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ON THE VOLUME DISTRIBUTION
OF THE TYPICAL POISSON-DELAUNAY CELL

P. N. RATHIE,· State University ofCampinas

Abstract

A method of obtaining the distribution of the volume of the typical cell of a
Delaunay tessellation generated by a Poisson process in Rdis developed and used to
derive the density when d = 1,2,3.
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1. Introduction

Consider a stationary Poisson point process in IRd with intensity p, Any d + 1 points
from this process define almost surely an open ball B which contains the d + 1 points in
its boundary. If no points from the Poisson process are contained in B, then the simplex
with vertices at the d + 1 points is a so-called Delaunay cell. The collection of all such
Delaunay cells constitutes almost surely a tessellation of the space IRd (cf. Rogers (1964».
It is wellknown that the volume Vd of the typical Delaunay cell has moments

k r(d2/2)r(d + k)r{(d2 + dk + k + 1)/2}pi-k+l{(d + 1)/2)
E(V)-----------------

d - r(d)r{(d2 + 1)/2}r{(d2 + dk)/2}rd+ l{(d + k + 1)/2){2 dn(d-l)l2p}k

(1.1)

x dIy q(k ~ i)l2}
;-2 r(1/2)

for k = 1, 2, 3,· · · (cf. Miles (1972), (1974) and Meller (1989».
The objective in this paper is to demonstrate how (1.1) can be used to derive the exact

distribution of Yd. The interesting special cases for d = 1, d = 2 and d = 3 are obtained.
The first case is an exponential distribution with parameter p while the second case is
expressed in terms of the modified Bessel function.
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First, it will be shown that the moments in (1.1) determine the distribution uniquely
by verifying the absolute convergence of the series,

(2.1)
00

L E(V:)tk/k!
k-l

for some t > 0 (cf. Rao (1965), p. 86 (2b.5.5)). From (1.1), we have

E(V:+1)tk+1/(k + I)!

E(V:)tk/k!
(2.2)

ted + k)({d2+ 1 + (d + l)k}/2)(d+l)I2(2 dn(d-l)/2p)-1

(1 + k)r{(d + 1)/2}({d2+ dk}/2)d/2({d + 1 + k}/2)1I2

where (a)p stands for r(a + p)/r(a). Applying Luke (1969), p. 33(11),

1/(z)b = z-b[1 + (- b)(b - 1)/(2z) + · · .], Iarg z I ~ n - 6,6> 0

to the right side of (2.2), taking the limits as k --. 00 and simplifying, we have the
following condition for (2.1) to be absolutely convergent:

(2.3) t < (4d)d/2n(d-l)/2pr[(d + 1)/2]/(d + l)(d+l)l2.

Since the right side of (2.3) is positive, it is possible to choose t > 0 guaranteeing the
absolute convergence of (2.1). Hence the moments in (1.1) determine the distribution of
Vd uniquely.

Let

(2.4)

where L 1 is a suitably chosen Mellin-Barnes contour (c - ioo, c + ioo) and E(Vj) is
defined by (1.1) for complex k (see Erdelyi et al. (1953)). Since the density function
defined in (2.4) is unique and has moments (by the Mellin transform) given by (1.1) for
k = 1, 2, · · ., this is the density function corresponding to the volume Yd.

ClearlY,h(v) = /P(v/p)/p so it suffices to evaluatef(v) = h(v) in the following.
The relations (2.4) -and (1.1), on using the multiplication formula for the gamma

function and simplifying, yield

(2.5)

where L encloses all the poles of the integrand,

(2.6)
2d -1I2(d+ 1)d2/2r(J2/2)pi {(d + 1)/2}

Ad = d'
nd(d2-l)12r(d)r{(J2 + 1)/2} II r(i/2)

;-2
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(2.7)

and

(2.8)

B = [2d- In(d-I)l2ddl2r{(d + 1)/2}]2
d (d + 1)(d + 1)12 '

d d [d2 + 1 + 2r ]Il r(rl2 + k) Il r + k
,-2 ,=0 2(d + 1)

Vd(k) = -d--I-------------

n r(dl2 + rid + k)rd-I{(d + 1)/2 + k}
,-I

P. N. RATHIE

The integral in (2.5) can be evaluated as the sum of the residues at the poles of Vd(k)
given in (2.8). This provides !(v), in the general case as an infinite series involving
gamma, psi and zeta functions. The technique (see Mathai and Rathie (1971), Rathie
.(1989» is well known; as an example, the result for d = 3 is derived in the next section by
using the theory of residues.

Computer programs are available from the author for calculating numerically the
density and distribution functions with reasonably good precision.

3. Particular cases

In this section the density of Vd is evaluated for d = 1,2,3.
(a) For d = 1, (2.5) reduces to

f(v) = 2n- 1I2(2niv)-1 fL r(k + l/2)r(k + l)(v 2/4)-kdk

(3.1)

on using the duplication formula for gamma functions. Here M encloses the poles of
F(r). Hence.j'(u) = exp( - v), v> 0, i.e. VI is exponentially distributed with parameter 1.
This result is well known.

(b) For d = 2, (2.5) yields

(3.2)

= (8/9)nvKr/6(2nvI3J3), v> 0

using Erdelyi (1954), p. 371. Here K I /6( · ) is the modified Bessel function of order 116.
This is an interesting compact form for the density function of V2• The plot of f(v) is
given in Fig. 1. The software MATHEMATICA was used to produce this plot.

(c) For d = 3, (2.5) takes the following form:

11 2 . -1 rr 2(k + 3/2)r(k + 5/4)r(k + 7/4) 2 -kdk
(3.3) Av) =A3( mv) J L (k + l)r(k + 1l/6)r(k + 13/6) (B3v ) ·
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Figure 1. Plot of f( v) when d = 2
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The integrand in (3.3) has simple poles at k = - 1, k = - t - 5/4, t = 0,1,2,···,
k = - s - 7/4, S = 0, 1,2,· .. and poles of order 2 at k = - t - 3/2, t = 0, 1,2,· · ..
Evaluating the contour integral in (3.3) as the sum of the residues at the poles, we have

(3.4)

- ~ S/v 2/ +2{-ln(B
3 V 2)+ T, 1] ,

t-O

where

A3 = 560 J2/(811l), B3 = 271l2/16,

P = B3nr(I/4)r(3/4)/[r(5/6)r(7/6)],

Qt = ( - l)tr2( - t + 1/4)r( - t + 1/2)B!+S'4/[(t + 1/4)r( - t + 7/12)r( - t + 11/12)t!],

R t = ( - l)tr2( - t - 1/4)r( - t - 1/2)B!+7/4/[(t + 3/4)r( - t + 1/12)r( - t + 5/12)t!],

St = r( - t - 1/4)r( - t + 1/4)B!+312/[(t + 1/2)r( - t + 1/3)r( - t + 2/3)(t!)2],

Tt = 2VJ(t + 1) + VJ( - t - 1/4) + VJ( - t + 1/4) - VJ( - t + 1/3) - VJ( - t + 2/3)

+ (t + 1/2)-1,

where VJ( •) is the psi function (see Erdelyi et al. (1953».
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