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Abstract. It is shown that the creation operator is the only (up to a multi-
plicative constant) injective weighted shift all of whose translations (or at least one)
are still injective weighted shifts regardless of what the weight sequences and the
bases are. A similar result is true for the annihilation operator as well as for the
Heisenberg and Schrödinger couples.
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0. Introduction. The creation operator

aþ ¼
1ffiffiffi
2

p ðx�
d

dx
Þ;

the classical object of quantum mechanics1, has the following remarkable property:
for every complex number �, the operator aþ þ �I is unitarily equivalent to aþ. This
observation has been exploited by the second named author in a series of papers
[17,18,19,20], where various models for the creation operator have been invented.
(For applications of this idea in physics see [3,4].) If we look at the creation operator
as the weighted shift with respect to the orthonormal basis composed of Hermite
functions, then we can say that for every complex number �, aþ þ �I is a weighted
shift, but with respect to a different basis. A natural question arises whether this
invariance property distinguishes the creation operator among all weighted shifts. In
this paper we show that this is the case. Even more, it turns out to be sufficient to
assume that at least one nonzero translation of a weighted shift is a weighted shift.
The creation operator together with its (at least formally) adjoint, the annihila-

tion one, defined as

a� ¼
1ffiffiffi
2

p ðxþ
d

dx
Þ

satisfy the commutation relation

a�aþ � aþa� ¼ I:
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1Let us recommend here, by the way, a beautiful overview [9] of the story of the quantum harmonic
oscillator written by mathematicians.
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Because those two operators are the only solutions (under some circumstances
[23,11,21]) of the aforesaid commutation relation we may say that our result shows
how spatial properties force algebraic ones to hold. The same somewhat philoso-
phical remark refers to the Heisenberg couple.
Given a linear operator A in a (complex) Hilbert space H, we denote by DðAÞ

the domain of A, by N ðAÞ the kernel of A and by A� the adjoint of A. In case A is
closable, we write �AA for the closure of A. A linear subspace E of DðAÞ is said to be a
core for a closable operator A if �AA ¼ ðAjEÞ

�, where AjE stands for the restriction of
A to E. By BðHÞ we understand the C�-algebra of all bounded linear operators on H;
I stands for the identity operator on H. Denote by linF the linear span of a subset F

of H.

1. Weighted shifts. Suppose S is a closable densely defined linear operator in a
separable Hilbert space H. We say that S is a weighted shift2 if there exists an
orthonormal basis e ¼ feng

1
n¼0 for H and a sequence f�ng

1
n¼0 of nonzero complex

numbers such that De ¼ linfen; n � 0g is a core for S and Sek ¼ �kekþ1 for k � 0. If
this happens, then S is said to be a weighted shift with respect to the basis e, and
with weights f�ng

1
n¼0. Notice that

�SS ¼ VD, where V is a unique linear isometry on H

such that Ven ¼ enþ1 for n � 0 and D is a unique normal operator in H such that
Den ¼ �nen for n � 0. Consequently �SS is injective, S� ¼ D�V� and

Dð �SSÞ ¼ f f 2 H;
X1
n¼0

jh f; eni�nj
2 < 1g;

�SSf ¼
X1
n¼0

h f; eni�nenþ1; f 2 Dð �SSÞ;

ð1Þ

DðS�Þ ¼ f f 2 H;
X1
n¼0

jh f; enþ1i�nj
2 < 1g;

S�f ¼
X1
n¼0

h f; enþ1i ���nen; f 2 DðS�Þ:

ð2Þ

In particular, we have De � DðS�Þ, S�e0 ¼ 0 and S�ekþ1 ¼ ���kek for k � 0.
Notice that any two closed weighted shifts with the same weights are unitarily

equivalent. Indeed, if Sj is a closed weighted shift (acting in a Hilbert space Hj) with
respect to an orthonormal basis fej;ng

1
n¼0, and with weights f�ng

1
n¼0, j ¼ 1; 2, then

US1 ¼ S2U, where U : H1 ! H2 is a unique unitary isomorphism such that
Ue1;n ¼ e2;n for n � 0 (use (1)).
Weighted shifts appear on many occasions; usually one starts with a basis with

respect to which an operator is a weighted shift and keeps the basis fixed afterwards
and this is, maybe, why the following simple question has not attracted any atten-
tion. The question is: can an operator be a weighted shift with respect to different

2[13] may serve as a first introduction of the bounded case; for unbounded weighted shifts see [6], [15] and
[10].
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bases, and with different weights or, in other words, how does the definition depend on
choice of an orthonormal basis? In the context of the present paper this question is
natural; the answer is in the following result.

Proposition 1. Suppose that a linear operator S in H is a weighted shift with
respect to an orthonormal basis fei;ng

1
n¼0 with weights f�i;ng

1
n¼0, where i ¼ 1; 2. Then

there exists a sequence f�ng
1
n¼0 of complex numbers such that

e2;n ¼ �ne1;n n � 0; ð3Þ

j�1;nj ¼ j�2;nj n � 0: ð4Þ

Proof. Set �1;�1 ¼ 0 and e1;�1 ¼ 0. Since S�e1;k ¼ ���1;k�1e1;k�1 for k � 0, we get

�2;nhe2;nþ1; e1;ki ¼ hSe2;n; e1;ki ¼ he2;n;S
�e1;ki

¼ �1;k�1he2;n; e1;k�1i ðk; n � 0Þ:

This leads to he2;n; e1;0i ¼ 0 for n � 1 and

he2;nþ1; e1;kþ1i ¼
�1;k
�2;n

he2;n; e1;ki ðk; n � 0Þ: ð5Þ

Hence

he2;n; e1;ki ¼ 0 ðn � kþ 1Þ: ð6Þ

The proof of (3) is by induction on n. It follows from (6) that e1;0 belongs to the
orthogonal complement of the set fe2;m; m � 1g and so e1;0 2 C � e2;0. If e1;j 2 C � e2;j
for j ¼ 0; . . . ; n, then by (6) the vector e1;nþ1 belongs to the orthogonal complement
of the set fe2;m; m 6¼ nþ 1g. Hence e1;nþ1 2 C � e2;nþ1. Finally, condition (4) is a
consequence of (5). This completes the proof. &

Consider an arbitrary weighted shift S with respect to an orthonormal basis
feng

1
n¼0 with weights f�ng

1
n¼0. Set �n ¼ �0�1 � � � �n�1j�0�1 � � � �n�1j

�1 for n � 1 and
�0 ¼ 1. Then one can check that S is a weighted shift with respect to a new ortho-
normal basis f�neng

1
n¼0, and with new weights fj�njg

1
n¼0. In other words, for any

weighted shift S we can always find an orthonormal basis with respect to which S
has positive weights.

2. The translation invariance property. By an (abstract) creation operator in a
Hilbert space H we understand here a closed weighted shift with weights
f
ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p
g1
n¼0. We infer from what we have mentioned in Section 1 that, in particular,

every two creation operators are unitarily equivalent. The basic property of a crea-
tion operator S is that all its translations S� �I, � 2 C, are still creation operators.
This follows from the commutation relation3

ðS� �I Þ�
ðS� �IÞ ¼ ðS� �I ÞðS� �IÞ�

þ I ð� 2 CÞ; ð7Þ

3The relation (7) is a direct consequence of S�S ¼ SS� þ I; the latter equality can be proved with the help
of (1) and (2).
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the fact that the closed operator S� �I is irreducible (cf. [6, Section 3]) and Till-
mann’s theorem (cf. [23], [11, Theorem 4.4.1] or, for an approach involving sub-
normality, [21]). Explicit orthonormal bases with respect to which Sþ �I, � > 0, are
creation operators are constructed in [17,19]. (Some related constructions are in
[18,20].) In the proof of Theorem 4 below we propose something which can be
viewed as an abstract way of generating such bases. Our method does not appeal to
the spectral theorem.
According to what we have said so far a creation operator S has the property

that each of its translations S� �I remains in the class of weighted shifts and is
unitarily equivalent to S. Though this invariance property holds, as we show below,
also for other classes of operators, within the class of weighted shifts it happens only
for the creation operator, and this (Theorem 4) is the main conclusion of this paper.
The example that follows is of a normal operatorN which is unitarily equivalent to

N� �I for every � 2 C. (Recall that a creation operator is subnormal and irreducible.)

Example 2. Let H be the Hilbert space of all complex Borel functions on C that
are square summable with respect to the planar Lebesgue measure � and let
C 3 � ! U� 2 BðHÞ be the unitary group of translations; i.e.

ðU�f ÞðzÞ ¼ fðz� �Þ; z 2 C; f 2 H:

Denote by N the operator of multiplication by ‘‘z’’ in H, i.e., ðNf ÞðzÞ ¼ zfðzÞ for
z 2 C and f 2 H. Then ðN� �IÞU� ¼ U�N, which means that the normal operators
N and N� �I are unitarily equivalent for every � 2 C.

The above considerations lead to the following question. Under what circum-
stances is a closed densely defined operator A unitarily equivalent to Aþ �I? (� is a
fixed nonzero complex number.) In case A is a generator of a C0–semigroup, the
answer is given below.

Proposition 3. Let A be an infinitesimal generator of a C0-semigroup
fTðtÞ; t > 0g � BðHÞ and let � be a complex number. If U 2 BðHÞ is a unitary operator,
then the following conditions are equivalent:

(i) ðAþ �I ÞU ¼ UA,
(ii) UTðtÞ ¼ e�tTðtÞU for every t > 0.

Proof. Assuming (i) we get UDðAÞ � DðAÞ and ðUA� AUÞh ¼ �Uh, for
h 2 DðAÞ, so that (ii) is a direct consequence of [8, Part I, Proposition 1.0].
If (ii) holds, then by [8, Part I, Proposition 1.0] we have UDðAÞ � DðAÞ and

ðUA� AUÞh ¼ �Uh, for h 2 DðAÞ. This is equivalent to

UA � ðAþ �I ÞU: ð8Þ

However U is unitary, and so U�TðtÞ ¼ e��tTðtÞU�, for all t > 0. Applying once
more [8, Part I, Proposition 1.0], we get U�DðAÞ � DðAÞ which, together with the
inclusion (8), yields (i). &

Let A, Tð�Þ and � be as in Proposition 3. Following Mlak [8, Part I], we say that
an operator X 2 BðHÞ is of class ðTð�Þ; �Þ if XTðtÞ ¼ e�tTðtÞX for every t > 0; if,
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moreover, A ¼ iS and � ¼ i	, where S is a selfadjoint operator and 	 is a nonzero
real number, then X is called ðS; 	Þ-circular. By Proposition 3, an infinitesimal gen-
erator A of a C0-semigroup Tð�Þ is unitarily equivalent to Aþ �I if and only if there
exists a unitary operator of class ðTð�Þ; �Þ. This immediately excludes the existence of
unitary operators of class ðTð�Þ; �Þ in case the spectrum spðAÞ of A is in a ‘‘wrong’’
position with respect to �. For example, if S is a semibounded selfadjoint operator
and 	 2 R n f0g, then there is no unitary ðS; 	Þ-circular operator. Indeed, otherwise
by Proposition 3 the operators S and Sþ 	I are unitarily equivalent, so that
spðSÞ ¼ spðSÞ þ 	, which is impossible due to the fact that spðSÞ is a nonempty
semibounded subset of R. (Our proof is much shorter than that of [8, Part I,
Theorem 2.1].) However, it may happen that the spectrum of A is ‘‘better’’ located
with respect to �, but still there is no unitary operator of class ðTð�Þ; �Þ (cf. [8, Part I,
Corollary 2.0]). We refer the reader to [1], [5,7,8] and [22] for more details concern-
ing circular operators (including unitary ones).

3. Characterization of the creation operator. Below we characterize the creation
operator (up to a multiplicative constant) as a closed weighted shift all of whose
translations are still weighted shifts. Before this we would like to encourage the
reader to look at the definition of weighted shifts once more.

Theorem 4. Let S be a closed weighted shift in a Hilbert space H. Then the
following conditions are equivalent:

(i) for every � 2 C, S� �I is a weighted shift,
(ii) there exists � 2 C n f0g such that S� �I is a weighted shift,
(iii) there exists 	 2 C n f0g such that 	S is a creation operator.

Moreover, if S is a creation operator, then S� �I is a creation operator for every
� 2 C.

Proof. (ii))(iii) Suppose S is a weighted shift with respect to an orthonormal
basis feng

1
n¼0 with weights f�ng

1
n¼0 and, for some � 6¼ 0, S� �I is a weighted shift

with respect to an orthonormal basis f fng
1
n¼0 with weights f
ng

1
n¼0. Without any loss

of generality we can assume that �n > 0 and 
n > 0 for n � 0. Since S� �I is a
weighted shift with respect to f fng

1
n¼0, we get ðS� �I Þ�f0 ¼ 0 or equivalently

S�f0 ¼ ���f0. However S is a weighted shift with respect to feng
1
n¼0 and so, by the

description (2) of S�, we have

X1
n¼0

h f0; enþ1i�nen ¼ S�f0 ¼
X1
n¼0

���h f0; enien:

This in turn implies that h f0; enþ1i ¼ h f0; eni ����
�1
n for n � 0, and hence that

h f0; eni ¼
���n

�0 � � � �n�1
h f0; e0i; n � 1: ð9Þ

Set a ¼ h f0; e0i. Since f0 6¼ 0, we conclude from (9) that a 6¼ 0. Summarizing, we
have proved the following equation4:

4The equality (10) can be found in [14, Section 16] as a consequence of much more general results; here we
have included its short and direct proof, just for reader’s convenience.
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f0 ¼ a e0 þ
X1
n¼1

���n

�0 � � � �n�1
en

 !
: ð10Þ

As S� �I is a weighted shift with respect to f fng
1
n¼0, we get

ðS� �IÞ�
ðS� �IÞf0 ¼ 
20f0 ¼ a 
20 e0 þ

X1
n¼1

���n

�0 � � � �n�1
en

 !
: ð11Þ

We know that f0 2 DððS� �I Þ�
Þ ¼ DðS�Þ and Sf0 � �f0 ¼ 
0f1 2 DðS�Þ. Hence

Sf0 2 DðS�Þ, which means that f0 2 DðS�SÞ \ DðS�Þ. This and (10) lead via (1) and
(2) to

ðS� �IÞ�
ðS� �I Þf0 ¼ S�Sf0 � �S�f0 � ���Sf0 þ j�j2f0 ¼ S�Sf0 � ���Sf0

¼ aðS� � ���Þ �0e1 þ
X1
n¼1

���n�n
�0 � � � �n�1

enþ1

 !

¼ a �20e0 þ
X1
n¼1

���n�2n
�0 � � � �n�1

en

 !
� ����0e1 þ

X1
n¼2

���n�n�1
�0 � � � �n�2

en

 ! !

¼ a �20e0 þ ���
�21
�0

� �0

� �
e1 þ

X1
n¼2

���n

�0 � � � �n�2

�2n
�n�1

� �n�1

� �
en

 !
;

which together with (11) gives us (recall that � 6¼ 0)

�2n � �2n�1 ¼ 
20 ¼ �20; n � 1:

Thus �n ¼ �0
ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p
for n � 0, which means that ��1

0 S is a creation operator with
respect to feng

1
n¼0.

(iii))(i) Without any loss of generality we can assume that 	 ¼ 1. Suppose S is
a creation operator with respect to an orthonormal basis e ¼ feng

1
n¼0. Set

D1ðS;S�Þ ¼
\

fDðS1 � � �SnÞ; S1; . . . ;Sn 2 fS;S�g; n � 1g;

S� ¼ S� �I and S�
� ¼ ðS�Þ

�, for � 2 C. Then D1ðS;S�Þ is the largest linear subspace
of DðSÞ \ DðS�Þ that is invariant for S and S�, and which contains De. It follows
from (7) that ðS�

�S� � S�S
�
�Þh ¼ h, for h 2 D1ðS;S�Þ. Thus, by [16, Lemma], we have

S�i
� S

j
�h ¼

X1
k¼0

k!
i

k

� �
j

k

� �
S j�k� S

�ði�kÞ

� h; h 2 D1ðS;S�Þ; ði; j � 0Þ; ð12Þ

where, by definition, Sn� ¼ S�n
� ¼ 0 for n < 0 and n

m

� 	
¼ 0 for n < m. Set

f0ð�Þ ¼ e�j�j2=2
X1
n¼0

���nffiffiffiffi
n!

p en; � 2 C: ð13Þ

Then f0ð�Þ 2 DðS�
�Þ, S�

� f0ð�Þ ¼ 0 and k f0ð�Þk ¼ 1 (cf. [10, §1]). One can deduce from
(13) via (1) and (2) that f0ð�Þ 2 D1ðS;S�Þ ¼ D1ðS�;S

�
�Þ. This implies that

fnð�Þ ¼
df 1ffiffiffi

n!
p Sn� f0ð�Þ 2 D1ðS;S�Þ for n � 1. Since S�

�f0ð�Þ ¼ 0, (12) yields
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hfjð�Þ; fið�Þi ¼
X1
k¼0

k!ffiffiffiffiffiffi
i!j!

p
i

k

� �
j

k

� �
hS

�ði�kÞ

� f0ð�Þ;S�ð j�kÞ

� f0ð�Þi ¼ �i;j i; j � 0:

This means that f fnð�Þg1
n¼0 is an orthonormal sequence in H and

S� fnð�Þ ¼
ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p
fnþ1ð�Þ n � 0; � 2 C: ð14Þ

Applying once more (12), we get

S�
� f0ð�Þ ¼ 0 & S�

� fnþ1ð�Þ ¼
ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p
fnð�Þ ðn � 0Þ: ð15Þ

Set E� ¼ linf fnð�Þ; n � 0g ¼ linfSnf0ð�Þ; n � 0g. It follows from (14) and (15), that

E� is invariant for S� and S
�
�, and T¼

df
ðS�jE�

Þ is a creation operator in �EE�. Since E� is
a core for T� (cf. [6, (1.11)]) and T�jE�

� S�
�, we get T� � S�

�. Hence
ðTþ �I Þ�

� S�
� þ ���I ¼ S� and finally N ððTþ �I Þ�

Þ � N ðS�Þ ¼ C � e0. However
dimN ððTþ �IÞ�

Þ ¼ 1 because T is a creation operator. Thus e0 2 N ððTþ �IÞ�
Þ.

Replacing �, S and f0ð�Þ by ��, T and e0, respectively, we conclude from T � S�
that De ¼ linfSne0; n � 0g ¼ linfðTþ �IÞne0; n � 0g � DðTþ �IÞ � DðSÞ. Since De

is a core for S, we have S ¼ SjDe
¼ ðTþ �I ÞjDe

� Tþ �I � S. Hence S� ¼ T is a
creation operator, which completes the proof. &

Remark 5. The way Theorem 4 is stated may suggest that the operator S
becomes a creation one with respect to the same basis as it is assumed to be a
weighted shift. We have to point out that this need not be the case. The only thing
we get is that these two bases must necessarily be related each to the other as in
Proposition 1. However, if S is assumed to be a weighted shift with respect to an
orthonormal basis feng

1
n¼0 (the input basis, say) with positive weights f�ng

1
n¼0 and

�0 ¼ 1, then—according to the proof of (ii))(iii) of Theorem 4—the basis with
respect to which S becomes a creation operator (the output one) coincides with
feng

1
n¼0.

Corollary 6. Let S be a closed operator in a Hilbert space H. Then the condi-
tions (i) and (iii) of Theorem 4 are equivalent to
(ii0) there exist �1; �2 2 C, �1 6¼ �2 such that the operators S� �1I and S� �2I

are weighted shifts.

Comment. Similar results for the annihilation operator a� can be easily
deduced from Theorem 4 and Corollary 6. They can be formulated just by replacing
‘‘weighted shift’’ by ‘‘backward weighted shift’’ and ‘‘creation’’ by ‘‘annihilation’’ in
Theorem 4 and Corollary 6.

4. The Segal-Bargmann space. An immediate interpretation of Theorem 4 can
be realized in the context of the Segal-Bargmann space A

2
ð�1 expð�jzj2ÞdxdyÞ

which is composed of all entire functions in L
2
ð�1 expð�jzj2ÞdxdyÞ (cf. [12,2]). Let S

be an operator in A
2
ð�1 expð�jzj2ÞdxdyÞ such that SðZnÞ ¼ !nZ

nþ1 with !n being
positive, n ¼ 0; 1; . . ., and !0 ¼ 1. If for some � 6¼ 0 the operator S� �I is a weigh-
ted shift, then it can be deduced from Theorem 4 and Remark 5 that S must
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necessarily multiply polynomials by the independent variable Z (i.e., !n # 1), pro-
vided the polynomials constitute a core for S.

5. The Heisenberg couple. Given an orthonormal basis e ¼ feng
1
n¼0 in H and a

sequence of nonzero complex numbers � ¼ f�ng
1
n¼0, denote by Jðe;�Þ the set of all

pairs ðQ;PÞ of closed symmetric operators in H such that

De ¼ linfen; n � 0g � DðQÞ \ DðPÞ;

Qen ¼ ���n�1en�1 þ �nenþ1 n � 0;

Pen ¼ ið ���n�1en�1 � �nenþ1Þ n � 0;

where, by definition, ��1 ¼ 0 and e�1 ¼ 0. In other words, the restrictions of Q and
P to De have Jacobi matrix representations

QjDe
¼

0 ���0 0 0 . . .
�0 0 ���1 0 . . .
0 �1 0 ���2 . . .
0 0 �2 0 . . .

..

. ..
. ..

. ..
. . .

.

0
BBBBB@

1
CCCCCA;

PjDe
¼

0 i ���0 0 0 . . .
�i�0 0 i ���1 0 . . .
0 �i�1 0 i ���2 . . .
0 0 �i�2 0 . . .

..

. ..
. ..

. ..
. . .

.

0
BBBBB@

1
CCCCCA:

Set J ¼
S

e;� Jðe;�Þ, where the union is taken over all possible pairs of e’s and �’s.

Lemma 7. If S and T are symmetric operators in H such that De � DðSÞ \ DðTÞ

and SjDe
¼ TjDe

, then SjDe
� T � ðSjDe

Þ�. If ðQ;PÞ 2 Jðe;�Þ, then there exists ð~ee; ~��Þ

such that ðQ;PÞ 2 Jð~ee; ~��Þ and ~��n > 0, for every n � 0.

Proof. Taking adjoints over TjDe
� T yields SjDe

¼ TjDe
� T � T� � ðTjDe

Þ� ¼

ðSjDe
Þ�. Set ~ee0 ¼ e0, ~eenþ1 ¼ �0�1 � � � �nj�0�1 � � � �nj

�1enþ1 and ~��n ¼ j�nj for n � 0. Then
the pair ð~ee; ~��Þ meets our requirements. &

We say that ðQ;PÞ is a Heisenberg couple (with respect to an orthonormal basis

e for H) if ðQ;PÞ 2 Jðe;�Þ with �n ¼

ffiffiffiffiffiffi
nþ1
2

q
, ðn � 0Þ. Heisenberg couples are char-

acterized (up to a multiplicative constant) by the following invariance property.

Theorem 8. If ðQ;PÞ 2 J, then the following conditions are equivalent:
(i) for all �; � 2 R, ðQþ �I;Pþ �IÞ 2 J,
(ii) there exist �; � 2 R such that �2 þ �2 > 0 and ðQþ �I;Pþ �I Þ 2 J,
(iii) there exists 	 2 R n f0g such that ð	Q; 	PÞ is a Heisenberg couple.

Moreover, if ðQ;PÞ is a Heisenberg couple, then ðQþ �I;Pþ �I Þ is a Heisenberg
couple for all �; � 2 R.

144 JAN STOCHEL AND F. H. SZAFRANIEC

https://doi.org/10.1017/S0017089502010091 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089502010091


Proof. (ii))(iii) By Lemma 7 there exists ðe;�Þ such that ðQ;PÞ 2 Jðe;�Þ and
�n > 0 for n � 0. Denote by S the closed weighted shift with respect to the basis e
with weights �. It is clear that 2SjDe

¼ QjDe
þ iPjDe

. This, [6, (1.13)] and Lemma 7

imply 2S ¼ QjDe
þ iPjDe

� Qþ iP � ðQjDe
Þ� þ iðPjDe

Þ� ¼ 2S. Hence

S ¼
1

2
ðQþ iPÞ: ð16Þ

Let ðe0;�0Þ be such that ðQþ �I;Pþ �IÞ 2 Jðe0;�0Þ. Denote by S0 the weighted shift

with respect to e0 with weights �0. Set � ¼ 1
2 ð� þ i�Þ. Analysis similar to that in the

proof of (16) shows that S0 ¼ 1
2 ððQþ �I Þ þ iðPþ �I ÞÞ. This and (16) give us

S0 ¼ 1
2 ðQþ iPÞ þ �I ¼ Sþ �I, which means that Sþ �I is a weighted shift. It follows

from the proof of (ii))(iii) of Theorem 4 that �n ¼ �0
ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p
for n � 0 (because

� 6¼ 0). Thus ð	Q; 	PÞ is a Heisenberg couple with respect to e with 	 ¼ ð
ffiffiffi
2

p
�0Þ

�1.
(iii))(i) Without any loss of generality we can assume that 	 ¼ 1. Suppose that

ðQ;PÞ is a Heisenberg couple with respect to an orthonormal basis e. Let S0 be a
creation operator with respect to e. Set S ¼ 1ffiffi

2
p S0. Since QjDe

is selfadjoint, Q is

symmetric and Sþ S� ¼ QjDe
� Q (cf. [6, (2.2)]), we get Q ¼ QjDe

¼ Sþ S�. Like-
wise, we show that P ¼ PjDe

¼ �i ðS� S�Þ. Take two real numbers �, � and define
� ¼ 1

2 ð� þ i�Þ. It follows from Theorem 4 that
ffiffiffi
2

p
ðSþ �I Þ ¼ S0 þ

ffiffiffi
2

p
�I is a creation

operator with respect to an orthonormal basis e0. Therefore ðQ�;P�Þ ¼
df

ðSþ �IÞ þ ðSþ �IÞ�;�i ððSþ �IÞ � ðSþ �IÞ�Þ
� 	

is a Heisenberg couple with respect
to e0 (cf. [6, Section 2]). This and the equality ðQþ �I;Pþ �IÞ ¼ ðQ�;P�Þ complete
the proof. &

Remark 9. It follows from the proof of (ii))(iii) of Theorem 8 that the obser-
vation made in Remark 5 applies here as well. More precisely, �0 ¼ 1ffiffi

2
p and �n > 0

for n ¼ 1; 2; . . . in the input basis make it coincide with the output one.

Remark 10. It is worthwhile to notice that the definition of Jðe;�Þ does not
require De to be a core of either Q or P, ðQ;PÞ 2 Jðe;�Þ, and this is maintained by
Theorem 8 as well. On the other hand, it follows from the proof of Theorem 8 that if
ðQ;PÞ is a Heisenberg couple with respect to an orthonormal basis e, then Q ¼ QjDe

,
P ¼ PjDe

and both the operators Q and P are selfadjoint. Thus, starting in Theorem 8
with a pair of symmetric operatorsQ andPwe conclude their selfadjointness by the way.
It might be interesting to remind the reader here that (see [6, Section 2]) the

operators Q and P are unitarily equivalent.

6. The Schrödinger couple. Though the Schrödinger couple, as a unitary image
of the Heisenberg one in L

2
ðRÞ, behaves in the same way we would like to display

this case in more detail. Recall that the Hermite functions hn, n ¼ 0; 1; . . ., are
defined as

hnðxÞ ¼
df
2�n=2ðn!Þ�1=2�1=4e�x2=2HnðxÞ ðx 2 RÞ;

with Hn, the n-th Hermite polynomial,

HnðxÞ ¼
df

ð�1Þnex
2 dn

dxn
e�x2 ðx 2 RÞ;
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and they form an orthonormal basis in L2ðRÞ. The pair of selfadjoint operators

ðx; i
d

dx
Þ belongs to Jðfhng

1
n¼0; f

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnþ 1Þ=2

p
g1
n¼0Þ ð17Þ

and is known as the Schrödinger couple.
Let us start with a couple ðQ;PÞ of symmetric operators in Jðfhng

1
n¼0;�Þ, where

� ¼ f�ng
1
n¼0 is a sequence of positive real numbers with �0 ¼ 1ffiffi

2
p . If we suppose that

for some �; � 2 R with �2 þ �2 > 0 the couple ðQþ �I;Pþ �IÞ is in J, then from
Theorem 8, in view of Remark 9, we get

ðQ;PÞ belongs to Jðfhng
1
n¼0; f

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnþ 1Þ=2

p
g1
n¼0Þ:

Comparing this with (17) we can identify Q as x and P as i ddx (use Remark 10).
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