Ultrafast Lasers in Materials Research

David G. Cahill and Steve M. Yalisove, Guest Editors

Abstract

With the availability of off-the-shelf commercial ultrafast lasers, a small revolution in materials research is underway, as it is now possible to use these tools without being an expert in the development of the tools themselves. Lasers with short-duration optical pulses — in the sub-picosecond (less than one-trillionth of a second) range — are finding a variety of applications, from basic research on fast processes in materials to new methods for microfabrication by direct writing. A huge range of pulse energies are being used in these applications, from less than 1 nJ (a billionth of a joule) to many joules.

Keywords: laser, ablation.

Introduction

Ultrafast lasers—that is, lasers that produce optical pulses with a duration of less than a picosecond—are playing an increasingly important role in many science and technology disciplines. Ultrafast, time-resolved measurements are well established in physical chemistry, where fundamental time scales of chemical reactions become accessible,¹ and in solid-state physics and electrical engineering, where carrier dynamics and transport are probed on picosecond time scales directly relevant to the operation of modern highspeed devices.

Applications in materials research have been slower to emerge, because only within the past decade have commercial instruments reached a level of reliability and sophistication that make them practical tools for scientists and engineers who may not be experts in laser technology and the manipulation of short-duration, high-intensity optical pulses. The rapid development of ultrafast laser technology is a principal motivation for this issue of MRS Bulletin: the time is ripe for ultrafast lasers to take on a rapidly expanding role in studies of the science of materials and in materials characterization, materials modification, and microfabrication. Ten years ago, very little materials research was conducted using high-intensity, ultrafast lasers. With the commercial availability of off-the-shelf ultrafast tools, a small revolution in materials research is underway.

Ultrafast optical pulses of <1 ps duration are generated by mode-locked laser oscillators. The phases of the longitudinal optical modes of the laser cavity are locked together by either an active element (e.g., an acousto-optic modulator) or by passive effects such as Kerr-lensing in the gain medium or the use of a saturable absorber. Mode-locking produces shortduration optical pulses with a high repetition rate determined by the length of the optical cavity. The wide bandwidth of optical gain in sapphire doped by Ti enables extremely short-duration pulses.

Ti:sapphire lasers dominate the market, but Ti:sapphire laser oscillators are, of course, actually a set of three lasers. Continuous-wave (cw) diode lasers pump a cw solid-state laser, which is frequency-doubled and used to pump the Ti:sapphire oscillator. Ultrafast laser oscillators and amplifiers that can be directly pumped by diode lasers, such as Er:glassfiber lasers and Yb:tungstate lasers, are becoming more common and may lead to more compact and less expensive instruments, but they have a more limited range of output wavelengths and a longer pulse duration than Ti:sapphire.

The typical repetition rate of a laser oscillator is 80 MHz. Therefore, a laser oscillator with an average power of 1 W produces optical pulses with an energy of approximately 10 nJ. This pulse energy is sufficient for metrology using picosecond acoustics, for experiments that probe heat transfer or carrier dynamics, and for many forms of optical spectroscopy; it is not generally sufficient for materials modification, except with pulses that are tightly focused by high-numerical-aperture microscope objectives. Higher-energy pulses are available from so-called "extended-cavity oscillators" that operate with a lower repetition rate, on the order of 10 MHz, but this technology is currently limited to <100 nJ in commercial Ti:sapphire lasers and <1 μ J in Yb:tungstate lasers.

Optical pulses from laser oscillators must therefore be amplified to reach energies of $>1 \mu$ J. The ability to amplify ultrafast lasers was an elusive goal for 20 years following the development of the ultrafast oscillator in the mid-1960s. In 1985, highintensity ultrafast lasers emerged with the development of the chirped-pulse amplifier.² In a chirped-pulse amplifier, pairs of diffraction gratings are used to temporally stretch the optical pulse prior to amplification and then temporally compress the pulse after it leaves the amplifier. Twenty years later, Ti:sapphire chirped-pulse amplifiers that produce 1–2 mJ optical pulses at 1 kHz repetition rates are available from a number of commercial suppliers. Higher-repetition-rate (>100 kHz) lasers with microjoule energy pulses are desirable for many applications in materials removal and modification. These types of lasers are becoming more common. The relative simplicity of amplifiers that are directly pumped by diode lasers is driving the development of systems based on Er:glass and Yb:tungstate. A remarkable feature of the articles in this issue of MRS Bulletin is the huge range of pulse energies that are used in the research: from <1 nJ optical pulses applied in metrology to the 1 J energies used for a relativistic optics phenomenon called plasma wakefield acceleration of electrons that may one day replace synchrotrons as bright sources of x-rays^{5,6} and γ-rays.⁷

How Fast Is Ultrafast?

A simple illustration of the time scale represented by a femtosecond (onequadrillionth of a second) is the fact that light travels around the Earth about seven times in a second, but only about 300 nm in a femtosecond (see Figure 1).

The answer to the question "How fast is ultrafast?" in materials research more accurately depends on the characteristic time scale of the application or the science being studied. For example, for the generation of high-frequency longitudinal acoustic waves in metal films, an important time scale is the optical absorption

depth divided by the speed of sound, typically 1–5 ps. Thus, optical pulses with duration of <1 ps are usually sufficient for observing the sharpest possible acoustic signals.

Each of the articles in this issue of *MRS Bulletin* will answer the question differently, and in many cases the answer is complicated by the existence of multiple processes, some of which are not well characterized.

It is often stated that the ultrafast regime is reached when the pulse duration is less than the time scale of electron–phonon coupling. This statement has truth to it but sometimes oversimplifies reality. The laser pulse directly excites the electronic degrees of freedom in a material, and it takes time for the energy absorbed by the electrons to be transferred to the lattice. The complete description of this process is complex, even for the relatively simple case of a laser pulse incident on the surface of a metal. Energetic electrons transfer energy to other electronic excitations and to the motions of the atoms (i.e., the phonons), and despite the popularity of so-called "two-temperature" models that assume the electrons and phonons are independently in thermal equilibrium at two different temperatures, the time scales for these processes are not always well separated.³ Furthermore, ballistic transport and rapid diffusion of hot electrons can distribute energy in a metal over much longer length scales than the optical absorption depth. Because many scattering events are needed to transfer energy from the highly excited electron system to the motions of the atoms, the time scale for the heating of the lattice can be much greater than 1 ps, depending on the material under study and the density of the energy deposited in the material.

The first article in this issue describes in detail the mechanisms and characteristic time scales of near-threshold laser ablation in metals and semiconductors. Reis and co-authors summarize the x-ray diffraction results obtained last year at the Stanford Linear Accelerator Center. This experiment tour de force-the publication in Science⁴ has 51 authors associated with 18 institutions-represents a diffraction study of ultrafast melting with the fastest time resolution to date. During the initial 200-400-fs period following the laser pulse, a significant fraction (10-15%) of the valence electrons are excited to higher electronic states; this strong excitation greatly reduces the attractive part of the interatomic potential and allows the atoms to freely drift with their roomtemperature thermal velocities until the electrons relax, 400-600 fs later. Atoms can drift as much as half of the unit-cell dimension, even though the center of mass, collectively, is still in the original position, without thermal expansion. Yet, once the electrons relax (600 fs to 1 ps), the system evolves in the same way as it would if the lattice of atoms was heated instantaneously by the laser pulse. Large-scale molecular dynamics (MD) and associated hydrodynamics simulations that are described later in the first article bear this out as well

The articles that follow Reis et al. expand on these ideas and discuss specific applications of ultrafast lasers in the characterization and fabrication of materials.

Antonelli et al. describe how the rapid heating of the near surface of metal films by nanojoule ultrafast optical pulses can be used to generate strain and temperature fields for measurements of the mechanical and thermal properties of thin films and interfaces. Conversely, if the mechanical properties are known, the geometry of thin-film structures can be derived from the spectra of acoustic echoes and oscillations. This approach, termed *picosecond acoustics*, is widely used in the microelectronics industry for measuring the thicknesses of metal interconnects and interlayer dielectrics.

King et al. describe their efforts to develop an ultrafast imaging tool to observe the time-dependence of phase transformations and shock-driven mechanical processes related to the interaction of ultrafast light and materials. This article discusses progress on two distinct types of instruments, an ultrafast transmission electron microscope and a laser-produced, relativistic electron beam with MeV energies that is subsequently used as a source of high brightness x-rays and γ -rays.

Itoh et al. illustrate how bulk dielectrics can be modified with ultrafast lasers to produce waveguides, Bragg reflectors, optical devices, and microfluidic channels by direct-writing in three dimensions. Again, a thermal mechanism is identified as the root cause of these materials modification processes. In all cases, the extremely sharp thermal gradients produced by ultrafast laser pulses permit such structures to be created—something that would not be possible for laser pulses of longer than 10 ps.

Tull et al. describe the morphological changes that an ultrafast laser can produce at surfaces and interfaces. They describe the use of high-intensity ultrafast light to produce "black silicon" by taking advantage of laser-induced periodic structures and accelerating the process by machining in a halogen gas environment. This morphological variant of Si strongly adsorbs light in the IR, something flat Si does not do. The authors also describe another morphological modification of a Si–SiO₂ interface. Here, the ultrafast light is absorbed at the Si surface and the softened

glass is blown into a bubble by the spallation of a thin layer of ejected molten Si, again a thermal mechanism. These bubbles have highly reproducible heights and can be accurately joined to form tubes capable of transporting fluid.

Finally, Haight et al. describe the use of ultrafast lasers to repair lithographic masks at the 20–200-nm scale. This is, to the best of our knowledge, the first application of ultrafast lasers for nanoscale fabrication in a manufacturing facility. Here, the deterministic threshold is exploited to either photo-dissociate precursor molecules to deposit a thin line or ablate unwanted material below the diffraction limit.

These articles describe but a few of the exciting materials research topics that are actively being studied today with ultrafast lasers. Unfortunately, the number of topics in materials research that we could not include because of space constraints is very large: the much more mature field of ultrafast spectroscopy,8 new areas of spectral and temporal pulse shaping,9 ultrafast interactions with organic and biological materials,¹⁰ high-harmonic generation as a source of UV and soft x-rays, ultrafast generation of particle beams,11 terahertz spectroscopy and imaging,12,13 and ablation mechanisms in dielectric materials¹⁴ (which are quite different from those in metals and semiconductors). Our hope is that the selection of topics will illustrate the breadth of this new area of ultrafast lasers in materials research and the applications that have already been generated.

References

1. Ahmed H. Zewail, J. Phys. Chem. A 104 (2000) p. 5660.

2. D. Strickland and G. Mourou, *Opt. Commun.* **56** (3) (1985) p. 219.

3. G. Tas and H.J. Maris, *Phys. Rev. B* **49** (1994) p. 15046.

 A.M. Lindenberg, J. Larsson, K. Sokolowski-Tinten, K.J. Gaffney, C. Blome, O. Synnergren, J. Sheppard, C. Caleman, A.G. MacPhee, D. Weinstein, D.P. Lowney, T.K. Allison, T. Matthews, R.W. Falcone, A.L. Cavalieri, D.M. Fritz, S.H. Lee, P.H. Bucksbaum, D.A. Reis, J. Rudati, P.H. Fuoss, C.C. Kao, D.P. Siddons, R. Pahl, J. Als-Nielsen, S. Duesterer, R. Ischebeck, H. Schlarb, H. Schulte-Schrepping, Th. Tschentscher, J. Schneider, D. von der Linde, O. Hignette, F. Sette, H.N. Chapman, R.W. Lee, T.N. Hansen, S. Techert, J.S. Wark, M. Bergh, G. Huldt, D. van der Spoel, N. Timneanu, J. Hajdu, R.A. Akre, E. Bong, P. Krejcik, J. Arthur, S. Brennan, K. Luening, and J.B. Hastings, *Science* 308 (2005) p. 392.

5. P. Sprangle, E. Esarey, A. Ting, and G. Joyce, *Appl. Phys. Lett.* **53** (22) (1988) p. 2146.

A. Rousse, K.T. Phuoc, R. Shah, A. Pukhov,
E. Lefebvre, V. Malka, S. Kiselev, F. Burgy, J.P. Rousseau, D. Umstadter, and D. Hulin, *Phys. Rev. Lett.* **93** 135005 (2005).

7. G. Mourou and D. Umstadter, "Extreme Light," *Sci. Am.* **286** (5) (2002) p. 80.

8. D.D. Dlott, in Annu. Rev. Phys. Chem. 50 (1999) p. 251.

9. A.M. Weiner, Prog. Quantum Electron. 19 (1995) p. 161.

10. N. Shen, D. Datta, C.B. Schaffer, P. LeDuc, D.E. Ingber, and E. Mazur, *Mech. Chem. Biosystems* **2** (2005) p. 17.

11. R.A. Bartels, A. Paul, H. Green, H.C. Kapteyn, M.M. Murnane, S. Backus, I.P. Christov, Y. Liu, D. Attwood, and C. Jacobsen, *Science* **297** (2002) p. 376.

12. M.C. Beard, G.M. Turner, and C.A. Schmuttenmaer, J. Phys. Chem. B 106 (2002) p. 7146.

13. B.B. Hu and M.C. Nuss, *Opt. Lett.* **20** (1995) p. 1716.

14. R. Stoian, M. Boyle, A. Thoss, A. Rosenfeld, G. Korn, I.V. Hertel, and E.E.B. Campbell, *Appl. Phys. Lett.* **80** (2002) p. 353.

David G. Cahill, Guest Editor of this issue of MRS Bulletin, is Willett Professor of Engineering, a professor of materials science, and associate director of the Center for Advanced Materials for Water Purification at the University of Illinois at Urbana-Champaign. He received his PhD degree in condensed-matter physics from Cornell University in 1989 and worked as a postdoctoral research associate at the IBM T.J. Watson Research Center before joining the faculty of

UIUC in 1991. His current research includes thermal transport in nanostructured materials and individual nanostructures, thermodynamics of solid–liquid interfaces, the evolution of stress in ion–material interactions, and ultrafast processes in materials.

Cahill is a fellow of the AVS and has held elected positions with the Nanoscale Science and Technology Division, including chair and program chair in 2002–2003. He received the Peter Mark Memorial Award in 1998. He is also a fellow of the American Physical Society and currently serves on the executive committee of the Division of Material Physics. He chaired the 2003 Gordon Research Conference on Thin-Film and Crystal Growth Mechanisms and is an associate editor of *Microscale Thermophysical Engineering*.

Cahill can be reached at the University of Illinois, Dept. of Materials Science and Engineering, 104 S. Goodwin Ave., Urbana, IL 61801 USA; tel. 217-333-6753 and email d-cahill@uiuc.edu.

David G. Cahill

Steven M. Yalisove, Guest Editor for this issue of *MRS Bulletin,* is an associate professor of materials science and engineering at the

Steven M. Yalisove

University of Michigan. He obtained his PhD degree in materials science and engineering at the University of Pennsylvania in 1986.

G. Andrew Antonelli

He joined the Michigan faculty in 1989 after a postdoctoral appointment at Bell Laboratories. He has made important contributions to the fields of surface science, thin-film growth, evolution of thin-film morphology, and most recently, the interaction of high-intensity femtosecond laser pulses with materials.

Yalisove can be reached at the University of Michigan, Department of Materials Science and Engineering, 2300 Hayward St., Ann Arbor, MI 48109-2136 USA; tel. 734-764-4346 and e-mail smy@umich.edu.

G. Andrew Antonelli is a laser research scientist in the Assembly Capital Equipment Development Group at Intel Corp. and an adjunct assistant professor of physics at Brown University. He received BSc and MSc degrees in physics from Davidson College in 1995 and Brown University in 1997, respectively. He performed his doctoral research on picosecond laser acoustics under the guidance of Humphrey J. Maris at Brown University and obtained a PhD degree in physics in 2001. Since that time, he has worked in various capacities for Intel, making significant

Michael Armstrong

contributions to the areas of thin-film metrology, low-k dielectric materials, and laser micromachining. His research interests include laser ablation, picosecond laser acoustics, synthesis of low-k dielectric materials, and experimental methods of studying the thermal, mechanical, and fracture properties of thin films.

Antonelli can be reached at Intel Corporation, 5000 W. Chandler Blvd., Mail Stop CH3-111, Chandler, AZ 85226 USA; tel. 480-552-5641 and e-mail george.a. antonelli@intel.com.

Michael Armstrong is a postdoctoral fellow at Lawrence Livermore National Laboratory. He holds BA degrees in music performance and in physics from New Mexico State University and a PhD degree in physics from the University of Rochester. His primary interests are ultrafast phenomena in condensed-phase chemical reactions, molecular coordination in macromolecules and phase transitions, nonlinear optical phenomena, ultrafast electron imaging and diffraction, and the development of instruments to examine ultrafast regimes.

Armstrong can be reached at Lawrence Livermore National

James E. Carey

Laboratory, 7000 East Ave. L-353, Livermore, CA 94551 USA; tel. 925-423-5702, fax 925-423-7040, and e-mail armstrong30@llnl.gov.

James E. Carey is a postdoctoral researcher in the Division of Engineering and Applied Science at Harvard University and a member of the Mazur research group. He received his BSE degree in engineering physics from the University of Michigan in 1999 and his MSC degree in engineering sciences and PhD degree in applied physics from Harvard in 2001 and 2004, respectively. He is currently investigating the material and optical properties of femtosecondlaser-microstructured silicon for use in photodetectors and photovoltaics.

Carey can be reached at Harvard University, Department of Physics, 9 Oxford St., Cambridge, MA 02138 USA; e-mail jcarey@fas.harvard.edu.

Brian C. Daly is an assistant professor of physics at Vassar College in Poughkeepsie, N.Y. He holds a bachelor's degree in physics from the College of the Holy Cross and a PhD degree in physics from Brown University. From 2002 to 2005, he worked as a

Brian C. Daly

research fellow at the Center for Ultrafast Optical Science at the University of Michigan. His experimental interests include time-resolved ultrafast studies of phonon transport in crystals, thin films, and nanostructures.

Daly can be reached at Vassar College, Department of Physics and Astronomy, 124 Raymond Ave., Poughkeepsie, NY 12604 USA; tel. 845-437-7351, fax 845-437-5995, and e-mail brdaly@vassar.edu.

Kelly J. Gaffney has been a member of the Stanford Synchrotron Radiation Laboratory faculty at Stanford University since 2004. He received his PhD degree in chemistry from the University of California at Berkeley in 2001. His research to date has centered on experimental investigations of ultrafast structural dynamics in a variety of materials and environments. During his PhD work with Charles Harris, Gaffney studied electron dynamics at interfaces. As a postdoctoral fellow in Mike Fayer's laboratory at Stanford University, he used ultrafast vibrational spectroscopy to study the dynamics of energy transfer and structural relaxation in hydrogen-bonding fluids. Since accepting

Kelly J. Gaffney

his current position at SSRL, he has focused his attention on the development and extension of ultrafast x-ray science to the study of structural and chemical dynamics.

Gaffney can be reached at Stanford University, Stanford Synchrotron Radiation Laboratory, SLAC, Menlo Park, CA 94025 USA; tel. 650-926-2382, fax 650-926-4100, and e-mail kgaffney@ slac.stanford.edu.

George H. Gilmer is a staff physicist at Lawrence Livermore National Laboratory. His research includes the development of theories, atomistic computer models, and special-purpose computers to study solidification, thin-film deposition, crystal growth mechanisms, crystal surface structures, and effects of extreme conditions and energetic particles on surface and bulk material

Gilmer received a BS degree in mathematics and physics from Davidson College and a PhD degree in physics from the University of Virginia. He worked as a postdoctoral research associate at Cornell University, a professor of physics at Washington and Lee University, and

George H. Gilmer

a distinguished member of technical staff at Bell Laboratories before taking his current position at LLNL. He is a fellow of the American Physical Society.

Gilmer can be reached by e-mail at gilmer1@llnl.gov.

Richard Haight is a research staff member in the Physical Sciences Department at the IBM T.J. Watson Research Center. After receiving his PhD degree from the State University of New York at Albany in 1983, he spent two years as a postdoctoral fellow at Bell Laboratories and joined IBM Research in 1985. His interests include femtosecond electron dynamics in materials, photoelectron spectroscopy with femtosecond high harmonics, nanomachining with ultrashort light pulses, and applications of photoelectron spectroscopy to nanoscale and device physics.

Haight is a fellow of the American Physical Society and the Optical Society of America. Haight can be reached at the IBM T.J. Watson Research Center, 1101 Kitchawan Rd., Route 134, Yorktown Heights, NY 10598 USA; tel. 914-945-3805, fax 914-945-2141, and e-mail rahaight@ us.ibm.com.

Richard Haight

Kazuyoshi Itoh is a faculty member in the Department of Material and Life Science, Graduate School of Engineering, at Osaka University. He received his BEng and MEng degrees in applied physics from Osaka in 1971 and 1975, respectively, and his DEng degree from Hokkaido University in 1984. His current interests involve applications of ultrashort optical pulses to biophotonics, optical signal processing, and materials processing.

Itoh served as an editor in chief of the Japanese Journal of Applied Physics from 2002 to 2004 and is a fellow of both the Optical Society of America and the International Society for Optical Engineering. He is president of the Optical Society of Japan.

Itoh can be reached at Osaka University, Graduate School of Engineering, Dept. of Material and Life Science, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan; tel. 81-6-6879-7850, fax 81-6-6879-7295, and e-mail itoh@mls. eng.osaka-u.ac.jp.

Wayne E. King is

division leader of the Materials Science and Technology Division, Chemistry and Materials Science Directorate, at Lawrence Livermore National Laboratory. He earned a BA degree in

Kazuyoshi Itoh

physics and mathematics from Thiel College in 1975 and a PhD degree in materials science and engineering from Northwestern University in 1980. He spent the following year as a postdoctoral scientist at Argonne National Laboratory and then joined the technical staff. In 1987, he moved to LLNL, where he is currently leading a new effort to construct the dynamic transmission electron microscope, which can take images with nanometer spatial resolution and nanosecond time resolution.

King is author or co-author of more than 80 journal articles, the editor of one book, and the founder of the Frontiers of Electron Microscopy in Materials Science (FEMMS) Series of international conferences that have been held biannually since 1986.

King can be reached at Lawrence Livermore National Laboratory, L-353, Livermore, CA 94551 USA; tel. 925-423-6547, fax 925-423-7040, and e-mail weking@ llnl.gov.

Peter Longo is an advisory engineer in the Lithography Development Department at the IBM T.J. Watson Research Center. He received his master's degree in computer science from Union College in 1987. He has developed control system software and hardware for electronbeam, ion-beam, x-ray, and femtosecond-laserbased tools to deliver advanced capability to IBM's manufacturing divisions.

Wayne E. King

Longo can be reached at the IBM T.J. Watson Research Center, PO Box 218, Yorktown Heights, NY 10598 USA; tel. 914-945-3578, fax 914-945-2141, and e-mail peterlon@ us.ibm.com.

Victor Malka is research director at CNRS, a lecturer at École Polytechnique, and head of the Laser Plasma Accelerator Group at the Laboratoire d'Optique Appliquée (LOA) in France. He received his PhD degree in atomic physics for warm dense plasma from the University of Paris XI and accepted a permanent position at CNRS. He has worked on implosion experiments, laser-plasma interactions for inertial fusion, and laser-plasma interactions in the relativistic regime. He concentrates his research on relativistic interactions, compact accelerator design, and new science and applications for laser-based particle beams in medical

Peter Longo

Bryan W. Reed

science, radio biology, materials science, and chemistry.

Malka has published more than 100 articles and letters in refereed scientific journals and is a member of the Scientific Council of the European Physical Society.

Malka can be reached at Laboratoire d'Optique Appliquée (LOA), CNRS-École Polytechnique-ENSTA, Chemin de la Hunière 91761 Palaiseau Cedex, France; tel. 33-1-69319903 and e-mail victor.malka@ensta.fr.

Eric Mazur is Harvard College Professor and Gordon McKay Professor of Applied Physics at Harvard University. He obtained a PhD degree in experimental physics at the University of Leiden in the Netherlands in 1981 and joined the Harvard faculty in 1984. His work includes spectroscopy, light scattering, and studies of electronic and

Victor Malka

Eric Mazur

and micro- and nanofabrication. He expects to complete his doctoral studies in the spring of 2007.

McDonald can be reached at the University of Michigan, Rackham Graduate School, Applied Physics, 2477 Randall Laboratory, 500 E. University, Ann Arbor, MI 48109 USA; tel. 734-647-9498 and e-mail jpmcdona@umich.edu.

Stefan Nolte is an assistant professor in the Institute of Applied Physics at Friedrich Schiller University in Jena, Germany. In 1999, he earned a doctorate degree in physics from the University of Hanover and worked at the Laser Zentrum Hanover before joining Friedrich Schiller University. His research topics include ultrashort-pulse micromachining and materials modification for industrial and medical applications. He has been actively engaged in research on femtosecond laser micromachining since the mid-1990s.

Nolte can be reached at Friedrich-Schiller-Universität Jena, Institute of Applied Physics, Max-Wien-Platz 1, D-07743 Jena, Germany; tel. 49-3641-65-7656, fax 49-3641-65-7680, and e-mail nolte@iap.uni-jena.de.

Joel P. McDonald

Bernard Perrin is director of research at CNRS. He received an engineering degree from the École Nationale Supérieure des Télécommunications in Paris in 1975, and IngDr and DrSc degrees in physics from Pierre and Marie Curie University in 1978 and 1987, respectively. His current research interests include acoustics, solid-state physics, and nanophysics; more specifically, he applies picosecond laser ultrasonics to study elastic, vibrational, and thermal properties of nanostructures.

Perrin can be reached at Université Pierre et Marie Curie, Institut des NanoSciences de Paris, 140 Rue de Lourmel 75015 Paris, France; tel. 33-1-44-27-42-22, fax 33-1-44-27-38-82, and e-mail bper@ccr.jussieu.fr.

Bryan W. Reed is a staff member in the dynamic transmission electron microscopy group at Lawrence Livermore National Laboratory. He received a BS degree in physics from Harvey Mudd College, followed by a PhD degree in applied physics from Cornell University in 1999. His interest in complexity and nonequilibrium processes has led him into a variety of research areas, including electronic properties of

nanoscale materials (investigated primarily with electron energy loss spectroscopy), the role of multiscale microstructural correlations in fracture processes, and the development of structure in rapidly driven phase transformations. He is also very interested in technological developments in transmission electron microscopy.

Stefan Nolte

Reed can be reached at Lawrence Livermore National Laboratory, 7000 East Ave. L-353, Livermore, CA 94551 USA; tel. 925-423-3617, fax 925-423-7040, and e-mail reed12@llnl.gov.

David A. Reis is an assistant professor of physics and applied physics at the University of Michigan. He received his BA degree from the University of California at Berkeley in 1993 and his PhD degree from the University of Rochester in 1999, where he made contributions to accelerator physics and nonlinear quantum electrodynamics. Prior to accepting his current position, he was a postdoctoral fellow with the Center for Ultrafast Optical Science at the University of Michigan. He currently studies ultrafast processes in matter using both x-ray and optical probes.

Bernard Perrin

Reis can be reached at the University of Michigan, Department of Physics, 450 Church St., Ann Arbor, MI 48109-1040 USA; tel. 734-763-9649, fax 734-764-5153, and e-mail dreis@umich.edu.

Antoine Rousse is a

staff researcher at the Laboratoire d'Optique Appliquée (LOA) and was awarded a CNRS position in 2000. He received a PhD degree in plasma physics from the University of Orsay-Paris XI in 1994 and spent a year as a postdoctoral researcher at the Institute of Physical and Chemical Research (RIKEN) in Tokyo in 1995. He currently leads a research group working on ultrashort, intense lasermatter interactions and the production of femtosecond x-ray pulses and their application in ultrafast x-ray science, mainly for the study of ultrafast structural dynamics in solid-state physics. He has performed pioneering studies in ultrafast x-ray science and is developing the new generation of laser-produced plasma x-ray sources from relativistic lasermatter interactions.

Rousse can be reached at LOA/ENSTA, Chemin de la Hunière, F-91761 Palaiseau

David A. Reis

structural events in solids that occur on the femtosecond time scale. He is also interested in education, science policy, outreach, and the public perception of science.

Mazur can be reached at Harvard University, Department of Physics, Cambridge, MA 02138 USA; tel. 617-495-8729, fax 240-255-622, and e-mail mazur@physics. harvard.edu.

Joel P. McDonald is a graduate student in the Applied Physics Program at the University of Michigan. He completed his undergraduate degree at Alma College, majoring in mathematics and physics. His research at the University of Michigan has focused on the use of femtosecond pulsed lasers in a variety of applications, including pump-probe imaging of laser-induced ablation, laser-induced breakdown spectroscopy,

Antoine Rousse

Wataru Watanabe

33-1-69319890, fax 33-1-

antoine.rousse@ensta.fr.

Chris B. Schaffer is an

assistant professor in the

Department of Biomed-

Cornell University. He

physics from the Uni-

versity of Florida (1995)

and Harvard University

(2001), respectively. His

research focuses on

understanding highly

nonlinear interactions

between femtosecond

laser pulses and trans-

received his undergrad-

uate and PhD degrees in

ical Engineering at

69319996, and e-mail

Cedex, France; tel.

Chris B. Schaffer

parent materials and exploiting these interactions for micromachining and use in biological research as a precise laser scalpel.

Schaffer can be reached at Cornell University, Department of Biomedical Engineering, 120 Olin Hall, Ithaca, NY 14853 USA; tel. 607-256-5620, fax 607-256-5608, and e-mail cs385@cornell.edu.

Ben Torralva is a research staff scientist in the Materials Science and Technology Division, Chemistry and Materials Science Directorate, at Lawrence Livermore National Laboratory. He came to LLNL as a postdoctoral researcher in 2001. He received a BA degree in 1993 and a PhD degree in 2001, both in physics from Texas A&M University. His current research activities center on modeling the interaction of intense laser pulses with materials

Ben Torralva

using a variety of techniques, ranging from first-principles methods to continuum models. Torralva can be reached at Lawrence Livermore National Laboratory, Materials Science and Technology Division, 7000 East Ave., Livermore, CA 94550 USA; tel. 925-423-4839 and e-mail torr@llnl.gov.

Brian R. Tull is a graduate student in applied physics at Harvard University and a member of the Mazur research group, where he works to develop efficient photovoltaic cells through femtosecond laser irradiation of silicon. He received a BS degree in materials science and engineering from the University of Pennsylvania in 1998, an MS degree in metallurgy and materials engineering from the University of Connecticut in 2001, and plans to complete his doctorate in applied physics in 2007.

Brian R. Tull

Tull can be reached at Harvard University, Department of Physics, 9 Oxford St., Cambridge, MA 02138 USA; tel. 617-496-9616 and e-mail tull@fas.harvard.edu.

Alfred Wagner is a research staff member in the Advanced Lithography Department at the IBM T.J. Watson Research Center. He received his PhD degree from Cornell University in 1978 and spent seven vears as a member of the technical staff in the Radiation Physics Research Department at Bell Laboratories. He joined IBM in 1985, managing an advanced lithography and mask technology group. His primary research interest involves focused ion beam and femtosecond laser nanomachining. Wagner can be reached at IBM T.J. Watson Research Center, PO Box 218, Yorktown

Heights, NY 10598 USA;

tel. 914-945-1962, fax

Alfred Wagner

914-945-2141, and e-mail alwagner@us.ibm.com.

Wataru Watanabe is an assistant professor in the Department of Material and Life Science at Osaka University. He received his BE, ME, and DE degrees from Osaka University in 1994, 1996, and 1999, respectively. He joined the National Institute of Advanced Industrial Science and Technology (AIST) in 2006 and is currently a researcher in the Photonics Research Institute. His research interests include ultrafast nonlinear optics and nanophotonics.

Watanabe can be reached at the National Institute for Advanced Industrial Science and Technology, Photonics Research Institute, 1-8-31, Midorigaoka, Ikeda, Osaka 563-8577, Japan; tel. 81-72-751-9543, fax 81-72-751-4027, and e-mail wataru.

MRS ONLINE Now available to libraries and institutions!

12-month unlimited access to over 15,500 papers—proceedings volumes published from our 2000 MRS Spring Meeting to the present, with more added daily.

For more information, contact: Anita B. Miller, Materials Research Society

506 Keystone Drive, Warrendale, PA 15086; Tel: 724-779-3004, X 551; Fax: 724-7<u>79-8313; amiller@mrs.org</u>

www.mrs.org/publications

www.mrs.org/bulletin

Today