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Abstract. The growth in winter canola acreage in the southern Great Plains has
led to questions about the best way to reduce price risk because there is no U.S.
canola futures market. Cross-hedge ratios and hedging effectiveness are
calculated, and encompassing tests are conducted for short-horizon hedging.
Possible cross-hedge markets considered are U.S. soybeans, soybean oil, soybean
meal, hard red winter wheat, and Canadian canola. The selected cross hedge is a
combination of soybean oil and meal futures, but its hedging effectiveness is
substantially less than what is typically provided by a direct hedge.
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1. Introduction

In the early 2000s, new varieties of winter hardy canola, including Roundup-
Ready varieties, were introduced, and since then canola acreage has dramatically
increased in the southern Great Plains. Winter canola provides many advantages
for wheat growers. First, the yield and quality of wheat increases by planting
canola because cultivation of canola interrupts the cycle of diseases and stops the
growth of grassy winter weeds, especially ryegrass (Boyles, Peeper, and Medlin,
2004). Moreover, a winter canola–winter wheat crop rotation is more profitable
than continuous winter wheat (Bushong et al., 2012; DeVuyst et al., 2009).
In addition, winter canola varieties suitable for the southern Great Plains are
continually being developed by various programs such as those at the Kansas
Agriculture Experiment Station and at private seed companies. Oklahoma canola
production has increased from 89.6 million pounds in 2010 to 161 million
pounds in 2012, making Oklahoma the second-largest canola-producing state in
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the United States (U.S. Department of Agriculture [USDA], National Agricultural
Statistics Service [NASS], 2013). Figure 1 illustrates the major producing counties
for winter canola in Oklahoma (USDA, Risk Management Agency [RMA],
2014).

The increase in canola production is also in response to increasing demand.
The increased demand for canola originates from canola oil being considered
healthy because of its lower levels of saturated fatty acids and low-density
lipoprotein cholesterol (Eskin and McDonald, 1991). The increased demand
for canola oil in the United States has been met by an increase in imports. The
quantity of canola oil imported into the United States has steadily increased
from 1,108 million pounds in 2002 to 3,289 million pounds in 2012 (USDA,
Economic Research Service [ERS], 2015).

The winter canola market has shown relatively high price volatility. For
example, Oklahoma canola annualized price volatilities in 2011 and 2012
were 26.4% and 32.4%, respectively1 (USDA-NASS, 2014). Because of the
risk created by price volatility, canola producers and processors need price risk
management tools.

Futures are an efficient way to reduce price risk (Kolb and Overdahl, 2007).
However, it is impossible to use a direct hedge for winter canola because it is
not traded in any U.S. futures market. To deal with this issue, a cross hedge,
which means a spot price is hedged by using another futures market not its
own, can be used, and two alternatives are available. One is to cross hedge by
using other U.S. futures contracts, and the second is using canola futures traded
in the Intercontinental Exchange (ICE) Futures Canada, which reflects largely
spring canola. In the latter case, the exchange rate between the United States and
Canada needs to be taken into account. The purpose of this study is to determine
the optimal futures contracts to cross hedge winter canola.

Because of the short time series available, the focus is on short-horizon
hedging, and thus the findings might be most relevant to a processor or elevator.
Also, producers typically hedge less than processors, and producers now have
the alternative of revenue insurance. However, the winter canola insurance2

available in Oklahoma, Texas, and Kansas covers only from 50% to 75% of loss,
which is relatively lower than that of North Dakota, which provides a coverage
level ranging from 50% to 85% (USDA-RMA, 2013, 2014). In addition, the
percentage of insured canola acres is estimated to be less than 70% in Oklahoma,
Kansas, and Texas, which is significantly lower than the 98% insured rate seen
in North Dakota (USDA-RMA, 2015). Because the large price fluctuation of

1 The annualized price volatilities are calculated as the standard deviation of daily returns multiplied
by the square root of the number of trading days in the year, and these volatilities for wheat and soybeans
are 18.01% and 14.05% in 2011 and 17.8% and 18.6% in 2012.

2 Winter canola insurance consists of the following three plans: Yield Protection, Revenue Protection,
and Revenue Protection with Harvest Price Exclusion. In 2012, 92% of Oklahoma producers selected a
form of revenue protection. Similar data are not available for North Dakota.
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Figure 1. The Major Producing Counties for Winter Canola in Oklahoma (source: USDA-RMA [2014]; star indicates location
of region’s major processor)
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canola is a challenge not only to the farm sector but also to the processor, an
effective method to reduce price risk would help to expand winter canola supply
in the southern Great Plains.

Anderson and Danthine (1981) suggest a theoretical cross-hedging model.
Cross-hedging strategies for various oilseed crops have been proposed (Rahman,
Dorfman, and Turner, 2004; Rahman, Turner, and Costa, 2001; Tejeda and
Goodwin, 2014; Wilson, 1989). Wilson (1989) considers soybean complex
futures as a tool to cross hedge sunflowers and shows that sunflowers can be
hedged using soybean oil futures. Rahman, Turner, and Costa (2001) argue that
simple cross hedging using soybean meal futures is effective for reducing price
risk of cottonseed meal producers. Rahman, Dorfman, and Turner (2004) use
a Bayesian approach for examining the feasibility that soybean, soybean meal,
and soybean oil futures can be used as cross-hedging vehicles for cottonseed,
cottonseed meal, and cottonseed oil. They conclude that soybean complex futures
can be useful as a hedging instrument. Optimal hedging has been studied with
models that have an increasingly large number of parameters. For example,
Tejeda and Goodwin (2014) examine optimal multiproduct time-varying hedge
ratios for a soybean complex using a regime-switching dynamic correlation
model. The relatively short time period available here precludes considering
models with many parameters.

Research on hedging spring canola by Flaskerud, Wilson, and Dahl (2002)
suggests that canola futures at the Winnipeg Commodity Exchange (WCE) can
be the most effective market to manage price risk for North Dakota spring canola
compared with using a futures market not its own, such as the soybean complex
futures markets. They also find that the effective hedge is not a 1 to 1, traditional
hedge ratio, but an approximately 0.8 to 0.9 ratio to reduce price risk, when
based on 1993–2000 data. Mann (2010) finds canola contracts traded in ICE
Futures Canada are effective to manage price risk for Canadian canola based
on direct hedging. However, no similar research has been conducted related to
managing the price risk of winter canola by using cross hedging because the
cultivation of winter canola in the southern Great Plains is a relatively new
venture.

To achieve the research objective, hedge ratios and hedging effectiveness of
the potential contracts are estimated for four different hedging horizons: 1 day,
1 week (5 trading days), 1 month (20 trading days), and 2 months (40 trading
days). The focus is on hedging over short periods because winter canola has not
been produced long enough to provide data for a study of longer hedging periods.
The hedging effectiveness of using a single futures market, as well as multiple
futures markets, is considered. An encompassing test for selecting the optimal
futures contract with which to cross hedge is carried out. Futures contracts
considered are U.S. soybean complex, Kansas City wheat, and Canadian
canola. Estimation methods are developed that provide asymptotically efficient
estimates in the presence of overlapping data. The use of overlapping data is
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especially important given the relatively short time series and frequent missing
observations.

2. Procedures

The theory of optimal cross hedging is based on the same theory as the optimal
hedge ratios of Johnson (1960), Stein (1961), and Ederington (1979). To estimate
the simple hedge ratio, the conventional method involves estimating the following
linear regression model:

st = α + βft + ut , (1)

where st and ft are the spot and futures returns, and ut is a normally distributed
error term for period t . Some of the literature has used price levels and some
of it has used price changes, but the more recent literature has generally used
continuous-time returns (changes in natural logarithms) as we do. The ordinary
least squares (OLS) estimator of β provides an estimate of the minimum-variance
(risk minimizing) hedge ratio. The hedging effectiveness (HE) indicates the
proportion of the reduction in variance of the hedged portfolio over an unhedged
portfolio, which is calculated by

HE = 1 − Var (H )
Var (UH )

, (2)

where Var (H ) is the variance of the hedged portfolio, and Var (UH ) is the
variance of the unhedged portfolio. The measure of hedging effectiveness for the
minimum variance hedge model is equal to R2 from the linear regression model
(equation 1). Since Ederington (1979), this approach has been extensively applied
in the voluminous literature. Even though a variety of alternative procedures to
the conventional method exist, most of the empirical research indicates only
weak evidence of significant improvements in hedging effectiveness compared
with the conventional method (Casillo, 2004; Collins, 1997; Cotter and Hanly,
2006; Garcia, Roh, and Leuthold, 1995; Lien, 2005).

As Lence (1996) discusses, the minimum variance hedge ratio does not
consider the effects of costs such as commissions, liquidity costs, or the costs
of margin calls. As a result, minimum variance hedge ratios may overestimate
optimal hedge ratios. Commissions have dropped substantially with electronic
trading, and liquidity costs have also dropped with the advent of electronic
trading (Shah and Brorsen, 2011). So these costs are small. McKenzie and
Kunda (2009) discuss a possible derivative to mitigate the effects of margin
calls. Hedging costs are not likely to affect the choice between single futures
contracts, but they might make a multivariate hedge less desirable even if it
reduced risk.
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2.1. Overlapping Data Problem and Missing Value Problem

To estimate multiple-period returns, overlapping data can be used to achieve
higher efficiency because of the fact that nonoverlapping data do not use all
information in the time series. For instance, when 1-year daily returns consisting
of 252 observations are available, up to 248 weekly returns would be obtained
using overlapping data, whereas 52 weekly returns would be considered using
nonoverlapping data. As a result of using overlapping data when calculating
the spot and futures returns for period t , OLS is no longer appropriate except
for the 1-day hedge ratio. Using overlapping time periods creates a moving
average process with order equal to the length of the hedge period (Harri
and Brorsen, 2009). To account for the overlapping data issue, equation (1) is
modified.

The regression equation for aggregated price returns for k days becomes

St = γ + βFt + et , (3)

where the overlapping observations are calculated by summing the original
observations:

St =
t∑

j=t−k+1

sj , (4)

Ft =
t∑

j=t−k+1

fj , (5)

et =
t∑

j=t−k+1

uj . (6)

When multiple cross hedging is considered, Ft becomes a vector of futures returns.
In equation (6), the aggregated error term, et , is not independently distributed
because et and et+s have k − s common original error terms, ut . In this case,
OLS is inefficient and hypothesis tests will be biased because of autocorrelation
in the estimated residual. Moreover, daily log return data of Oklahoma canola
include missing values in the early period because Oklahoma winter canola was a
new venture at that time. To deal with these overlapping data and missing value
problems, this study uses two alternative methods to estimate the hedge ratio:
generalized least squares (GLS) and maximum likelihood estimation (MLE).

2.2. GLS Method

If the only source of autocorrelation comes from overlapping data in the
aggregated error term, et , the GLS estimator of the aggregate model will be
best linear unbiased and asymptotically efficient (Gilbert, 1986; Harri and
Brorsen, 2009). To solve the missing data problem, the correlation matrix can be
calculated as if all winter canola price data exist and then deleting the respective
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row and column of any missing observations. To use GLS, a correlation matrix
is needed. Because ut is a normally distributed error term, the mean and variance
of et are as follows:

E [et ] = E

⎡
⎣

t+k−1∑
j=t

uj

⎤
⎦ =

t+k−1∑
j=t

E[uj ] = 0 (7)

var [et ] = E
[
e2
t

] − E [et ]2 = E
[
e2
t

] = kσ 2
u . (8)

With the condition k > s, the covariance and correlation between the error terms,
et and et+s , are the following:

cov [et , et+s] = (k − s) σ 2
u (9)

corr [et , et+s] = k − s

k
. (10)

From equations (9) and (10), the correlation matrix, �, is calculated as the
following matrix (Gilbert, 1986):

� =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

k
k

k−1
k

· · · 1
k

0 · · · 0
k−1

k
k
k

k−1
k

· · · 1
k

0 0

· · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · ·
0 0 1

k
· · · k−1

k
k
k

k−1
k

0 · · · 0 1
k

· · · k−1
k

k
k

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (11)

The coefficient and variance of the aggregated model to handle the overlapping
data problem and missing value problems can be obtained as

β̂ = (
F ′

it�
−1Fit

)−1
F ′

it�
−1St (12)

var[β̂] = σ 2
e

(
F ′

it�
−1Fit

)−1
, (13)

where σ 2
e is the variance of the error term, et , in the aggregated model. To obtain

hedging effectiveness following equation (2), the variance of the hedged portfolio
is calculated using the hedge ratio, β̂, in equation (12).

2.3. MLE Method

To use MLE, the moving average process is approximated by using a higher-order
autoregressive process. Using an autoregressive process has some advantages.
Not only is it easier to estimate than the moving average process, but it can
potentially capture autocorrelation from sources other than overlapping data
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(Brorsen, Buck, and Koontz, 1998). In this case, maximum likelihood methods
for estimating a regression with autoregressive errors can be used, and the error
term in equation (3) is redefined as

et = −
n∑

j=1

ϕjet−j + vt , (14)

where ϕj indicates the coefficient, and vt is the white-noise error term, which is
normally and independently distributed with zero mean and constant variance.
The length of autoregressive error, n, is chosen based on the 5% significance
level and is longer than the hedge period in every case.

2.4. Forecast Encompassing Test

The alternative models are not nested, and so forecast encompassing tests
(Diebold, 2007, p. 264; Harvey, Leybourne, and Newbold, 1998) are used to
test hypotheses. Sanders and Manfredo (2004) consider the null hypothesis that
P̂0,t provides the best cross hedge versus the nonnested alternative hypothesis
that P̂1,t provides the best cross hedge. By assuming only two competing futures
contracts for hedging a spot position, forecast encompassing can be examined
following Harvey, Leybourne, and Newbold (1998) as

ε0,t−h = φ + λt−h(ε0,t−h − ε1,t−h) + τt , (15)

ε0,t−h = Pt − P̂0,t−h, (16)

ε1,t−h = Pt − P̂1,t−h, (17)

where ε0,t−h and ε1,t−h are the forecast error terms of the hypothesized model
and the competing one with hedge horizon h. Pt , P̂0,t−h, and P̂1,t−h indicate the
actual price and forecasted prices of the hypothesized model and the competing
one, respectively. The value of λt−h indicates the weight, which the alternative
should hold in constructing a composite forecast and minimizes the mean squared
forecast error and vice versa for 1 − λt−h (Sanders and Manfredo, 2004). A failure
to reject the null hypothesis (λt−h = 0) implies the hypothesized futures contract
encompasses the competing one. As defined by Maddala (2001, p. 504), the
value of λt−h in equation (15), which brings about the minimum forecast error,
can be expressed as

λt−h =
σ 2

ε0,t−h
− ρε0,t−hε1,t−h

σε0,t−h
σε1,t−h

σ 2
ε0,t−h

+ σ 2
ε1,t−h

− 2ρε0,t−hε1,t−h
σε0,t−h

σε1,t−h

and λt−h
>−
< 0

if and only if
σε0,t−h

σε1,t−h

1
ρε0,t−hε1,t−h

>−
< 1,

(18)

https://doi.org/10.1017/aae.2015.14 Published online by Cambridge University Press

https://doi.org/10.1017/aae.2015.14


470 SEON-WOONG KIM ET AL.

where σ 2
ε0,t−h

and σ 2
ε1,t−h

are the variance of ε0,t−h and ε1,t−h, and ρε0,t−hε1,t−h
is the

correlation between these forecast errors.

3. Data

The futures contracts of Chicago soybean, soybean meal, soybean oil, Kansas
City wheat, and Canada canola were selected as the potential contracts for
cross hedging winter canola (see Figure 2). Oklahoma canola spot prices were
obtained from the USDA’s “Market News” (USDA, Agricultural Marketing
Service [AMS], 2015) and directly from Equity Marketing Alliance (EMA).3 The
prices of Chicago soybean, soybean meal, soybean oil, Kansas City wheat, and
Canadian dollar futures were gathered from Price-Data.com. The Canada canola
futures were obtained from the Commodity Research Bureau.

To test for unit roots in price levels and daily log return of all futures and
canola spot, the augmented Dickey-Fuller (ADF) test is used. The ADF test failed
to reject the null hypothesis of a unit root at the 5% significance level for all
price-level data.4 However, the null hypothesis of a unit root is strongly rejected
at the 1% level for the daily log returns.

Daily log returns of Oklahoma canola spot price and futures price are used
from September 19, 2009, when Oklahoma canola price data started to be
listed on the USDA’s “Market News” (USDA-AMS, 2015), to January 14, 2013.
Oklahoma City canola prices only exist for the period of September 19, 2009,
through March 7, 2012. In this study, the canola price of Dacoma, a town
in Woods County, Oklahoma, is substituted5 for the Oklahoma canola price
starting from July 26, 2011, because the Dacoma region canola price has the
largest number of observations. Price from the nearby futures contract month is
used until the 19th of the month preceding the futures contract month. After the
19th of the preceding month, the price for the next nearby futures contract month
is used. Differences are taken before splicing to avoid outliers on the rollover day.
To calculate the daily log returns of Canada canola futures, the Canada canola
futures price is converted into U.S. dollars by multiplying the Canada canola
futures price by the Canadian dollar futures price. The hedge ratios and hedging
effectiveness are calculated for 1, 5, 20, and 40 market-day hedge periods, which
correspond to 1 day, 1 week, 1 month, and 2 months approximately. Longer
hedging horizons were not considered because of the limited data available. The
short hedging horizons might be more appropriate for an elevator or processor
than for a producer.

3 EMA, based in Enid, Oklahoma, is a marketing alliance of 14 cooperative owners that handles grain
pricing, merchandising, logistics, and accounting for its members.

4 Given a unit root in price-level data, the cointegration test is conducted, but the null hypothesis of
cointegration among the futures and spot price level is rejected.

5 In the initial years of production, canola was priced only at the Producers Cooperative Oil Mill
plant in Oklahoma City. As production expanded, canola began to be priced at local elevators instead.
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Figure 2. Price Index for Oklahoma Canola Spot, Domestic, and Canola Futures (source: USDA-AMS [2015]; price index
calculated based on price on September 19, 2009)

https://doi.org/10.1017/aae.2015.14 Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/aae.2015.14


472 SEON-WOONG KIM ET AL.

Table 1. Pearson Correlation Coefficients

Variable
Oklahoma
Canola

Soybean
Oil
Futures

Soybean
Meal
Futures

Soybean
Futures

Kansas City
Wheat
Futures

Canada
Canola
Futures

Oklahoma canola 1
Soybean oil futures 0.773 1
Soybean meal futures 0.604 0.573 1
Soybean futures 0.729 0.808 0.911 1
Kansas City wheat futures 0.405 0.531 0.490 0.586 1
Canada canola futures 0.637 0.760 0.603 0.749 0.506 1

Note: Correlation coefficients are all significant at the 1% level.

Daily log returns of the Oklahoma canola spot price, domestic futures, and
Canada canola futures include 682, 838, and 816 observations, respectively.
Most of the missing values (18.7%) in Oklahoma canola exist in the early years
of production.6 When available, linear regression is used to impute a small
number of missing values using canola prices in the neighboring areas.

4. Results

Table 1 shows the estimated Pearson correlation coefficients of the daily returns
of Oklahoma canola spot, domestic futures, and Canada canola futures. The
results indicate high correlation between the returns of Oklahoma canola spot
and those of soybean oil futures with a correlation coefficient of 0.773. This
result is consistent with canola oil being more valuable than canola meal.7 On
the other hand, the correlation between Oklahoma canola and Kansas City
wheat futures is low, with a correlation coefficient of 0.405, which suggests
that Kansas City wheat futures is a poor choice for cross hedging Oklahoma
canola.

Table 2 shows multivariate hedge ratios using domestic futures to cross hedge
Oklahoma canola for hedging periods of 1 day, 5 days, 20 days, and 40 days.
The hedge ratios using GLS and MLE are only slightly different. The parameter
estimates of soybean oil and meal futures are significant at the 5% level in all
hedge periods based on GLS and MLE. The OLS hedge ratios are not significantly
different from zero at horizons greater than 5 days, and hedge ratios shrink
as the horizon increases. The noticeably different results of OLS to GLS and
MLE for hedging periods greater than 1 day are because of the OLS hedge ratio
being estimated using nonoverlapping data with fewer observations. The reduced
number of observations leads to OLS parameter estimates being inefficient. The

6 The data for 2009, 2010, 2011, and 2012 have 20, 88, 41, and 7 missing values, respectively.
7 Canola is approximately 40% oil and 60% meal, and the price of canola oil was 3.72 times that of

canola meal from 2011 to 2013 (USDA-ERS, 2015).
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Table 2. Multiple Hedge Ratios Using Domestic Futures and Oklahoma Canola

Generalized Least Squares Maximum Likelihood Ordinary Least Squares

Variable 1 Day 5 Days 20 Days 40 Days 1 Day 5 Days 20 Days 40 Days 1 Day 5 Days 20 Days 40 Days

N 682 682 663 651 682 682 663 651 682 133 32 14
Intercept 0.013 0.024 0.109 0.202 0.011 0.010 0.130 0.308 0.013 −0.069 0.262 0.061

(0.29) (0.11) (0.12) (0.12) (0.33) (0.05) (0.14) (0.21) (0.29) (−0.3) (0.29) (0.03)
Soybean oil

futures
0.948∗∗ 0.939∗∗ 0.949∗∗ 0.956∗∗ 0.931∗∗ 0.926∗∗ 0.964∗∗ 0.947∗∗ 0.949∗∗ 0.576∗ 0.551 −0.018
(11.66) (10.80) (10.89) (11.02) (11.45) (10.44) (11.41) (11.07) (11.66) (2.41) (1.08) (−0.02)

Soybean meal
futures

0.273∗∗ 0.264∗ 0.286∗∗ 0.341∗∗ 0.233∗ 0.229∗ 0.315∗∗ 0.310∗∗ 0.273∗∗ −0.193 0.121 −0.399
(2.67) (2.431) (2.63) (3.12) (2.26) (2.05) (2.99) (2.89) (2.67) (−0.57) (0.17) (−0.38)

Soybean
futures

0.036 0.051 0.011 −0.045 0.089 0.101 −0.088 −0.074 0.036 0.920 0.329 1.095
(0.22) (0.29) (0.06) (−0.25) (0.54) (0.57) (−0.53) (−0.44) (0.22) (1.81) (0.32) (0.72)

Kansas City
wheat futures

−0.045 −0.039 −0.035 −0.046 −0.053∗ −0.035 −0.025 −0.019 −0.045 −0.205∗ −0.052 −0.078
(−1.62) (−1.30) (−1.17) (−1.59) (−2.00) (−1.16) (−0.89) (−0.68) (−1.62) (−2.82) (−0.46) (−0.33)

Notes: The t values for the test statistics are presented in parentheses. Asterisks, ∗ and ∗∗, indicate statistical significance at the 5% and 1% levels, respectively.
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results from the Pearson correlation coefficients in Table 1 and GLS and MLE in
Table 2 imply that soybean and Kansas City wheat futures contracts are not good
candidates and soybean oil futures is the optimal futures contract for univariate
cross hedging winter canola, with soybean meal being the second-best alternative
in the domestic market.

Tables 3 and 4 report the hedge ratios and hedging effectiveness of soybean
oil and Canada canola futures contracts. Based on GLS and MLE, soybean oil
futures hedge ratios are significantly greater than 1, which is a result of canola
prices being more volatile than soybean oil. Most of the hedge ratios using
Canada canola futures are significantly less than 1, but there are cases in which
they are not significantly different from 1 (Table 4). Because of a relatively small
sample size, OLS estimates are inefficient, resulting in considerably different
results than the alternative estimation methods. The hedge ratio of 1.142, using
soybean oil futures for 1-day hedging horizon can be interpreted as 1.142 dollars
of soybean oil futures are needed for each dollar of winter canola to achieve the
risk-minimizing hedge.8 Soybean oil futures have a higher hedging effectiveness
than Canada canola futures except when considering a 2-month hedging period.
Because this is a cross hedge, the hedging effectiveness does not match what
would be achieved with a direct hedge. For instance, if Oklahoma canola
processors use soybean oil futures for 5 days to hedge their crop, the price risk
can be reduced by as much as 61%. In contrast, the direct hedging effectiveness
of Canadian canola using canola futures traded in the ICE Futures Canada is
roughly 90% (Mann, 2010). A direct hedge typically shows a substantially higher
hedging effectiveness over a cross hedge (Dahlgran, 2009). A winter canola
futures market9 with a delivery point in the U.S. southern plains could reduce
the basis risk, but production would likely need to grow considerably to support
a winter canola futures market. This imperfect cross hedge suggests the potential
to introduce a futures market for winter canola with a delivery point in the
southern plains if production continues to expand.

The forecast encompassing tests (Table 5) show significant estimated hedging
weight for both Canada canola and soybean oil futures indicating that neither
forecast encompasses the other and each contains unique information. The results
imply that market participants can reduce canola price risk better by using both
soybean oil and Canada canola futures rather than either alone. For example,
the hedging weight of 0.803 for 5-day periods means that hedging using 80.3%

8 For example, to hedge 600 cwt of canola when the canola price is $12.18/cwt and soybean oil price
is $31.63/cwt, 0.337 of a 600 cwt soybean oil futures contract is needed.

9 A separate futures market for canola is not a likely occurrence. Revenue insurance provides a strong
competitor to producer use of futures. As winter canola production expands, the market may become
more integrated with the summer canola market. Also, the market size of winter canola is still short of
what is typically required to support a futures market.

https://doi.org/10.1017/aae.2015.14 Published online by Cambridge University Press

https://doi.org/10.1017/aae.2015.14


C
ross

H
edging

W
inter

C
anola

475

Table 3. Hedge Ratios and Hedging Effectiveness Using Soybean Oil Futures and Oklahoma Canola

Generalized Least Squares Maximum Likelihood Ordinary Least Squares

Variable 1 Day 5 Days
20
Days

40
Days 1 Day 5 Days

20
Days

40
Days 1 Day 5 Days

20
Days

40
Days

Intercept 0.036
(0.75)

0.086
(0.38)

0.370
(0.41)

0.751
(0.43)

0.033
(0.91)

0.074
(0.39)

0.315
(0.33)

0.813
(0.56)

0.036
(0.75)

0.081
(0.32)

0.719
(0.81)

0.466
(0.24)

Soybean oil futures 1.142∗∗

(3.96)
1.150∗∗

(3.95)
1.137∗∗

(3.53)
1.124∗∗

(3.22)
1.132∗∗

(3.83)
1.160∗∗

(4.31)
1.105∗∗

(2.85)
1.090∗

(2.44)
1.142∗∗

(3.96)
1.125
(1.46)

0.956
(−0.24)

0.678
(−1.15)

Hedging effectiveness 0.600 0.610 0.571 0.428 0.600 0.610 0.580 0.443 0.600 0.549 0.400 0.206

Notes: The t values for the test statistics are presented in parentheses. The hedging effectiveness measures are calculated using the Buse (1973) R-squared measure.
Asterisks, ∗ and ∗∗, indicate statistical significance at the 5% and 1% level, respectively.
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Table 4. Hedge Ratios and Hedging Effectiveness Using Canada Canola Futures and Oklahoma Canola

Generalized Least Squares Maximum Likelihood Ordinary Least Squares

Variable 1 Day 5 Days
20
Days

40
Days 1 Day 5 Days

20
Days

40
Days 1 Day 5 Days

20
Days

40
Days

Intercept 0.005
(0.08)

−0.047
(−0.18)

−0.188
(−0.18)

−0.562
(−0.27)

0.005
(0.11)

−0.063
(−0.30)

−0.178
(−0.25)

−0.442
(−0.27)

0.005
(0.08)

−0.019
(−0.07)

−0.267
(−0.26)

0.691
(0.41)

Canada canolafutures 0.918∗∗

(−2.01)
0.912∗∗

(−2.09)
0.917∗

(−1.94)
0.927∗

(−1.68)
0.913∗∗

(−2.16)
0.912∗∗

(−2.16)
0.947
(−1.32)

0.940
(−1.48)

0.918∗∗

(−2.01)
0.928
(−0.78)

0.855
(−0.82)

0.644∗∗

(−2.04)
Hedging effectiveness 0.432 0.474 0.518 0.484 0.432 0.474 0.516 0.481 0.432 0.432 0.361 0.203

Notes: The t values for the test statistics are presented in parentheses. Asterisks, ∗and ∗∗, indicate statistical significance at the 10% and 5% level, respectively.
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Table 5. Encompassing Regression (preferred futures are soybean oil futures to Canada canola
futures)

Hedging Horizon

Description 1 Day 5 Days 20 Days 40 Days

Standard deviation ratio (
σε0
σε1

) 0.830 0.871 0.892 0.876

Correlation (ρε0ε1 ) 0.746 0.781 0.760 0.730
Estimated hedging weight (λt ) for

Canada canola
0.155∗∗

(3.25)
0.197∗∗

(3.72)
0.269∗∗

(5.19)
0.262∗∗

(5.38)
Estimated hedging weight (1 − λt ) 0.845∗∗

(17.74)
0.803∗∗

(15.16)
0.731∗∗

(14.11)
0.738∗∗

(15.13)

Notes: The t values for the test statistics are presented in parentheses. All correlation coefficients are
statistically significant at the 1% level. Asterisks, ∗∗, indicate statistical significance at the 1% level.

Table 6. Encompassing Regression (preferred futures are soybean oil and meal futures to
soybean oil and Canada canola futures)

Hedging Horizon

Description 1 Day 5 Days 20 Days 40 Days

Standard deviation ratio (
σε0
σε1

) 0.970 0.968 0.966 0.954

Correlation (ρε0ε1 ) 0.961 0.961 0.968 0.962
Estimated hedging weight (λt ) for

Canada canola
0.033
(0.24)

0.092
(0.69)

−0.029
(−0.19)

−0.095
(−0.69)

Estimated hedging weight (1 − λt ) 0.968∗∗

(7.14)
0.908∗∗

(6.81)
1.029∗∗

(6.90)
1.095∗∗

(8.01)

Notes: The t values for the test statistics are presented in parentheses. All correlation coefficients are
statistically significant at the 1% level. Asterisks, ∗∗, indicates statistical significance at the 1% level.

soybean oil and 19.7% of soybean meal futures has the minimum forecast error
for a 5-day hedging period.

Table 6 reports the encompassing regression in the multiple hedge case using
soybean oil and meal futures as preferred futures contracts to soybean oil and
Canada canola futures for Oklahoma canola. All estimated hedging weights (λt )
for the preferred model are significant, but the weights (1 − λt ) for the alternative
model are not significant in all hedging horizons at the 1% level. Thus, the cross
hedge with soybean oil and meal encompasses the cross hedge with soybean oil
and Canadian canola.

Table 7 indicates hedge ratios and hedging effectiveness with soybean oil
and meal futures in the domestic market and soybean oil and Canada canola
futures in the intercountry market based on maximum likelihood. All parameter
estimates are significant at the 5% level. In all hedging horizons, the proportions
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Table 7. Hedge Ratios and Hedging Effectiveness Using Soybean Oil and Meal Futures and
Soybean Oil and Canadian Canola Futures Based on Maximum Likelihood

Variable 1 Day 5 Days 20 Days 40 Days 1 Day 5 Days 20 Days 40 Days

Intercept 0.014 0.012 0.132 0.311 0.041 0.031 0.214 0.625
(0.40) (0.07) (0.14) (0.21) (1.12) (0.17) (0.23) (0.42)

Soybean oil futures 0.943∗∗ 0.951∗∗ 0.913∗∗ 0.907∗∗ 1.020∗∗ 0.976∗∗ 0.996∗∗ 1.008∗∗

(23.23) (21.43) (20.53) (21.04) (19.41) (17.42) (17.56) (18.48)
Soybean meal futures 0.265∗∗ 0.277∗∗ 0.253∗∗ 0.256∗∗

(7.87) (7.83) (7.03) (7.44)
Canada canola futures 0.155∗∗ 0.223∗∗ 0.138∗ 0.108∗

(3.11) (4.33) (2.52) (2.02)
Hedging effectiveness 0.632 0.648 0.602 0.442 0.610 0.621 0.597 0.459

Notes: The t values for the test statistics are presented in parentheses. Asterisks, ∗ and ∗∗, indicate statistical
significance at the 5% and 1% level, respectively.

of soybean oil futures (�0.780) and soybean meal futures (�0.22010) are similar
to those of the 2009–2013 U.S. revenues for canola oil (0.714) and canola meal
(0.28611) (USDA-ERS, 2015). Domestic multiple hedges show slightly higher
hedging effectiveness than those with soybean oil and Canada canola, except for
the 40-day horizon. As Sephton (1993) points out, the variance of a portfolio
constructed with multiple markets will always be lower than that with only one
market as can be seen in Tables 3, 4, and 7.

5. Summary and Conclusion

This article seeks to determine the risk-minimizing cross-hedging strategy for
winter canola in the U.S. southern plains. Among domestic futures contracts,
soybean oil shows the highest correlation with Oklahoma canola prices.
Even though soybean oil futures shows higher hedging effectiveness than
Canada canola futures, they do not encompass each other and contain unique
information. In the comparison between multiple hedges, using soybean oil and
meal futures encompasses using soybean oil and Canada canola futures. This
result suggests that soybean oil and soybean meal futures are the optimal multiple
cross-hedging vehicles to reduce Oklahoma canola spot price risk. However, the
hedging effectiveness for Oklahoma canola using soybean oil and meal futures
is lower than what is usually expected with direct hedging.

This study indicates a different result than Flaskerud, Wilson, and Dahl
(2002). They find that changes of canola cash prices in Velva, North Dakota,

10 For example, the proportion of soybean meal futures for 40-day hedging, 0.220, is calculated as
the coefficient for soybean meal futures divided by the sum of coefficients for soybean oil and meal futures:
(0.256)/(0.256 + 0.907).

11 The expected revenue of 1 short ton of canola seed is $602.38, of which $429.84 comes from oil
and $172.54 from meal.
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are most closely correlated with canola futures in the WCE12 in Canada, while
soybean oil futures at Chicago are only second best when using 1993–2000
data. The differing results might originate from differences in winter canola
and spring canola markets as well as Oklahoma being further from Canada
than North Dakota. In addition, the exchange rate volatility between U.S. and
Canadian dollars from 2009 to 2012 is higher than that from 1993 to 2000.13 As
production in Oklahoma and Kansas continues to expand, the winter canola and
spring canola markets may become more integrated, so the optimal cross-hedge
strategy could change in future years. As of now, our results favor the hedgers
of winter canola using soybean oil and meal futures in the domestic futures
market.

References

Anderson, R.W., and J.P. Danthine. “Cross Hedging.” Journal of Political Economy
89,6(1981):1182–96.

Bank of Canada. 2014. “Monthly Average Exchange Rates: 10-Year Lookup.” Internet
site: http://www.bankofcanada.ca/rates/exchange/monthly-average-lookup/ (Accessed
January 27, 2015).

Boyles, M., T. Peeper, and C. Medlin. Producing Winter Hardy Canola in Oklahoma.
Stillwater, OK: Oklahoma State University, Division of Agricultural Sciences and
Natural Resources, Extension Fact Sheet PSS-2130, 2004. Internet site: http://pods.
dasnr.okstate.edu/docushare/dsweb/Get/Version-7113/PSS-2130web+color.pdf
(Accessed May 12, 2015).

Brorsen, B.W., D.W. Buck, and S.R. Koontz. “Hedging Hard Red Winter Wheat: Kansas City
versus Chicago.” Journal of Futures Markets 18,4(1998):449–66.

Buse, A. “Goodness of Fit in Generalized Least Squares Estimation.” American Statistician
27,3(1973):106–8.

Bushong, J.A., A.P. Griffith, T.F. Peeper, and F.M. Epplin. “Continuous Winter Wheat versus
a Winter Canola–Winter Wheat Rotation.” Agronomy Journal 104,2(2012):324–30.

Casillo, A. “Model Specification for the Estimation of the Optimal Hedge Ratio with Stock
Index Futures: An Application to the Italian Derivatives Market.” Paper presented at
the conference on Derivatives and Financial Stability, Rome, Italy, 2004.

Collins, R.A. “Toward a Positive Economic Theory of Hedging.” American Journal of
Agricultural Economics 79,2(1997):488–99.

Cotter, J., and J. Hanly. “Reevaluating Hedging Performance.” Journal of Futures Markets
26,7(2006):677–702.

Dahlgran, R.A. “Inventory and Transformation Hedging Effectiveness in Corn Crushing.”
Journal of Agricultural and Resource Economics 34,1(2009):154–71.

DeVuyst, E.A., F. Epplin, T.F. Peeper, and M.C. Boyles. Oklahoma Canola Systems vs.
Continuous Wheat Budget Comparison. Stillwater, OK: Oklahoma State University,
Division of Agricultural Sciences and Natural Resources, Extension Fact Sheet AGEC-
257, 2009.

12 The futures contract for canola is now traded in ICE Futures Canada.
13 The average annualized volatilities between U.S. and Canadian dollars are 4.4% from 1993 to

2000 and 9.8% from 2009 to 2012, respectively (Bank of Canada, 2014).

https://doi.org/10.1017/aae.2015.14 Published online by Cambridge University Press

http://www.bankofcanada.ca/rates/exchange/monthly-average-lookup/
http://pods.dasnr.okstate.edu/docushare/dsweb/Get/Version-7113/PSS-2130web+color.pdf
http://pods.dasnr.okstate.edu/docushare/dsweb/Get/Version-7113/PSS-2130web+color.pdf
https://doi.org/10.1017/aae.2015.14


480 SEON-WOONG KIM ET AL.

Diebold, F.X. Elements of Forecasting. 4th ed. Mason, OH: Thomson/South-Western, 2007.
Ederington, L.H. “The Hedging Performance of the New Futures Markets.” Journal of Finance

34,1(1979):157–70.
Eskin, N.A.M., and B.E. McDonald. “Canola Oil.” Nutrition Bulletin 16,3(1991):138–46.
Flaskerud, G., W. Wilson, and B. Dahl. “Managing Canola Price Risk.” Journal of the

American Society of Farm Managers and Rural Appraisers 65(2002):53–63.
Garcia, P., J.-S. Roh, and R.M. Leuthold. “Simultaneously Determined, Time-Varying

Hedge Ratios in the Soybean Complex.” Applied Economics 27,12(1995):1127–
34.

Gilbert, C.L. “Testing the Efficient Markets Hypothesis on Averaged Data.” Applied
Economics 18,11(1986):1149–66.

Harri, A., and B.W. Brorsen. “The Overlapping Data Problem.” Quantitative and Qualitative
Analysis in Social Sciences 3,3(2009):78–115.

Harvey, D.S., S.J. Leybourne, and P. Newbold. “Tests for Forecast Encompassing.” Journal
of Business & Economic Statistics 16,2(1998):254–59.

Johnson, L.L. “The Theory of Hedging and Speculation in Commodity Futures.” Review of
Economic Studies 27,3(1960):139–51.

Kolb, R.W., and J.A. Overdahl. Futures, Options and Swaps. 5th ed. Malden, MA: Blackwell,
2007.

Lence, S.H. “Relaxing the Assumptions of Minimum-Variance Hedging.” Journal of
Agricultural and Resource Economics 21(1996):39–55.

Lien, D. “A Note on the Superiority of the OLS Hedge Ratio.” Journal of Futures Markets
25,11(2005):1121–26.

Maddala, G.S. Introduction to Econometrics. 3rd ed. Chichester (West Sussex), UK: John
Wiley and Sons, 2001.

Mann, J.M. “The Role of Long Memory in Hedging Strategies for Canadian Agricultural
Futures.” Paper presented at the 8th OxMetrics User Conference at George Washington
University, Washington, DC, March 18–19, 2010.

McKenzie, A.M., and E.L. Kunda. “Managing Price Risk in Volatile Grain Markets, Issues and
Potential Solutions.” Journal of Agricultural and Applied Economics 41,2(2009):353–
62.

Rahman, S.M., J.H. Dorfman, and S.C. Turner. “A Bayesian Approach to Optimal
Cross-Hedging of Cottonseed Products Using Soybean Complex Futures.” Journal of
Agricultural and Resource Economics 29,2(2004):260–75.

Rahman, S.M., S.C. Turner, and E.F. Costa. “Cross-Hedging Cottonseed Meal.” Journal of
Agribusiness 19,2(2001):163–71.

Sanders, D.R., and M.R. Manfredo. “Comparing Hedging Effectiveness: An Application
of the Encompassing Principle.” Journal of Agricultural and Resource Economics
29,1(2004):31–44.

Sephton, P.S. “Hedging Wheat and Canola at the Winnipeg Commodity Exchange.” Applied
Financial Economics 3,1(1993):67–72.

Shah, S., and B.W. Brorsen. “Electronic vs. Open Outcry: Side-by-Side Trading of KCBT
Wheat Futures.” Journal of Agricultural and Resource Economics 36,1(2011):48–62.

Stein, J.L. “The Simultaneous Determination of Spot and Futures Prices.” American Economic
Review 51,5(1961):1012–25.

Tejeda, H.A., and B.K. Goodwin. “Dynamic Multiproduct Optimal Hedging in the Soybean
Complex – Do Time-Varying Correlations Provide Hedging Improvements?” Applied
Economics 46,27(2014):3312–22.

https://doi.org/10.1017/aae.2015.14 Published online by Cambridge University Press

https://doi.org/10.1017/aae.2015.14


Cross Hedging Winter Canola 481

U.S. Department of Agriculture, Agricultural Marketing Service (USDA-AMS). “Market
News.” Internet site: http://www.ams.usda.gov/AMSv1.0/marketnews (Accessed
January 27, 2015).

U.S. Department of Agriculture, Economic Research Service (USDA-ERS). “Oil
Crops Yearbook.” Internet site: http://www.ers.usda.gov/data-products/oil-crops-
yearbook.aspx#.UsWOqPRDt8E (Accessed January 27, 2015).

U.S. Department of Agriculture, National Agricultural Statistics Service (USDA-NASS).
Crop Production 2012 Summary. 2013. Internet site: http://usda.mannlib.
cornell.edu/usda/nass/CropProdSu//2010s/2013/CropProdSu-01–11–2013.pdf
(Accessed January 27, 2015).

———. Agricultural Prices. 2014. Internet site: http://usda.mannlib.cornell.edu/usda/nass/
AgriPric//2010s/2014/AgriPric-06–27–2014.pdf (Accessed January 27, 2015).

U.S. Department of Agriculture, Risk Management Agency (USDA-RMA). Canola and
Rapeseed: Montana and North Dakota. 2013 Commodity Insurance Fact Sheet. Internet
site: http://www2.rma.usda.gov/fields/mt_rso/2013/2013canola.pdf (Accessed January
27, 2015).

———. Canola: Oklahoma. A Risk Management Agency Fact Sheet. 2014. Internet
site: http://www.rma.usda.gov/fields/ok_rso/2015/okcanola.pdf (Accessed January 27,
2015).

———. “State Profiles.” Internet site: http://www.rma.usda.gov/pubs/state-profiles.html
(Accessed January 27, 2015).

Wilson, W.W. “Price Discovery and Hedging in the Sunflower Market.” Journal of Futures
Markets 9,5(1989):377–91.

https://doi.org/10.1017/aae.2015.14 Published online by Cambridge University Press

http://www.ams.usda.gov/AMSv1.0/marketnews
http://www.ers.usda.gov/data-products/oil-crops-yearbook.aspx�egingroup count@ "0023elax elax uccode `~count@ uppercase {gdef #{{char '176}}}endgroup setbox 	hr@@ hbox {#}@tempdima wd 	hr@@ advance @tempdima ht 	hr@@ advance @tempdima dp 	hr@@ #.UsWOqPRDt8E
http://www.ers.usda.gov/data-products/oil-crops-yearbook.aspx�egingroup count@ "0023elax elax uccode `~count@ uppercase {gdef #{{char '176}}}endgroup setbox 	hr@@ hbox {#}@tempdima wd 	hr@@ advance @tempdima ht 	hr@@ advance @tempdima dp 	hr@@ #.UsWOqPRDt8E
http://usda.mannlib.cornell.edu/usda/nass/CropProdSu//2010s/2013/CropProdSu-01--11--2013.pdf
http://usda.mannlib.cornell.edu/usda/nass/CropProdSu//2010s/2013/CropProdSu-01--11--2013.pdf
http://usda.mannlib.cornell.edu/usda/nass/AgriPric//2010s/2014/AgriPric-06--27--2014.pdf
http://usda.mannlib.cornell.edu/usda/nass/AgriPric//2010s/2014/AgriPric-06--27--2014.pdf
http://www2.rma.usda.gov/fields/mt_rso/2013/2013canola.pdf
http://www.rma.usda.gov/fields/ok_rso/2015/okcanola.pdf
http://www.rma.usda.gov/pubs/state-profiles.html
https://doi.org/10.1017/aae.2015.14

	1. Introduction
	2. Procedures
	2.1. Overlapping Data Problem and Missing Value Problem
	2.2. GLS Method
	2.3. MLE Method
	2.4. Forecast Encompassing Test

	3. Data
	4. Results
	5. Summary and Conclusion
	References



