
J. Appl. Prob. 50, 486–498 (2013)
Printed in England

© Applied Probability Trust 2013

RANDOMLY REINFORCED URN DESIGNS
WITH PRESPECIFIED ALLOCATIONS

GIACOMO ALETTI,∗ Università degli Studi di Milano

ANDREA GHIGLIETTI ∗∗ ∗∗∗ and

ANNA MARIA PAGANONI,∗∗ ∗∗∗∗ Politecnico di Milano

Abstract

We construct a response adaptive design, described in terms of a two-color urn model,
targeting fixed asymptotic allocations. We prove asymptotic results for the process of
colors generated by the urn and for the process of its compositions. An application of the
proposed urn model is presented in an estimation problem context.
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1. Introduction

Consider a clinical trial with two competitive treatments, say R and W . We want to construct
a response-adaptive design, described in terms of an urn model, targeting any optimal, fixed
asymptotic allocation, in order to compare these designs with others studied in the literature.
A large class of response-adaptive randomized designs is based on urn models, a classical
tool to guarantee a randomized device (see Rosenberger (2002) and Zhang et al. (2006)), to
balance the allocations (see Baldi Antognini and Giannerini (2007)), or to construct designs
which asymptotically assign all subjects to the best treatment (see Flournoy et al. (2012)). The
two-color, randomly reinforced urn (RRU) introduced in Durham and Yu (1990), extended to
the multi-color case in Durham et al. (1998), and studied in Muliere et al. (2006), Aletti et al.
(2009), (2012), and May and Flournoy (2009), is a randomized device able to asymptotically
allocate subjects to the optimal treatment; see Muliere et al. (2006). In this paper we modify
the reinforcement scheme of the urn to asymptotically target an optimal allocation proportion.
The term target refers to the limit of the urn proportion process. Let us consider two probability
distributions, µR and µW , with support contained in [α, β], where 0 ≤ α ≤ β < +∞ and a
sequence (Un)n of independent, uniform random variables on (0, 1). We will interpret µR and
µW as the laws of the responses to treatments R and W , respectively. We assume that both
the means mR = ∫ β

α
xµR(dx) and mW = ∫ β

α
xµW(dx) are strictly positive. Visualize an urn

initially containing r0 balls of color R and w0 balls of color W . Set

R0 = r0, W0 = w0, D0 = R0 + W0, Z0 = R0

D0
.
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At time n = 1, a ball is sampled from the urn; its color is X1 = 1[0,Z0](U1), a random variable
with Bernoulli(Z0) distribution. Let M1 and N1 be two independent random variables with
distributions µR and µW, respectively; assume that X1, M1, and N1 are independent. Next,
if the sampled ball is R, it is replaced in the urn together with X1M1 balls of the same color
if Z0 < η, where η ∈ (0, 1) is a suitable parameter; otherwise, the urn composition does not
change. If the sampled ball is W , it is replaced in the urn together with (1 − X1)N1 balls of
the same color if Z0 > δ, where δ < η ∈ (0, 1) is a suitable parameter; otherwise, the urn
composition does not change. So we can update the urn composition in the following way:

R1 = R0 + X1M1 1[Z0<η], W1 = W0 + (1 − X1)N1 1[Z0>δ],

D1 = R1 + W1, Z1 = R1

D1
.

(1.1)

Now iterate this sampling scheme forever. Thus, at time n + 1, given the sigma-field Fn

generated by X1, . . . , Xn, M1, . . . , Mn, and N1, . . . , Nn, let Xn+1 = 1[0,Zn](Un+1) be a
Bernoulli(Zn) random variable and, independently from Fn and Xn+1, assume that Mn+1
and Nn+1 are two independent random variables with distributions µR and µW , respectively.
Set

Rn+1 = Rn + Xn+1Mn+1 1[Zn<η], Wn+1 = Wn + (1 − Xn+1)Nn+1 1[Zn>δ],

Dn+1 = Rn+1 + Wn+1, Zn+1 = Rn+1

Dn+1
.

(1.2)

We thus generate an infinite sequence X = (Xn, n = 1, 2, . . .) of Bernoulli random variables,
with Xn representing the color of the ball sampled from the urn at time n, and a process
(Z, D) = ((Zn, Dn), n = 0, 1, 2 . . .) with values in [0, 1] × (0, ∞), where Dn represents
the total number of balls in the urn before it is sampled for the (n + 1)th time, and Zn is the
proportion of balls of color R; we call X the process of colors generated by the urn, while
(Z, D) is the process of its compositions. Let us observe that the process (Z, D) is a Markov
sequence with respect to the filtration Fn.

There are many experimental designs whose proportion of patients allocated to treatments
converge to a fixed value, different from one or zero. Many of these procedures, like those
targeting the optimal Neyman allocation, are no-adaptive designs. In this case, the limit
proportion of assignment is independent of treatment responses, since we cannot use previous
data to change and improve the strategy of the experiment. A very general adaptive design,
targeting a fixed asymptotic allocation proportion, was introduced in Eisele and Woodroofe
(1995). It was a biased coin procedure, in which the probability of assignment is modeled
as a function of previous assignments and current estimates of the limiting proportion. The
probability of allocation, under some very restrictive conditions, converges to the desired target
allocation. After that, Melfi et al. (2001) and Hu and Zhang (2004) studied different versions of
the doubly adaptive biased coin design by relaxing the conditions over the function described
in Eisele’s model. In Hu et al. (2009), the efficient randomized-adaptive design (ERADE) was
presented, which consists of a family of response-adaptive randomization procedures that attain
the Cramer Rao lower bounds. All these models are based on the function presented in Eisele
and Woodroofe (1995). Our model is different because the probability of allocation cannot be
expressed exclusively as a function of the previous assignments and the estimates of the limit
proportion. The probability of allocation is determined by the composition of the urn, which
is also influenced by the randomness of the reinforcements.
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In this work we study the asymptotic behavior of the urn process. In particular, in Section 2
we prove some general results concerning urn processes. In Section 3 the convergence result
on urn composition is proved. Finally, in Section 4 an application of the proposed urn model
is presented in an estimation problem context.

2. Upcrossing/downcrossing and reinforcements

We are interested in studying the convergence of an adapted, bounded process (Zn)n. Without
loss of generality, we will take Zn ∈ [0, 1] for all n. We study the crossing in both directions
of a strip [d, u], where 0 < d < u < 1. More precisely, let t−1 = −1, and define, for every
j ∈ Z+, the two stopping times

τj =
{

inf{n > tj−1 : Zn < d} if {n > tj−1 : Zn < d} �= ∅,

+∞ otherwise,
(2.1a)

tj =
{

inf{n > τj : Zn > u} if {n > τj : Zn > u} �= ∅,

+∞ otherwise.
(2.1b)

The random interval (τj−1, τj ] is called the j th excursion, and we denote it by

νZ[d,u] =
{

sup{j : τj < ∞} if τ0 < +∞,

0 otherwise,

that is, νZ[d,u] counts the total number of times that the process Z crosses the strip [d, u] in both
directions, i.e. making both an upcrossing and a downcrossing.

Theorem 2.1. The process (Zn)n converges almost surely (a.s.) if and only if, for any
0 < d < u < 1, ∑

P(τj+1 = ∞ | τj < ∞) = ∞,

with the convention that P(τj+1 = ∞ | τj < ∞) = 1 if P(τj = ∞) = 1.

Proof. We first note that

(Zn)n converges a.s.

⇐⇒ P(νZ[d,u] = ∞) = 0 for all 0 < d < u < 1

⇐⇒ 0 = lim
n→∞ P(νZ[u,d] ≥ n) = lim

n→∞ P

( n⋂
j=0

{τj < ∞}
)

for all 0 < d < u < 1

as a consequence of the countability of Q in [0, 1]. Now

P({τj < ∞, j = 0, . . . , n}) = P(τ0 < ∞)

n∏
j=1

P(τj < ∞ | τj−1 < ∞),

and it is well known that if (pj )j ⊆ (0, 1] then

lim
n→∞

n∏
j=1

pj = 0 ⇐⇒
∞∑

j=1

(1 − pj ) = ∞.

The fact that some (pn)n might be 0 is controlled by the assumption that pn = 0 implies that
pm = 0 for all m > n.
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Now, we will prove the convergence of a general class of urn processes.

Definition 2.1. (Birth urn process.) Let (�, F , (Fn)n, P) be a filtered space. A vector
process (Rn, Wn)n on (�, F , (Fn)n, P) is called a birth urn process (BUP) if (Rn, Wn)n is
(Fn)n-adapted, the processes (Rn)n and (Wn)n are nonnegative and increasing (i.e. 0 ≤ R0 ≤
R1 ≤ · · · ≤ Rn ≤ · · · and 0 ≤ W0 ≤ W1 ≤ · · · ≤ Wn ≤ · · · ), and R0 + W0 > 0. Let
Dn = Rn + Wn for n ∈ N.

Lemma 2.1. (Reinforcements during excursions.) For any BUP,

Dτj
≥ u(1 − d)

d(1 − u)
Dτj−1 ≥ · · · ≥

(
u(1 − d)

d(1 − u)

)j

Dτ0 .

Proof. For every j ∈ N0, we have

• Rτj+1 ≥ Rtj �⇒ Zτj+1Dτj+1 ≥ Ztj Dtj ,

• Wtj ≥ Wτj
�⇒ (1 − Ztj )Dtj ≥ (1 − Zτj

)Dτj
.

Since Zτj
< d and Ztj > u for every j ∈ N, we find that

• dDτj+1 ≥ uDtj ,

• (1 − u)Dtj ≥ (1 − d)Dτj
.

From this we immediately obtain

Dτj
≥ u(1 − d)

d(1 − u)
Dτj−1 ≥ · · · ≥

(
u(1 − d)

d(1 − u)

)j

Dτ0 ,

completing the proof.

Given a sequence of stopping times (τn)n, it is always possible to define the counting process

Cn :=

⎧⎪⎪⎨⎪⎪⎩
∞∑

j=1

1{τj ≤n} if τ0 ≤ n,

−1 if τ0 > n.

A BUP (Rn, Wn)n is associated to the sequence (τn)n if (Rn, Wn, Cn)n is a time-homogeneous
Markov process. In this case

P(τi+1 < ∞ | τi < ∞) = f (Rτi
, Wτi

, i). (2.2)

Finally, note that, given a generalized urn process (Rn, Wn)n, it is always possible to define
two adapted processes {Dn := Rn + Wn, n ∈ N} and {Zn := Rn/Dn, n ∈ N}.
Proposition 2.1. Given a Markov BUP, the process (Zn)n converges a.s. if, for any 0 < d <

u < 1, there exists a function g : [0, ∞) × [0, ∞) → [0, 1], (Rn, Wn)n is associated to the
sequence (τn)n defined in (2.1a), and

f (x, y, ·) ≤ g(x′, y′) if x + y ≥ x′ + y′,
g(c1, c2) < 1 for some c1, c2 > 0,

where f is given in (2.2).
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Proof. On {τ0 = ∞}, we get νZ[u,d] = 0. On {τ0 < ∞}, if

j ≥ logu(1−d)/d(1−u)

c1 + c2

Dτ0

then, by Lemma 2.1,

P(τj+1 = ∞ | τj < ∞) ≥ 1 − g(c1, c2) = a > 0.

The proposition then follows from Theorem 2.1.

3. Convergence theorem

Let us consider the urn model described in Section 1.

Theorem 3.1. The sequence of proportions Z = (Zn, n = 1, 2, . . .) of the urn process
described in Section 1 converges a.s. to the following limit:

lim
n→∞ Zn =

{
η if mR > mW,

δ if mR < mW.

To prove this theorem, we provide auxiliary results based on the Doob decomposition

Zn = Z0 + Mn + An,

where (Mn)n is a martingale and (An)n is a predictable process, both null at n = 0. Denote by
mR = ∫ β

α
xµR(dx) and mW = ∫ β

α
xµW(dx) the means of the patients’ responses to treatments.

Lemma 3.1. (Aletti et al. (2012, Lemmas A.2 and A.3).) Assume that mR = mW = m. If
D0 ≥ 2β then

E

(
sup
n

|An|
)

≤ β

D0
, E(〈M〉∞ − 〈M〉n | Fn) ≤ β

D0
for any n ≥ 0.

As a consequence, we obtain the following result.

Lemma 3.2. Assume that mR = mW = m. If D0 ≥ 2β then

P

(
sup
n

|Zn − Z0| ≥ h
)

≤ β

D0

(
4

h2 + 2

h

)
for every h > 0.

Proof. First note that, since (Mn)n is a martingale null at n = 0, we have, by Lemma 3.1
(choosing n = 0 in the second inequality),

lim
n→∞ E(M2

n) = lim
n→∞ E(〈M〉n) ≤ β

D0
,

and, hence, by Doob’s L2-inequality,

P

({
sup
n

|Mn| ≥ h

2

})
≤ lim

n→∞
E(M2

n)

(h/2)2 ≤ 4β

h2D0
for any h > 0.
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We easily get

P

(
sup
n

|Zn − Z0| ≥ h
)

≤ P

({
sup
n

|Mn| ≥ 1
2h

}
∪

{
sup
n

|An| ≥ 1
2h

})
≤ P

({
sup
n

|Mn| ≥ 1
2h

})
+ P

({
sup
n

|An| ≥ 1
2h

})
≤ β

D0

(
4

h2 + 2

h

)
,

completing the proof.

Proof of Theorem 3.1. We have an urn initially containing R0 red balls and W0 white balls.
Let us consider the case in which mR < mW ; the opposite case (mR > mW ) is completely anal-
ogous. In the case described in Muliere et al. (2006) the process (Zn)n∈N is a supermartingale
converging to 0 but, because of the barrier δ (see (1.2)), it is not like this anymore. Anyway, we
want to prove that the process (Zn)n∈N still converges, but in this case the limit is equal to δ.

First, we will prove that
lim inf Zn ≤ δ a.s.

By contradiction, there exists l > δ such that P(lim inf Zn ≥ l) > 0. Then, there exists n0
such that P(Zn > (l + δ)/2 for all n ≥ n0) > 0. This contradicts the fact that, by Markov’s
property, P(Zn > (l + δ)/2 eventually) = 0, since it is an RRU with reinforcements with
different means that goes to 0 (see Muliere et al. (2006)).

With the same argument, one may prove that lim sup Zn ≥ δ, since the urn that eventually
stays below δ is an RRU with reinforcements with different means that goes to 1 (again, see
Muliere et al. (2006)).

In fact, one can prove more, with the arguments of Muliere et al. (2006): the barrier δ

must be crossed infinitely times a.s. With this result in mind, we will prove in a moment that
lim inf Zn ≥ δ. In fact, if there exists l < δ such that P(lim inf Zn ≤ l) > 0, then, with
positive probability, the process must cross the strip ((l + δ)/2, δ) an infinite number of times.
By Lemma 2.1, after a sufficiently large number of times, Dn > β(l+δ)/(δ− l) and, therefore,
if k is any successive downcross of δ,

Zk ≥ Rk−1

Dk−1 + β
≥ δDn

Dn + β
>

l + δ

2
,

since each reinforced urn is bounded by β and Rk−1/Dk−1 = Zk−1 > δ. We have proved that
lim inf Zn = δ a.s.

Let d and u (δ < d < u) be two arbitrary points, and let (τi)i and (ti)i be as in (2.1a) and
(2.1b), in order to apply Proposition 2.1. Let

i > logu(1−d)/d(1−u)

β(1 − d)

Dτ0(d − δ)

be fixed, so that, by Lemma 2.1, Dτi
> β(1 − d)/(d − δ), and denote by (̂·n)n∈N the renewed

process on {τi < ∞}: (R̂n, Ŵn) = (Rτi+n, Wτi+n), D̂n = R̂n + Ŵn = Dτi+n, Ẑn = R̂n/D̂n =
Zτi+n, and Ûn = Uτi+n. The Markov property of the original urn ensures that, on {τi < ∞}, the
process (̂·n)n started afresh a new urn with initial composition (Rτi

, Wτi
) with dynamics (1.1)

and (1.2). We denote by Pi(·) = P(· | τi < ∞), and, therefore, if

t =
{

inf{n : Ẑn > u} if {n : Ẑn > u} �= ∅,

+∞ otherwise,
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then we have
Pi(t < ∞) = Pi(ti < ∞) ≥ P(τi+1 < ∞ | τi < ∞). (3.1)

Define the sequences (t∗n , τ ∗
n )n of stopping times which indicate the (Ẑn)n-crosses of the

border δ: let t∗−1 = −1, and define, for every j ∈ Z+, the two stopping times

τ ∗
j =

{
inf{n > t∗j−1 : Ẑn ≤ δ} if {n > t∗j−1 : Ẑn ≤ δ} �= ∅,

+∞ otherwise,

t∗j =
{

inf{n > τ ∗
j : Ẑn > δ} if {n > τ ∗

j : Ẑn > δ} �= ∅,

+∞ otherwise.

Note that

R

R + W
≤ δ, R + W >

β(1 − d)

d − δ
�⇒ R + x

R + W + x
< d for all x ≤ β,

and, hence, since the reinforcements are bounded by β, we have

Ẑt∗j −1 ≤ δ, D̂t∗j −1 >
β(1 − d)

d − δ
�⇒ Ẑt∗j < d �⇒ R̂t∗j < Ŵt∗j −1

d

1 − d
. (3.2)

We now define a process (̃·n)n∈N to set a new urn, coupled with (̂·n)n∈N, with the following
features:

W̃0 = Ŵ0,

R̃0 = W̃0
u + d

2 − u − d
,

X̃n+1 = 1[0,Z̃n](Ûn+1),

M̃n+1 = M̂n+1 + (mW − mR),

Ñn+1 = N̂n+1,

R̃n+1 = (R̃n + X̃n+1M̃n+1) 1[Ẑn>δ] +W̃n

u + d

2 − u − d
1[Ẑn≤δ],

W̃n+1 = (W̃n + (1 − X̃n+1)Ñn+1) 1[Ẑn>δ] +W̃n 1[Ẑn≤δ],

D̃n+1 = R̃n+1 + W̃n+1,

Z̃n+1 = R̃n+1

D̃n+1
.

The new urn process starts with Z̃0 = (u + d)/2, it is reinforced at time n + 1 only when
Ẑn > δ, and has nonnegative reinforcements with the same means mR; besides, the process is
set equal to (u + d)/2 at time n + 1 whenever Ẑn ≤ δ.

We will prove by induction that, for any n,

Z̃n > Ẑn, W̃n ≤ Ŵn, R̃n > R̂n. (3.3)

In other words, we will show that (Z̃n)n∈N is always above the original process (Ẑn)n∈N.
In fact, by construction we have

Z̃0 = d + u

2
> d > Ẑ0, W̃0 = Ŵ0,
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which immediately implies that R̃0 > R̂0. Assume that (3.3) holds by the induction hypothesis.
We consider two cases.

Case 1: Ẑn ≤ δ. W̃n+1 = Ŵn+1 by construction. By (3.2), Ẑn+1 < d < Z̃n = Z̃n+1 and,
hence, R̃n+1 > R̂n+1.

Case 2: Ẑn > δ. Since X̃n+1 = 1[0,Z̃n] ≥ 1[0,Ẑn] = X̂n+1 by construction, we obtain

R̂n+1 − R̂n = X̂n+1M̂n+1 ≤ X̃n+1M̃n+1 = R̃n+1 − R̃n,

Ŵn+1 − Ŵn = (1 − X̂n+1)N̂n+1 ≥ (1 − X̃n+1)Ñn+1 = W̃n+1 − W̃n.

Note that, for any m ≥ 1, the process (Z̃t∗m−1+n)
τ∗
m−t∗m−1

n=0 is an urn process reinforced by
distributions with the same means and initial composition (R̃t∗m−1

, W̃t∗m−1
). Therefore, if Tm

is the stopping time for (Z̃t∗m−1+n)n to exit from (d, u) before τ ∗
m, i.e.

Tm =

⎧⎪⎨⎪⎩
inf{n ≤ τ ∗

m − t∗m−1 : Z̃t∗m−1+n ≤ d or Z̃t∗m−1+n ≥ u} if {n ≤ τ ∗
m − t∗m−1 : Z̃t∗m−1+n ≤ d

or Z̃t∗m−1+n ≥ u} �= ∅,

+∞ otherwise,

then we have stated that

Pi(Tm < ∞) ≥ Pi(t < ∞ | {t∗m−1 < t < τ ∗
m}). (3.4)

Now, as a consequence of Lemma 3.2 and the fact that D̃t∗m−1
≥ D̃0 ≥ Dτi

, if we set h =
(u − d)/2, we get

Pi(Tm < ∞) ≤ P

(
sup
n

|Z̃t∗m−1+n − Z̃t∗m−1
| ≥ h

)
≤ min

(
β

Dτi

(
4

h2 + 2

h

)
, 1

)
.

Thus, define the function g : [0, ∞) × [0, ∞) → [0, 1] as

g(x, y) := min

(
β

x + y

(
4

h2 + 2

h

)
, 1

)
,

and note that g(8β/h2, 4β/h) = 1
2 and g is monotone in x + y. We can apply Proposition 2.1

to get the thesis, since, by (3.1) and (3.4),

P(τi+1 < ∞ | τi < ∞) ≤
∑
m

Pi(t < ∞ | {t∗m−1 < t < τ ∗
m})Pi({t∗m−1 < t < τ ∗

m})

≤ sup
m

Pi(t < ∞ | {t∗m−1 < t < τ ∗
m})

≤ g(Rτi
, Wτi

).

This completes the proof.

Remark 3.1. Note that in the proof of Theorem 3.1 it was never necessary to specify the type
of distribution generating the reinforcements. Indeed, we do not need all the information about
the probability laws, we deal only with the means of those distributions. In particular, in the
proof we only needed to know which of the two reinforcements has the greatest mean. For this
reason, all the results still hold if we change the dynamic of the process, maintaining a fixed
sign for the difference in the means.
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Remark 3.2. Consider a Pólya urn initially containing r0 red balls and w0 white balls. Let
X = (Xn)n∈N be a generalized urn process of the sampled balls, and let f be the corresponding
urn function, i.e. the function f that maps the interval (0,1) to itself and such that the law of X
is defined by assuming that X1 is a Bernoulli(f (z0)), where z0 = r0/(r0 + w0) and, for n ≥ 1,
the conditional distribution of Xn+1 given X1, . . . , Xn is a Bernoulli(f (Zn)), where

Zn = r0 + ∑n
i=1 Xi

r0 + w0 + n
.

If f (x) = x for every x ∈ [0, 1], we obtain the Pólya sequence. Now, consider the urn model
described in the introduction, in the particular case in which reinforcements are independent
Bernoulli variables, with parameters πR for the red balls and πW for the white balls. In this
situation, this model is equivalent to a generalized Pólya urn in which the urn function f can
be defined as follows:

f (x) = xπR 1[x<η]
xπR 1[x<η] +(1 − x)πW 1[x>δ]

=

⎧⎪⎪⎨⎪⎪⎩
1 if x < δ,

xπR

xπR + (1 − x)πW

if δ < x < η,

0 if x > η.

Looking at the expression above, we can reach to the same convergence result proved in this
paper, by applying the Theorem 4.1 of Hill et al. (1980). The convergence theorem proved in
this paper is more general, because it also holds when reinforcements do not follow Bernoulli
distributions.

Now, let us consider ρ(mR, mW) = η 1[mR>mW ] +δ 1[mR<mW ]. We have shown that, for the
reinforcement scheme introduced here, Zn converges a.s. to ρ, so we denote ρ as the target
allocation. By using the same martingale argument as Melfi et al. (2001), we can prove
that NR(n)/n → ρ a.s. This results allows us to force the design to be asymptotically
balanced or unbalanced for a fixed suitable quantity: in fact, (NR(n) − NW(n))/n → 2ρ − 1.
Moreover, consider an estimation problem of the means mR and mW of the responses to
treatments. The limit of the process ρ is within the open interval (0, 1) and so both the sequences
NR(n) = ∑n

i=1 Xi and NW(n) = ∑n
i=1(1 − Xi) diverge to ∞ a.s. as long as n increases to ∞.

This allows us to define the following adaptive consistent estimators based on the observed
responses until time n, with random sample sizes NR(n) and NW(n), respectively:

M̄(n) =
∑n

i=1 XiMi

NR(n)
and N̄(n) =

∑n
i=1(1 − Xi)Ni

NW(n)
.

We can apply the results proved in Melfi et al. (2001) to state the following proposition.

Proposition 3.1. The estimators M̄(n) and N̄(n) are consistent estimators of mR and mW ,
respectively. Moreover, as n → ∞,(√

NR(n)
M̄(n) − mR

σR

,
√

NW(n)
N̄(n) − mW

σW

)
→ (Z1, Z2)

in distribution, where (Z1, Z2) are independent standard normal random variables.
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4. A simulation study

In this section we present a simulation study that takes advantage of the convergence theorem
proved in Section 3. We provide a method to estimate an unknown parameter by using the
proposed response-adaptive design. Let us consider a treatment W , whose mean effect on
subjects is unknown. Let us model the patient’s response to the treatment W with a random
variable with distribution µW . The goal of the study is to estimate its mean effect mW =∫

xµW(dx). Consider another treatment, denoted as R, and suppose that its random effect on
patients follows a known distribution µR; let us assume that its mean mR depends on the given
dose, which can be suitably modified by the experimenter. We consider a response-adaptive
design based on the urn model introduced in Section 1, with µR and µW modeling the patients’
responses to treatment R and W , respectively. The inference on mW is performed by monitoring
over time the urn composition Zn.

In this simulation study we consider K urns with the same initial composition (r0, w0). Red
balls are associated with treatment R, while white balls are associated with treatment W . We
denote by Zj = (Z

j
n)n∈N the process of the urn proportion in the j th urn for j ∈ {1, 2, . . . , K}.

The reinforced scheme applied to each urn is that described in Section 1. Hence, for each urn,
convergence Theorem 3.1 holds, and

lim
n→∞ Z

j
n =

{
η if mR > mW,

δ if mR < mW.

When mR = mW , we do not have an explicit form for the limit distribution of the urn
proportion Zn. Nevertheless, we know that it converges to a random variable Ze, whose
distribution has no atoms and support Se = [δ, η].

At the beginning of the experiment, we choose an initial dose for treatment R. Let us call
mR,1 the patient response mean corresponding to that dose. Then, the reinforcements of red and
white balls follow distributions with means mR,1 and mW , respectively. We start K mutually
independent urn processes simultaneously. At each step, we draw a ball from each urn and we
update the composition of each urn independently, following the model described in Section 1.
After n draws and reinforcements, we have K urn proportions Z

j
n, j ∈ {1, 2, . . . , K}, which

can be used to compute the empirical cumulative distribution function F̂n for the random
variable Zn. Thanks to Theorem 3.1, for every x ∈ [0, 1], F̂n(x) must converge to

Fη(x) = 1[x≥η] if mW < mR,1, Fδ(x) = 1[x≥δ] if mW > mR,1.

If mW = mR,1, we can compute offline F̂e(x), the asymptotic cumulative distribution of Ze.
This calculation requires the simulation of M urn processes with m draws for each one; the
number of urns M and the number of draws m can be arbitrarily large. So we have

F̂e(x) � 1

M

M∑
i=1

1[Zi
m<x] for large m and M.

At each step, once each urn has been reinforced, we use the Wasserstein distance (dW ) to
compute the distances between the empirical cumulative distribution function F̂n and the three
asymptotic possible distributions Fη, F̂e, and Fδ . When one of these three distances is small
enough, we have a good estimate of the distribution of the limit proportion Zn, and so we can
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state if mW is less than, equal to, or greater than mR,1. Let

ξ = min{dW (Zn, δη), dW (Zn, Ze), dW (Zn, δδ)}

= min

{∫ 1

0
|Fn(x) − Fη(x)| dx,

∫ 1

0
|Fn(x) − F̂e(x)| dx,

∫ 1

0
|Fn(x) − Fδ(x)| dx

}
.

When ξ is less than a suitable small parameter α, fixed in advance, the drawing process
ends and different scenarios are possible. If ξ = dW (Zn, Ze), we conclude that mR,1 = mW .
Otherwise, if ξ = dW (Zn, δδ), we conclude that mW is greater than mR,1. Hence, we change
the given dose for treatment R to increase the mean effect at a new suitable value mR,2 > mR,1.
If ξ = dW (Zn, δη), we conclude that mW is less than mR,1, so the dose is changed in order to
decrease the mean effect mR,2 < mR,1. In any case, we can suppose that the difference between
the two means is decreased (|mR,2 −mW | < |mR,1 −mW |). At this point, we start over with K

urn processes, with the same initial composition (r0, w0). Although the reinforcement scheme
applied is the same as before, the probability law of the reinforcements of red balls is not,
because the mean is changed.

The whole study goes on until both the conditions ξ = dW (Zn, Ze) and ξ < α are satisfied.
Call i0 the number of times the random response mean to treatment R has been changed. Then
mR,i0 is an estimate of the unknown mean mW . We made some simulation studies and we
present here some graphics that illustrate this estimation procedure.

The simulation study was carried out with K = 40 urns. Parameters were fixed at δ = 0.3,
η = 0.7, and α = 0.05. Responses to treatment W are assumed to be normal random variables
with mean mW and standard deviation σ = 1. Responses to treatment R are assumed to be
normal random variables with mean mR,i and standard deviation σ = 1. As explained before,
the mean is changed every time ξ is less than α. The parameter mW was sampled by a uniform
(10, 50). At the beginning, the response mean to treatment R was set equal to 30 (mR,1 = 30).
After changing mR four times (i0 = 5), the conditions ξ = d(Zn, Ze) and ξ < α have been
satisfied; this allows us to conclude that mW = mR,5 (see Figures 1–4). The cumulative

50

40

30

20

10

1 2 3 4 5

Figure 1: Graphic shows the different values assumed by mR during the experiment: (mR,1, mR,2, mR,3,
mR,4, mR,5) = (30, 20, 15, 17.5, 18.125). Five changes were necessary to reach a satisfactory estimate of
the mean mW . The x-axis represents the number of times mR was changed, while the y-axis indicates the
response means to treatments. The middle (red) line represents the unknown mean mW = 18.195. The

width of vertical intervals indicates the standard deviation of reinforcement distribution (σ = 1).
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Figure 2: Wasserstein distances (area of shaded zones) for dW (Zn, δδ) (left), dW (Zn, Ze) (middle),
and dW (Zn, δη) (right) in the case where mR,1 = 30 and mW = 18.195 (first iteration). Since

dW (Zn, δη) < α, the limit of the process seems to be η = 0.7.
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Figure 3: Wasserstein distances (area of shaded zones) for dW (Zn, δδ) (left), dW (Zn, Ze) (middle),
and dW (Zn, δη) (right) in the case where mR,3 = 15 and mW = 18.195 (third iteration). Since

dW (Zn, δδ) < α, the limit of the process seems to be δ = 0.3.
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Figure 4: Wasserstein distances (area of shaded zones) for dW (Zn, δδ) (left), dW (Zn, Ze) (middle),
and dW (Zn, δη) (right) in the case where mR,5 = 18.125 and mW = 18.195 (fifth iteration). Since

dW (Zn, Ze) < α, the limit of the process seems to be Ze, a random variable with no atoms.
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distribution F̂e was computed with M = 200 urns and m = 103 draws for each one. This
procedure provided an estimate of mW = mR,5 = 18.125. In fact, the result of the started
random extraction for mW was equal to 18.195.
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Note added in proof

A simplified proof of Theorem 3.1 has recently been formulated and is available from the
authors upon request.
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