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Abstract. Cosmic shear is an essential cosmological tool, breaking degeneracies inherent to
CMB data and providing an independent check of cosmological parameters. Upcoming cosmic
shear surveys with photometric redshift information will enable tighter constraints to be placed
on cosmological parameters, and allow us to explore how dark matter evolves. A Monte Carlo
method to rapidly simulate mock surveys enables us to estimate the covariance matrix for the
shear correlation functions, and hence the expected errors on cosmological parameter estimates
given survey specifications. We also make brief remarks on the separation of the cosmic shear
signal from any due to intrinsic galaxy alignments.

1. Introduction
The large-scale structure (LSS) of the Universe causes deflection and distortion of

propagating light bundles. This cosmic shear signal is manifest in the distorted, cor-
related, shapes of distant galaxies. The statistical properties of the ellipticities of these
galaxies depend on the (dark) matter power spectrum and cosmological parameters, thus
providing access to these quantities.

In the aftermath of WMAP, why should we bother with cosmic shear surveys? Cosmic
shear surveys provide an independent probe of cosmological parameters, both providing
cross-checks and breaking degeneracies inherent to CMB data. Of particular note is the
near-orthogonality of constraints in the Ωm − σ8 plane (e.g. van Waerbeke et al. 2002),
where Ωm is the matter density parameter and σ8 is the power spectrum normalisation.

Cosmic shear surveys with redshift information enable us to study the evolution of
dark matter and to place tighter constraints on cosmological parameters. Here, we focus
on the improvement in constraints on cosmological parameters coming from two-point
correlations of galaxy ellipticities, using a Monte Carlo method to rapidly simulate mock
surveys. See contributions in this volume from David Bacon, Alan Heavens and Andy
Taylor. For full details of the technique used for the numerical simulations, see the contri-
bution from Patrick Simon, and also Simon, King & Schneider (2004) for further details
of this work.

2. Comparison of CMB and lensing degeneracies
For the CMB power spectrum, Jungman et al. (1996) derived an expression for the

Fisher information matrix which yields the attainable accuracy on cosmological parame-
ters; it is the derivatives of the CMB power spectrum with respect to parameters which
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Figure 1. Derivatives of the CMB power spectrum with respect to various cosmological pa-
rameters: baryon density parameter Ωb, cosmological constant Λ, Hubble parameter h, optical
depth due to reionization τ and quadrupole normalization Q. From Tegmark, Taylor & Heavens
(1997).

determine the errors. Figure 1 (from Tegmark, Taylor & Heavens 1997) shows the deriva-
tives of the CMB power spectrum as a function of l for baryon density parameter Ωb,
cosmological constant Λ, Hubble parameter h, optical depth due to reionization τ and
quadrupole normalization Q, as described in that paper.

Analogously for lensing, Figure 2 (from King & Schneider 2003) shows the derivatives
of the redshift averaged lensing two-point shear correlation function ξ+ with respect to
Ωm, σ8, power spectrum shape parameter Γ and power spectrum spectral index n.

These figures illustrate the extent to which various parameters are degenerate; the
more degenerate the parameters, the more similar the form of the derivatives curves.
Note that the CMB curves have more structure than the lensing ones.
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Figure 2. Derivatives of the two-point shear correlation function with respect to various cosmo-
logical parameters: Ωm is the matter density parameter, σ8 is the power spectrum normalisation,
Γ is the shape parameter and n is the spectral index. From King & Schneider (2003).

3. How much does redshift information help parameter constraint?
Hu (1999) investigated the extent to which crude redshift information decreases the

errors on parameters, using the convergence power spectrum as the vehicle of cosmological
information. He found that errors on parameters, in particular those that govern the rate
of growth of structure, can be decreased by up to an order of magnitude, within the
adiabatic cold dark matter class of models. Here, we use shear correlation functions
binned in redshift, and in addition allow for cross-correlations between measurements of
the shear signal at different angular scales.

3.1. Quantifying cosmic shear: the two-point shear correlation functions

The degree to which galaxy ellipticities are correlated gives a measure of the strength of
cosmic shear. We concentrate on two-point shear correlation functions, ξ±(θ), since their
evaluation is independent of any gaps in the data field; other statistics can be derived
from these. In the absence of intrinsic correlations

ξ±(θ) = 〈γtγt〉 ± 〈γ×γ×〉 (θ) ,

ξ×(θ) = 〈γtγ×〉 (θ) .

where θ is the angular scale, γt,× are the tangential and cross components of the shear,
and the angle brackets denote averaging over all pairs within the separation bin defined
by θ.
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The two-point shear correlation functions may also be expressed as

ξ±(θ) =
∫ ∞

0

dl l

2π
J0,4(lθ)Pκ(l)

where Pκ(l) is the effective convergence power spectrum as a function of angular wave-
vector l. In other words, the observable two-point correlation functions are filtered ver-
sions of the convergence, or equivalently shear, power spectrum.

From now on we focus on ξ+ which contains most of the relevant cosmological infor-
mation on scales typically of interest. For the case where specific redshifts are available,
consider sources on sheets at zi and zj ; the correlation function is then measured as a
function of not only separation, but also redshift

ξ+(θ, zi, zj) = 〈γ(φ, zi)γ∗(φ + θ, zj)〉 =

9H4
0Ω2

m

4c4

∫ min[wi ,wj ]

0

dw

a2(w)
× R(w,wi)R(w,wj)

×
∫

dl l

(2π)
Pδ

(
l

f(w)
, w

)
J0(lθ) ,

where a is the scale factor normalised so that a = 1 today. wi is the comoving distance
at zi, f(w) is the comoving angular diameter distance, depending on spatial curvature
K, and R(w,w′) = f(w′ − w)/f(w′).

The final integration is over the 3-D power spectrum. The first integral contains geo-
metrical factors and the scale factor, and is performed out to the minimum of the two
comoving distances, since only structure common to light travelling from the two sheets
induces correlations. From this we see that if redshift information is available, we can
probe the evolution of dark matter.

We assume from now on that we measure the correlation functions in angular separa-
tion and redshift bins.

4. Ingredients for cosmological parameter constraint
The log-likelihood function for cosmological parameter estimates is distributed as χ2/2

so that

χ2(π) =
∑
ij

(
ξt − ξ(π)

)
i

[
C−1

]
ij

(
ξt − ξ(π)

)
j

, (4.1)

where π are the parameters under consideration, t denotes the fiducial model, C is the
covariance matrix and i, j denote the bins between which the covariance is determined.
We determine the covariance matrix using a Monte Carlo technique described in Simon,
King & Schneider (2004). The covariance matrix is given by

Cij =
〈(

ξ̂ −
〈
ξ̂
〉)

i

(
ξ̂ −

〈
ξ̂
〉)

j

〉
Nf

, (4.2)

where the outer average is performed over the realisations (Universes) and the inner
averages over the fields included from each of those realisations.

The auto- and cross-correlation functions are determined as a function of angular
separation for each redshift bin available. Figure 3 outlines the process of parameter
constraint. A population of sources is lensed and the redshift binned auto- and cross-
correlation functions are determined over a number of fields for each “Universe”. The
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Figure 3. Cartoon illustrating the process of cosmological parameter constraint. See text for
further details.

averages of these correlation functions agree well with theoretical expectations. The lower
right panel shows the constraint from one sub-field in the Ωm − σ8 plane, without (solid
lines) and with (lines with superimposed symbols) redshift information. The fiducial
model is marked with a diamond.

We have explored constraints on parameters when 2, 3 or 4 redshift bins are used.
For large numbers of redshift bins, it is convenient to perform a Fisher analysis. We find
that with no priors, parameter estimates improve by a factor of between 4-8 going to 2
redshift bins, and a factor of 5-10 going to 4 redshift bins. As in Hu (1999) we find that
parameters determining the rate of growth of structure are most favourably affected by
binning.

Figure 4 shows the Fisher error for 2, 3 and 4 bins as a percentage of the error for no
binning, for each of Ωm, ΩΛ and Γ.

5. Caveats and questions
As discussed in Simon, King & Schneider (2004), the assumption of gaussianity causes

the covariance to be underestimated at small scales (e.g. Scoccimarro, Zaldarriaga & Hui
1999). However, on linear scales, or for investigating which survey strategy is optimal
for a particular purpose, our method performs very well. For analysis of a real survey,
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Figure 4. Extent to which parameter errors are reduced with redshift binning, shown as a
percentage of the error with no redshift binning (1 bin error).

one would use (much more time consuming) ray tracing through high resolution N-body
simulations to obtain covariance matrices for particular cosmologies.

Another issue which has been raised in the past few years is that of intrinsic galaxy
alignments:

5.1. Do intrinsic galaxy alignments mess up cosmic shear?

Intrinsic galaxy alignment (IA) has often been neglected in cosmic shear surveys, but it
is poorly understood. In the limit of very weak lensing ε = ε(s) +γ. Usually, it is assumed
that shape distortion arises solely from lensing. But, if intrinsic alignments in source
ellipticities, arising at the epoch of galaxy formation, also play a role then ξ+ must be
written as

ξ+ =
〈
εi ε∗j

〉
=

〈
γi γ∗

j

〉
+

〈
ε
(s)
i ε

(s)∗
j

〉
︸ ︷︷ ︸
intrinsic

= ξlens
+ + ξint

+︸︷︷︸
intrinsic

,

and similarly for ξ−. In other words, an intrinsic signal “contaminates” the lensing signal.
If cosmic shear surveys are to be used to place constraints on cosmological parameters
and on the matter power spectrum, then any intrinsic signal must be accounted for in
the analysis.

Physically close galaxies form in similar gravitational fields, and thus might be expected
to have correlations in their shapes. A couple of mechanisms which may give rise to such
an effect are
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• Tidal stretching - where the ellipticity of a (luminous) galaxy is determined by
the shape of the (dark matter) halo in which it forms. This is most relevant for elliptical
galaxies, and the ellipticity is linear in the tidal field.
• Tidal torquing during galaxy formation may give rise to correlations in angular

momenta (spins) and projected ellipticities of close galaxies. Hoyle (1949) suggested
that a galaxy acquires angular momentum by tidal torques from matter surrounding its
protogalaxy. This mechanism is most relevant for spiral galaxies.

Numerical and analytic predictions for the magnitude of the effect span more than an
order of magnitude; hence it is fair to say that it is poorly understood. One possibility
to deal with any potential IA is to down-weight physically close galaxy pairs (King
& Schneider 2002; Heymans & Heavens 2003). A better solution is to perform shear
correlation function tomography - this allows separation of IA and cosmic shear signals
without assuming an IA model - we obtain constraints on IA and a clean cosmic shear
signal (King & Schneider 2003). Recently, Hirata & Seljak (2004) have proposed that a
cross-term between IA and cosmic shear may be important; along a line of sight where
there is a high IA signal, cosmic shear of higher redshift sources can also be boosted
due to the tidal field giving rise to the IA signal. Depending on the origin of IA, this
cross-term can be zero or be of concern in surveys.

6. Conclusions
Cosmic shear can be used to study the evolution of the large scale structure in the

Universe; it benefits from source redshift estimates. We can rapidly simulate cosmic shear
surveys to obtain covariance matrices, an essential ingredient in parameter estimation.
As an application we considered to what extent shear correlation functions enable tighter
constraints to be placed on cosmological parameters when even crude redshift bins are
used. The errors on parameters can be decreased significantly using redshift binning.

Intrinsic galaxy alignment may be an important consideration, though the origin of this
effect is not understood and the magnitude very uncertain. Shear correlation function
tomography could be used to constrain intrinsic galaxy alignment and to obtain a clean
lensing signal. A caveat to this was recently proposed by Hirata & Seljak (2004) - a cross-
term between IA and cosmic shear. Assuming that we can deal with IA, the subsequent
combination of cosmic shear survey results with other tracers of LSS, with CMB lensing
and with the primary and secondary anisotropies of the CMB itself will be incredibly
powerful in addressing central issues in cosmology: how structures form and evolve.
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