

and
14
= |im
HOIIP(G) ll ” s
where | P denotes the multiplier norm of m . Let O, correspond to
m; . Then {01:} is a net of pseudomeasures bounded in the norm of

pseudomeasures. Therefore, since Al(G)* = P(G) , there exists a subnet

{ok} of {Oi} and © € P(G) such that
7

(2) lim <f, ok->= (f, o) (feala) .
1 3

Let O ©be the pseudomeasure corresponding to the multiplier m of

Ap(G) . Then (2) implies

lim f [mki(f)]A(Y)dY = f (m(F)) " (v)dy

1

for every f € Al(G) .

Case 2. 2 <p <, 1In this case, by Theorem 6.4.2 of [5] there
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exists a continuous linear isomorphism B of M(AP(G)) onto Bp(G)* >

defined by

B(D)(F) = JG (T ar (f € 8,(6) .

Bp(G) is the normed linear space whose elements are those of Al(G) and

the norm is defined by
Il = sw {18 + 7 € wa (@), 1P <1} .
T p

Thus {mi} can be considered as a net in Bp(G)* and the boundedness

of {m:} in the norm of M[AP(G)] implies that it is also bounded in the

k} of {mi} and

norm of Bp(G)* . Therefore there exists a subnet {m
7
m € M(AP(G)) such that

for every f € Al(G) .

PROPOSITION 4. Let G5 G,

let 1 <p <, If there exists an algebra isomorphism ¥ of M(Ap [Gl))

be locally compact abelian groups and

onto M(Ap (62)] then either both of the growps G

1 and G, are compact

or both of them are noncompact.

Proof. To prove the proposition we shall show that if one of the

groups, say Gl » is compact then 62 is also compact. Suppose 62 is
noncompact. Then M(Ap (GQJ] is isomorphic to M(Gz] . Thus Y can be
considered as an algebra isomorphism of M(Ap (Gl)) into M(Gz)
Identifying the pseudomeasures on Gl which define multipliers of Ap (Gl]
with the corresponding multipliers of Ap[Gl) we see that the restriction
of ¥ to Ll [Gl) is an algebra isomorphism of Ll (Gl) onto M(Gz) . By

Theorem 4.1.3 of [6] it follows that there exists a subset Y of 52 and
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a piecewise affine map o of Y into &l such that for every
fer (),

flaty)) if yev,

A y) =
) 0 ir yfFY.
Let o € M(AP(GI)] and f €4,(G)) . Then o % f ¢ Al(Gl) and we
have )
(¥(oxf))"(y) = (o*f)" (aly))

8 (a(v))Flaty))

for every Y €Y . On the other hand Y(o*f) = Y(0) * Y(f) . Therefore

(Wlo*f)) ™ (y) = (W(0)) " (y) (¥ (M) (v)
(w(0)) "~ (¥)7(al(y))

for every Y € Y . Hence

(3) () Fav)) = @) " (MF(aly)) for y €Y.

Since (3) holds for every [ € Ay [Gl) we obtain

(%) (W) (y) =0ofaly)) for vy ey .

Now we prove that « is one to one on Y . Let Y5 Yo € Y such
that v, # Y, - Choose u € M(G)) such that fly,) # ﬁ(vz) . Next,
choose 0 € M(Ap (6,)) such that ¥(o) = u. Then iufy,) =8(aly,)) ana
ﬁ(ye) = a{a[yz)] . Hence G(a(yl)) # a(a(vz]] and therefore

a(Yl) # Q(Yg) ‘

Next we show that oY) = &l . Since E:l is discrete, oa(Y) is
closed in & . If a(Y) # G, , there exists f € 4,(G,] such that f=o0

on a(Y) , but ?' is not identically zero. Since 3" °©a =0 we have

Y(f) = 0 ; but this contradicts that ¥ is one to one.

~

Finally we prove that Y = 62 .

subset of 32 there exists u € M(G2] s H # 0 , such that R=0 on Y.

If Y # &2 , since Y 1is a closed

Choose 0O € M[Ap(Gl)) such that ¥(o) =p . By (4), 6 =0 on &l and
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therefore o =0 ; but ¥(o) = yu # 0 , a contradiction.

Thus we have shown that o is a piecewise affine homeomorphism of @2

A

onto Gl . Since & is discrete it follows that &2 ig discrete and

1
hence 62 is compact. This completes the proof of the proposition.

REMARK. The proof of Proposition 4 is based on the idea of the proof
of Theorem 4.6.4 of [4].

3. Proof of Theorem 1
If G, and G, are noncompact then M(Ap(ci)) is isometrically
isomorphic to M[Gi) (see Theorem 6.3.1 [5]); therefore the result
follows immediately from Theorem 1 and 2 of [1].

We shall now assume that G, and G2 are compact.

1

Case 1. Suppose there exists an igometric algebra isomorphism T of
M(Ap (6,)) onto M(Ap (6,))

For each a € Gl consider the translation operator Ta . This
multiplier is norm preserving and has norm preserving inverse T_a . Thus
TTa has norm one and so does its inverse. It follows that TTa is, in
fact, norm preserving. It follows from Proposition 1 that TTa is of the
form

TTa = A(a)ra .

where |Ma)| =1 ana a' €@ It is easy to see that a' is uniquely

5 -
determined by a . From the fact that T 1is an isomorphism it is easily

seen that the mapping ¢ : @ * a' is an algebraic isomorphism of Gl onto

02 . Since Gl and 62 are compact and Hausdorff, to prove that ¢ is a

homeomorphism we need only show that ¢ is continuous. Let e and e’

denote the identities of the groups Gl and 02 respectively. To prove

the continuity of ¢ it is enough to show that if {ai} is a net in G,

such that a; > e , then @(ai] ~e' in G, .
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Suppose {9 (ai]} does not converge to e' . Then there exists a
neighbourhood U of e' and a subnet of {¢[ai]} vhose elements remain
outside U for large ¢ . Without loss of generality we shall assume that
¢(ai] € CU (the complement of U ) for all % . Consider then the net

{T'ra } . This net is bounded in the norm of M(Ap [62]] . By Proposition
1

3 it follows that there exists a subnet of {T‘ra } which, for the
7

simplicity of notations, we again denote by {TTa } , and a multiplier
7

m € M(Ap (6,)) such that

(5) Lin f (TT%-] () )y = f (m ()" (v )dy

for every [ € Al[G2) 3 dy denotes the Haar measure on 02 .
For h € Al (Gl) let m, be the multiplier defined by the convolution

by h . Then T, h+h in M(Gl] , and since the topology of M(Gl) is
7

stronger then that induced by M{4_(G,)) , we have m_ & > m in

p a.
1

M(Ap(Gl)] . Since T is continuous, we get

T(m_[a .h} + T (mh)

But m_ h=rt - Therefore

T[Tai]~T[mh] + T(m,) in M(AP[GZ))
Hence for each f € Al (6‘2) we have

(6) f [zl )2 )] nar - [ @) ma

From {5) the left hand side of (6) tends to
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I (me1(m, ) (£)) " (¥)dy .
Therefore
(1) f (7 m) (£) ")y = f (mer (m, (£))) (v)dy
for every f € 4,(G,)
From (7) it follows that T(m) and m-T(m) , considered as elements
of Bp(Gz]* , are identical. Therefore

(8) T(mh) = m-T(mh)

Applying T-1 to (8), we get
-1
(9) m, = T (m)°mh
From (9) it follows that T “(m)(h*#g) = h * g for all
h, g €4 (6) . since 4,(6) »4,(6)) is dense in 4,(6,) it follows

that

T'l(m)(g) =g for all g € Al(Gl)

Therefore T_l(m) = identity . Hence m = identity . Thus we have shown

that {TTa } considered as & net in Bp[sz* converges to Tt in the
7

weak-star topology.

Also {X[ai)} has a subnet converging to a complex number A since
|A(ai)| =1 for all < . Further, since 02 is compact, {¢(ai]} has a
subnet converging to some element a' of G, . Obviously a''#e' . To

save renaming, suppose, without loss of generality, that A[ai) + A and

¢(ai) + a' . Then A(ai)1¢(a ) -+ ATa, in the weak-star topology of

B (62]* . Since A[ai)1¢(ai) = TTai it follows that AT, =T, . This
is possible only if a' =e' and A =1 . Since a' #e' , we have

reached a contradiction.
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Case 2. Suppose there exists a bipositive isomorphism of M(Ap [Gl])

onto M(A . (02))

We begin with a € Gl and the multipliers T, and T_a . Then T‘ra
and TT_a are both positive muitipliers. From Proposition 2 it follows
that there exist positive measures u and Vv such that

(Tt )(F) =nwf

(TT_a] (fl=vs=f
for f ¢ Al (02] . DNow it can be established, along the lines of the
argument used in the proof of Case 1 of Theorem 2 of [1], that ¥ and Vv

are both Dirac measures and that T‘ra = 'I.'a, s T'r_a = Tb' , say, where

b' = -a' . Further it can be easily seen that the mapping ¢ : a + a is

an algebraic isomorphism of Gl onto 02 .
To complete the proof of the Theorem it remains only to show that ¢
is continuous. To this end we observe that we can copy the argument used

in Case 1 once we observe that T is continuous and {TTa } is a net
1

bounded in the norm of M(Ap [62)] . The continuity of T follows from the
fact that it is an algebra isomorphism of the commutative Banach algebra

M(Ap(Gl)) onto the commutative semisimple Banach algebra M(AP(GQ]) . The

boundedness of the net {T‘ra } follows from the continuity of T .
7

REMARK. It is easily seen that Gl and 62 are topologically

isomorphic if there exists a bipositive or norm decreasing algebra
isomorphism of M((Llan) (Gl)) onto M((Lln[/p) (62)) or of M((Llnco) [Gl)]

onto M([Llnco) (62)) . Also if G, and G, are noncompact, "isometric"

can be replaced by 'norm decreasing" in Theorem 1. All these results
follow from Theorem 3.1 of [2] and the fact that the multiplier algebras

involved are all isometrically isomorphic to M(Gi) as Banach algebras.
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We need the following proposition in order to derive some consequences

of Theorem 1 and the above remark.

PROPOSITION 5. Let F(Gl) and F[GZ) be ideals of I, (cl) and
Ll (Gz) s respectively, which are Banach algebras in their own norm and let
u(F(G;)) denote the multiplier algebra of F(Gi) . If S 1is a bipositive
or isometric algebra isomorphism of F(Gl) onto F(62) then S induces a
bipositive or isometric algebra isomorphism of M[F(Gl)] onto M[F[Gz)) .

Proof. The induced isomorphism ¢ : M(F(Gl)] -> M(F(Gg)) is given by
¢ : T~ STS-]' . It is routine to check that ¢ is bipositive or isometric
depending on whether S is bipositive or isometric.

REMARK. The assumption thet F(G;) is en ideal in I,(G;) is made
to ensure that F(Gi] is a semi-simple algebra, so that it is meaningful

to talk about the multiplier slgebra of F(G,)

COROLLARY 1. Let G, and G, be locally compact abelian groups and

let 1 =p <. Then Gl and G, are isomorphic as topological groups

provided there exists a bipositive or isometric algebra isomorphism of
Ay (6,) onto A, (G,) -

Proof. The result follows immediately from Proposition 5 and Theorem

COROLLARY 2. Let Gy» G, and p be as above. Then G, and G,

are isomorphic as topological groups provided there exists a bipositive or
igsometric algebra isomorphism of (Llan) (Gl] onto (Llan) (62] or of
(z,0c,) (6)) onto (Llnco) (6,) -

Proof. The result follows immediately from Proposition 5 and the
remark following the proof of Theorem 1.

REMARK. If G, and G, are compact then "isometric" can be
replaced by "morm decreasing” in Corollary 1.
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Proof of the Remark. Suppose Gl and 6'2 are compact and T is a

norm decreasing algebra isomorphism of Ap(Gl) onto Ap(GZ’) . If

~

y €8, ,

we shall show that 2Py ¢ 52 . Bince T is an isomorphism we get
T(y) » T(y) = T(ywy) = 7(y) .
Now (fy)" =1 or 0 . If (Ty)" takes value 1 at two distinect
characters then

IzylP 21 + 2MP 5 o,

This contradicts the fact that T is norm decreasing. Therefore
(TY)" takes value 1 at one and only one character because T 1is a norm
decreasing isomorphism. This implies that Py € 52 . ’

n
Consider now an arbitrary trigonometric polynomial z aiYi on G

1 L
Then
w Rl e ]
< "? a¥; . + @‘ ]ailp]l/l’ -

The inequality follows because T 1is norm decreasing. From (10) we

conclude that

“ ? nle
T[ a-Y-”’ = a.Y.” .
1 Y ”l 7zlly

This shows that T can be extended as & norm decreasing isomorphism

of Ll (Gl) onto Ll (62) . The result now follows from Theorem 3 of [3].
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