
A GENERALIZATION OF AN INEQUALITY 
OF HARDY AND LITTLEWOOD 

K. T. SMITH 

1. Introduction. A well-known inequality of Hardy-Littlewood reads as 
follows (4): if p > 1 and / > 0, then 

f f(x)pdx <A ( f(x)pdx, 

where /(x) is defined as the supremum of the numbers 
•J f*X+V 

V + U J *x+v 
f{t) dt; 

x—u 

the constant depends on p only. The statement obtained by putting p = 1 
is false; its substitute reads: 

f(x) dx < A \ f(x) dx + B \ f(x) log+f(x) dx 
a *) a *J a 

+ e; 

the constants depend on e but not on / . The Hardy-Littlewood inequality has 
had several important applications: to function theory, harmonic functions, 
Fourier series, and the strong differentiability of multiple integrals —to 
mention those with which the author is acquainted. The application to har
monic functions is the following (4): 

Let u(r, 0) be a non-negative harmonic function in the unit circle, and for each 
<j) define 

u(4>) = sup u(r, 0). 
0<r<l 

Then if p > 1, 

J
»2TT S*2TT r%1r 

u(<t>)pd<l> < A s u p w( r , <t>)pd(j> = A u(<j>)pd(l>f 
0 0<r<l */0 t / 0 

where u(4>) = u(\, <j>) is the boundary function for u and where A is a constant 
depending on p only. 

Since the original appearance of the inequality there have been a number of 
generalizations. I t was formulated for w-dimensional space by Wiener (14) 
and used to prove dominated individual ergodic theorems. The w-dimensional 
case was used also by Calderôn and Zygmund (3) to prove dominated point-
wise convergence of singular integrals. It was formulated for certain types of 
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locally compact topological groups with Haar measure by Calderon (2) and 
used again to prove ergodic theorems. It was formulated in a weaker version 
for metric spaces with an outer measure of the type considered below by 
Rauch (8) and used to prove ergodic theorems and theorems about analytic 
functions of several complex variables. The latter are described after Theorem 
4 below.1 

The object of this note is to give the inequality a general form valid for 
certain types of measures on metric spaces and to give applications of the 
general form of the inequality to harmonic functions, subharmonic functions, 
and strong differentiability of multiple integrals. 

2. The inequality. Most of the arguments are based upon a simple 
covering theorem which appears implicitly in Banach's proof of the Vitali 
covering theorem. It can be stated as follows.2 

LEMMA 1. Let © be a family of spheres in a metric space. If © satisfies the 
conditions (i) and (ii) below, then it contains a disjoint sequence {S(xny rn)} 
such that 

oo 

Z S(x,r)C T,S(xn,4rn). 

The conditions are as follows: 

(i) There is a number R such that for every S(x,r) G ©, 0 < r < R. 

(ii) If {S(xnj rn)} is any disjoint sequence in ©, then rn —• 0. 

By using the notation S(x, r) for the sphere with center x and radius r we 
agree tacitly that a sphere is an object determined by a center and a radius. 
In the applications of Lemma 1 it is the set of points included in the sphere 
which is important. In order to apply the Lemma to a family of sets each of 
which is a sphere with respect to several centers and several radii it will be 
necessary to demonstrate the possibility of choosing for each set one center and 
one radius in such a way that the hypotheses of the Lemma are satisfied. This 
arrangement has been picked in order to avoid an unnecessary hypothesis 
excluding isolated points in the metric space. When the space consists solely 
of a finite number of isolated points the inequality becomes an inequality on 
finite sums of some interest in itself. It is to this special case that the greater 
part of the proof of Hardy and Littlewood is devoted. 

We shall consider a metric space B on which there is a regular outer measure 
subject to the conditions which follow. 

^ n t i l told by the referee, the author was not aware of the work of Wiener, Calderôn, and 
Rauch. Recently Rauch has supplemented his note (8) with a paper (9) which will be found 
elsewhere in this journal; in the latter he obtains the full Hardy-Littlewood inequality by a 
method of Wiener, but with less precise constants than those in the theorems below. 

2Wiener, Calderon, and Rauch use similar covering theorems. A proof is given in (1). 
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If E is any set, \E\ is its measure and ô(E) is its diameter. 

(a) Each sphere is measurable and has finite measure. 
(b) There is a constant K such that \S(x, 4r)| < K\S(x, r)\ for every closed 

sphere S(x> r). 
(c) If {Sn} is a sequence of closed spheres such that \Sn\ —» 0, then1 5(Sn) —> 0. 
(d) If {Sn} is a sequence of closed spheres such that d(Sn) —> <», then \Sn\ —> <». 
It is known that these conditions are sufficient to ensure that every Borel 

set in B is measurable. 
When / is a non-negative measurable function belonging to some class 

Lp, p > 1, on B we make use of the following notations: 
(i) f(x) is the supremum of the averages of / over all the closed spheres 

centered at x; that is, 

f(x) = sup -pçT J f(y) dy, 
\S\ 

the supremum being taken over all closed spheres S centered at x. 
(ii) /*(£)» defined for / real and > 0 , is the non-increasing equimeasurable 

rearrangement of / . (that is, \Et[f*(t) > a]\ = \Et[f(x) > a]\ for all a > 0.) 
It is well known that for any measurable set E C B, 

(f(x)dx< f f*(t)dt, 

and equality holds if E = B. 

(iii) 0,(0 = \ J/(s) ds. 

ft/ is a continuous non-increasing function, strictly decreasing except possibly 
in an interval beginning with 0 where it can be constant. 

(iv) /3/is the (upper semi-continuous) inverse function to #,; if s > sup P/Q), 
then4/3'($) = 0. 

LEMMA 2. If f > 0 belongs to IP, p > 1, then f is lower semi-continuous. 
Consequently J is measurable. 

Proof. Suppose that If 5 is an arbitrary closed sphere with center x 
and radius r, let Sn be the closed sphere with center xn and radius r + d(xn, x). 
Since 5 = lim Sni it follows both that |5 | = lim|5w| and that 

f(y) dy = lim f(y) dy 
J S J Sn 

3The author's original condition was somewhat less general. The change to this condition 
and a modification in the proof of Theorem 1 required by the change were suggested by N. 
Aronszajn. 

4The properties of /*, 0/, and $f are described briefly in Calderon and Zygmund (3). 
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and hence that 

W\ J a ^ dy = ïimJSJJs " ^ dy < H m l n f ^%n)' 

THEOREM 1. If f > 0 belongs to Lp, p > 1, then j also belongs to I? and 

JKxYdx < Kyj^J jmpdx 
where K is the constant of hypothesis (b) on B. 

Proof. For the first part of the argument we suppose only p > 1. We begin 
by noting that if E is any measurable set of positive measure over which the 
average of / is > / > 0, then by Holder's inequality 

t < TgT J /(*) dx < T g p | jf(x)pdxj , 
so that 

\E\< }v Jttxydx. 

That is, \E\ is bounded by a constant independent of E. If {En} is a disjoint 
sequence of sets over which the average of/ is > / , then 

7 1 = 1 

is also a set over which the average of/ is > / . Consequently £|-En | = \E\ < œ, 
so tha t |E n | - > 0 . 

Now, if / > 0, let 22*denote the set of points x such tha t / (# ) > t. For each 
x Ç Bu t fixed, let Sx be a closed sphere centered at x over which the average 
of/ is > / . Furthermore, choose Sx with positive measure and so that it admits a 
non-zero radius. Let © be the family of these spheres. I t will be shown that it is 
possible to choose for each x G Bt a radius r(x) such that Sx = 5(x, r(#)) and 
such that with this choice of centers and radii for the spheres in ©, © satisfies 
the conditions of Lemma 1. 

For each x £ Bt let ro(x) be the infimum and r\(x) the supremum of the 
numbers r such that Sx = 5(x, r). If r0(x) > |5X |, then take r(x) — r0(x). 
If r0(x) < \SX\, then take 

r(*) = min^ 2 ^ - , |S*|J . 

Clearly r{x) ^ 0 and Sx — S(x, r(x)). From the first paragraph of the proof it 
follows that the numbers \SX\ for Sx G © are bounded, and then from condition 
(d) on B it follows that the numbers 8(SX) for Sx Ç © are bounded. Now, 
either r(x) = r0(#) < 8(SX) or r(#) < IS^, so the numbers r(x) for Sx € © are 
bounded; and condition (i) of Lemma 1 is verified. If 

\sXn} 

https://doi.org/10.4153/CJM-1956-019-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1956-019-5


AN INEQUALITY OF HARDY AND LITTLEWOOD 161 

is a disjoint sequence in ©, then again from the first paragraph it follows 
that 

|s*n|-+o, 
and from condition (c) on B it follows that 

o(S*n)->0. 

Thus r(xn) —» 0, and condition (ii) of Lemma 1 is verified. 
Having verified (i) and (ii), we can apply Lemma 1 to extract from © a 

disjoint sequence {S(xnj rn)} such that 

_ _ 00 

Bt C S S(x9 r) C Z-J S(*n> 4rn). 
<S(x,r)€(g n=l 

Then 

where K is the constant in hypothesis (b), and E = YlS(xn, *n). As before, 
the average of / over £ is > / . (Therefore the first paragraph provides a bound 
for |E|, but this bound is not sharp enough.) We have however, 

t<W\Lf(x)dx<W\io /*W^ = 0/(|£|), 
and by inverting pf, \E\ < £'(/). Finally, therefore, \Bt\ < Kpf(t). 

Now let p > 1. In the following chain of inequalities we use the fact 
that 

lim spf(s)p = lim spf(s)p = 0, 
*-»oo S-»0 

and we use the substitution / = Pf(s). We have6 

(f(x)pdx = rpf-^Bt \dt<K rpt'^P'it) dt 
J Jo Jo 

= -K rsd$t(s)p=K rp,(s)vds = K f~M f'f(f)dt\'ds 
i, «/0 «/0 */ 0 S \ U 0 J 

THEOREM 2. If f is non-negative and measurable, and if f(x) log+/(#) is 
integrable, then for any measurable set E, 

j f(x) dx < 2K jf(x) log+/(*) dx + (^f + 2J \E\. 

6This concluding calculation can be found in Calderôn and Zygmund (3). The last inequality 
in the chain is a well-known inequality of Hardy. 
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Proof. It is well known that if/ log+/ is integrable, t h e n / itself is integrable 
over every set of finite measure. This is all that is necessary to the formation 
of the function / . I t does not guarantee the existence of/*, however, so we 
wr i te / = g + h, where g(x) = f(x) if f(x) < 2 and g(x) = 0 otherwise. 

It is clear that fEg(x) dx < 2 |£ | , so if it can be proved that 

(2.1) f h(x) dx < 2K (h(x) log+h(x) dx + —\E\, 

then we will have 

f f(x) dx< f g(x) dx+ j h(x) dx < 2K (f(x) log+/(x) dx + (-f + 2J \E\. 

Now, h is in fact an integrable function, so the proof will be complete if we 
prove (2.1) for integrable functions. 

Let us call the integrable function / , rather than h, so that the notations 
used in Theorem 1 will be appropriate. Let B{ = E P\ Bt. Then \Bt'\ < |22| 
and, as was proved in Theorem 1, \Bt'\ < \Bt\ < K/3f(t). Hence 

Çf(x)dx= f°°|5î|d/< f °\E\dt + K f V ( 0 * 
*/E «J 0 «/ 0 J to 

hile also, for t0 = 0/(|E|), 

rpf(t)dt = - f sdpf(s) = - \E\p,(\E\) + f pf(s)ds. 
J t0 *Jo • / o 

for any t0} while also, for /0 = P/(\E\) 

Furthermore, 

Pr(s)ds= ^ / V ) * ' 
*/o */o s «/o 

= J o " / V ) log if ds' < 2 J*mf (50 iog+r (*') <&' + f / . ' " ( f 1 ) * ' 
< 2 f / (x) log+/(*) <fo + - | £ | . 

Therefore 

f /(x) <fe < (1 - X) | £ | pf(\E\) +2K{ f{x) log+/(x) </* + — \E\. 
JE J B 6 

Since necessarily K > 1, (2.1) follows. 
Once the estimate for \Bt\ is obtained, the evaluation is almost identical 

with that given in Calderôn and Zygmund (3) in the proof of Theorem 2. 
One of the inequalities used in the chain is that of W. H. Young, namely 
ab < a log a + e*'1. 

THEOREM 3. Iff is non-negative and integrable, and 0 < e < 1, then for every 
measurable set E, 

Jjixy-'dx < ( 7 ) [El'K1-^ jf(x) dxj \ 
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Proof. The proof is the same as the last part of the proof of Theorem 3 of 
Calderôn and Zygmund (3). Use must be made, of course, of our previous 
estimate for \Bt\. 

3. Applications—Harmonic functions. We propose to apply the 
inequality to the case where B is a smooth surface bounding a bounded domain 
D in Euclidean w-dimensional space Rn, w>3. The explicit smoothness assump
tions are as follows.6 

(a) B is a C1 surface; that is, each point of B has an n-dimensional neighborhood 
V which can be mapped in 1-1 fashion on an n-dimensional cube by a transforma-
tion T such that T and T~l are C1 transformations and such that T{B C\ V) is 
the intersection of the cube with one of the coordinate hyper planes. 

(b) B is of bounded curvature in the large sense, that is, if a{x, y) denotes the 
angle between the exterior normals at x and y, then 

1 sin ha(x, y) ^ 
— = sup l l

2 v , < oo. 
PO x*y 2\X ~ y\ 

The metric in B is its metric as a subset of Euclidean space. The measure on 
B is the area measure, definable in the classical manner because of the smooth
ness conditions. 

We shall use capital letters P, Q, etc. to designate points in the interior of 
D, and small letters x, y, etc., to designate points on the boundary B. Each 
point P at distance less than p0 from B lies on a unique line segment of length 
less than p0 and normal to B. We write xP for the point at which this segment 
meets B. Proceeding from the opposite direction, we write P(p, x) for the point 
at distance p from x measured along the interior normal through x. Finally, 
we write %p for the class of functions f(P) harmonic in D and such that 

sup f \f[P(p,x)]\pdx< » . 
0<p<po «J B 

(Note tha t / [P(p , x)] is the restriction of f(P) to the surface parallel to B at 
distance p.) 

It is known that if / Ç gp t hen / (P) has a limit/(x) as P —> x non-tangen-
tially (13) for almost every point x G B. The so defined function f(x), which 
belongs to Lp on B, is called the boundary function of/. When p > 1, the 
functions /[P(p, x)] converge in mean of order p to the boundary function as 
p —> 0, a n d / is the Poisson integral of the boundary function.7 We shall make 

6A forthcoming note by Aronszajn will contain proofs of all the needed properties of such 
surfaces. The object of his note is to exhibit the best possible constants in all cases. Here we 
do not need the best constants, but only the qualitative sense of the properties, and for the 
most part this is classical information. 

7A proof of the mean convergence can be found in (1). A related result concerning the 
constant surfaces of the Green's function (for fixed pole) rather than the parallel surfaces is 
proved by Privalofï and Kouznetzoff (7). 
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use of an inequality between the values of / in D and the mean values of the 
boundary function over spheres in B. 

Mean value inequality. If the harmonic function f(P) is the Poisson 
integral of its boundary function f(x), and if' f(x) denotes the supremum of the 
averages of \f(y)\ over the closed spheres in B centered at x, then for every P within 
distance p0 of B we have \f(P)\ < A f(xP). The constant A depends only on p0 and 
on the dimension8 n. 

THEOREM 4. For each f in %p let 

f(x) = sup \f[P(P,x)]\. 
0<p<p0 

For p > 1, the following assertion holds: if f belongs to %jp, then f belongs to Lp 

on B, and 

Jj(xYdx < K ^ ^ A 9 jjf(x)\pdx = H m X ^ ^ j V JjflPiP, x)]\*dx. 

Proof. The metric space B and its measure are obviously of the type con
sidered in the second section, so Theorem 4 follows directly from Theorem 1 
and the mean-value inequality. 

In the case of the circle in the plane this is the theorem of Hardy and Little-
wood quoted in the introduction. The related theorem of Rauch (8; 9) on 
analytic functions is as follows: 

If D is the sphere, if f is complex valued, and if n is even and the variables can 
be paired so that f is an analytic function of n/2 complex variables, then the 
assertion of Theorem 4 holds for any exponent p > 0. 

Rauch's theorem is obtained from the special case of exponent 2 in Theorem 
6 below by putting s(P) = \f(P)\h. 

THEOREM 5. If f belongs to gi, then for each e, 0 < e < 1, 

J f(x)l~*dx < oo. 
B 

Proof. The function / e gi has a boundary measure v in terms of which it 
can be represented as a Poisson-Stieltjes integral. The mean value inequality 
is valid here in a suitably modified form; namely, | / (P) | is less than or equal 
to a constant times the upper bound of the quotients v(C)/\C\ taken over the 
closed spheres in B centered at xP. We do not give more of the proof for it is 
essentially the same as the proof of Theorem 7 below on subharmonic functions. 

Remark. The proof of Theorem 5 is not based on Theorem 3, for /does not 
necessarily have a boundary function of which it is the Poisson integral. I t is 
plain that if / does have such a boundary function, then certain conclusions 
can be drawn from Theorems 2 and 3. It does not seem necessary to state 
the conclusions. 

8This is a special case of an inequality which is proved in Aronszajn and Smith (1). This 
special case was obtained for the circle in the plane by Hardy and Littlewood (4). 
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Subharmonic functions. 

THEOREM 6. Let s(P) be a non-negative subharmonic function in D, and let 

s(x) = sup s[P(p, x)]. 
0<p<p0 

For p > 1, we have9 

f s(x)pdx < K(~^~~)PAV sup f s[P(j>, x)\pdx. 
J B \p — 1/ 0<p<p0 J B 

Proof. We suppose that the right side is finite. For each p, 0 < p < po, 
we write Bp for the set of points in D at distance p from J3, and Dp for the 
sub-domain of D bounded by Bp. We write fp for the harmonic function in 
Dp with the same boundary values10 as s. It is well known that the harmonic 
function fp converge increasingly as p —> 0 to a harmonic function f £ %P 

which dominates 5 (10). In addition the functions s[P(p1 x)] converge weakly 
in LP on B as p —> 0 to the boundary function f(x) for/. Theorem 6 follows from 
Theorem 4 and the lower semi-continuity of the norm in LP with respect to 
weak convergence. 

By using the results of F. Riesz on the representation of subharmonic 
functions by potentials we can prove similar theorems for subharmonic 
functions which are not necessarily non-negative. For the sake of simplicity 
we confine the discussion to the sphere, though the results are equally valid 
for the more general domains of the last paragraph, as the proofs will show. 

The theorem of F. Riesz states that if s(P) is a subharmonic function in 
the domain D, then a necessary and sufficient condition that s(P) be the sum 
of a harmonic function and the Green's potential of a negative Borel measure 
on D is that s(P) be bounded above in D by a harmonic function; the harmonic 
function which figures in the representation is the smallest harmonic function 
which bounds s(P) above (10). This function is called the smallest harmonic 
majorant of s(P). If the positive part of s(P), which we call s+(P), satisfies 
the condition 

sup I s+(px) dx < oo, 
0<p<l J B 

then the smallest harmonic majorant h(P) exists and satisfies 

sup I \h(px)\ dx < oo. 
0<p<l JB 

Therefore, as s(P) — — jDG(P, Q) dfi(Q) + h(P), where p. is a positive Borel 
measure on D and G(P, Q) is the Green's function of D\ and as h(P) satisfies 
the hypotheses of Theorem 5, the analogue of Theorem 5 for subharmonic 

9For the circle in the plane this is a result of Hardy and Littlewood (4). 
10The surfaces Bp are also O and of bounded curvature. The curvature constant po' for 

Bp' is po — p'. fp is denned by the Poisson integral over Bp. 
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functions will result from an analysis of the first term, the Green's potential, 
alone. Before stating the theorem we observe that the upper bound of \s(P)\ 
along the various radii will be identically infinite whenever the Green's potential 
is infinite at the origin. Therefore a small sphere with center at 0 must be 
removed from D before taking the upper bounds. 

THEOREM 7. Let p0 be a fixed number between 0 and 1, and put 

s{x) = sup ]s(px)| 
PQ<P<1 

for each x Ç B. If s(P) is subharmonic in D and if 

sup I s+(px) dx < oo, 
0<p<l J B 

then for each e, 0 < e < 1, 

s(x)x~edx < oo. J» 
Proof. As we have mentioned, it results from Theorem 5 and the theorem 

of F. Riesz that we need only prove the theorem for functions of the type 
s(P) = — §DG(P, Q) d}x(Q) = — u(P), where ju is a positive Borel measure 
on D and G(P, Q) is the Green's function for D. The explicit expression for the 
Green's function is well known. 

[ i _ rTL _ i 1 
LIP - or2 ler-2

 ]P~-"OT~2J 
(3.1) G(P, Q) = T—- ., | p m«--i 

where 

and œn is the area of the surface of the unit sphere. 
It is known that the Green's potential u{P) = JDG(P, Q) dn{Q) either is 

identically + oo or is finite except at a set of points of outer capacity 0. 
For the latter to be the case it is necessary and sufficient that u fD(r — \Q\) 
^M(Ç) < °°. For each x Ç B and each real £, 0 < £ < 2r, let C(x, £) be the 
sphere in B with center x and radius £; and let 5(x, £) be the conical sector in 
D generated by joining each point of C(x, £) to the origin. Let 

/(*,*) = f if- \Q\)dAQ), 

and let 

« ( * ) - 8 U p - | C ( X i € ) | 

u This is clear for the sphere. In the case of more general domains the integrand r — | ç | 
is replaced by \xQ — Q\, the distance from Q to the boundary. In this form the fact was observed 
by Privaloff and Kousnetzoff (7). 
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For the present we assume the following Lemma. 

LEMMA 3. There is a constant A such that u(x) < Am(x), where û is defined 
like s. 

The covering theorem is used as in the proof of the general Hardy-Littlewood 
inequality. Let Bu t > 0, denote the set of points x such that u(x) > t. If 
x £ Bu then there is a %x such that 

*(* ,k) ^ 1 
\C(x,tt)\*A' 

Choosing such a £x for each x Ç Bt we have I?* C HC(x, £x), so by the covering 
theorem there is a disjoint sequence 

such that 

Bt C Ë C(xw, 4£w). 

If X is chosen so that for all C, \C(x, 4£) < i£|C(x, £)|, then 12 

\B,\<T, \C(*n, Hn)\ <KJ2 \C(xn, £ . ) | < ^ - E ' ( * . . ««) 
w = l n = l * n = l 

2L4 
f ( r - \Q\)dn{Q), 

where E is the sum of the disjoint sets S(x„, £n). Hence \B,\ < k'/t for 
k' = KA jD(r - 101) dM(Q). Now 

f i i W ' - ' à = P ° ( l - e) r'\Bt\ dt < * " f r'dt + k'(l - e) f r a 

where jfe" is larger than (1 — e) times the area of the surface of the sphere. 

Proof of the Lemma. We shall not give the entire proof. The calculations, 
which are routine, are achieved by majorizing the Green's function ((3.2) 
below) and considering separately the integrals over three different parts of 
the sphere. The majoration for the Green's function is obtained by inspection 
of the explicit formula (3.1).13 

(3.2) There is a constant k such that 

0 < G(P, Q) < k(r - \P\)(r - \Q\)/ \P - Q\»; 
1 1 

also G(P, Q) < con(« - 2) \P- Q\n 

U\E\ is used for subsets of D to refer to Lebesgue measure and for subsets of B to refer to 
the area measure on B. 

"Essentially the same majoration and division of the sphere are used by Littlewood (6) to 
prove that in the case of the circle in the plane a Green's potential has radial limit 0 at almost 
every boundary point. The majoration is valid for any domain bounded by a O-surface of 
bounded curvature (11) and for even more general domains (5). 
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The division of the sphere is as follows. Let P be fixed with \P\ > p0r, let 
x = rP/\P\, and let £0 = r — \P\. One part of the sphere is the exterior of the 
conical sector S(x, £0); another is that part of S(x, £o) whose points Q satisfy 
r — \Q\ > i(r ~~ l-P|)î the third is that part of S(x, £o) whose points Q satisfy 
r ~~ \Q\ < h(r ~~ I^D- Finally, it is necessary to use an evaluation of \P — Q\ 
in terms of the variable 

£ = -L-0-—P 

1er \p\ 
(3.3) There is a constant k such that if \P\ > pof, then \P — Q\ > ki~. 

The Lemma results from simple calculation with these estimates and the 
remark that the quotient \C(x, £)(/£n-1 is bounded above and from 0. 

Theorem 7 can be improved if it is known that the measure is the indefinite 
integral of a density subject to certain conditions. 

i 
THEOREM 8. / / u(P) = jDG(P, Q)f(Q) dQ where f(Q) is such that 

(r-\Q\Tf(Q)PdQ<<°, P>1, 

then û(x) belongs to Lp on B, and there is a constant M such that 

(u(x)pdx <MP ( (r - \Q\)pf(Q)pdQ. 

Proof. The proof is similar to the proof of the last theorem, but it is possible 
to make use of the non-increasing rearrangements as in the proof of Theorem 1 
in order to obtain better evaluations. With the notations of the last theorem 
we have, as we had there, 

| B * | < t f Ê | C ( x , f É 0 | = 2 q C | , C = Ë c ( * n , £ « ) . 

Because of the disjointness it happens in Theorem 1 that 

A_ 

\C\ 

(where again E = £5 (x n , £n). From the fact that \E\ = r/n\C\, it follows 
that 

iorg(Q) = (r-\Q\)f(Q). Hence 

The proof is finished in the same manner as the proof of Theorem 1. 

t < ~ f(r- \Q\)f(Q)dQ 
*J E 
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Strong differentiability of double integrals. The general Hardy-
Littlewood inequality yields a generalization of the theorem of Jessen, 
Marcinkiewicz, and Zygmund on the strong differentiability of multiple inte
grals (12). However, we need the inequality in a slightly stronger form. 

Theorems 1, 2, and 3 remain true and their proofs remain correct when f(x) 
is redefined to be the supremum of the averages off(y) over all spheres containing x. 

THEOREM 9. Let B\ and B2 be metric spaces with measures of the kind con
sidered in §2, and let f(x, y) be a measurable function on B\ X B2. If 

f f \f\\og+\f\dxdy < », 

then the indefinite integral of f is almost everywhere derivable in the strong sense. 
That is y for almost every choice of (#, y), 

lim 7 - — T T - — T f(s, t) dsdt 
n | O l l W | | 0 2 , » | « / S i . n « J S 2 , n 

exists for all sequences [Su n] and {S2,n} of closed spheres such that x 6 5i,n, 
y e S2,n, HSi,n) -* 0, and ô(S2,n) -> 0. 

Proof (cf. 12, pp. 147-149). Several earlier theorems are required (notably, 
the Vitali covering theorem, the strong density theorem, and the theorem 
on the strong differentiability of the indefinite integral of a bounded function) ; 
these theorems are true in the present case, and the proofs given by Saks are 
valid after simple modifications. 

Remark. I t was noticed by Hardy and Littlewood and by Calderôn and 
Zygmund that the Hardy-Littlewood inequality leads to certain results on 
integral operators. The results are of such a kind as to establish dominated 
convergence of sequences of transforms. Thus, for example, Hardy and Little-
wood show dominated convergence of the Fejer polynomials formed from the 
Fourier series of a function/; and Calderôn and Zygmund show dominated 
convergence of singular integrals. Our general case of the inequality leads to 
similar results, which can be used, for example, to give another proof of Theorem 
4. However, since we do not have applications which would lead to new 
results, we shall omit the statement of this theorem on integral operators. 
In any case it is a re-phrasing in the abstract terms of the theorems of the 
authors cited. 
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