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Abstract

In this note we determine which of the trees homeomorphic to a star have a spectrum consisting
entirely of integers. We also specify the integral double stars, and we consider the problem of
trees with more complicated structure.

Subject classification (Amer. Math. Soc. (A/OS) 1970): 05 C 05.

1. Introduction

The term integral graph was introduced by Harary and Schwenk (1974) to describe
a graph whose spectrum of eigenvalues consists entirely of integers. The effect of
various binary operations on spectral integral properties was investigated, and
several families of such integral graphs were exhibited. The identification of all
integral graphs appears to be hopelessly involved. However, as with many other
problems in graph theory, if we restrict our attention to trees, the prospects are
much better. In Section 2 we identify all integral trees which are homeomorphic
to a star Klm. Then, in Section 3, we consider the more difficult problem resulting
when the tree is a double star. In the last section we raise the problem for trees
of diameter greater than four.

2. Starlike trees

In general we follow the terminology in Harary (1969). So, for example, Pn is
the path with n vertices. In addition, we use the spectral notation of Collatz and
Sinogowitz (1957). In particular, when graph G has adjacency matrix A, the
characteristic polynomial <£(G; x) is the determinant of xI—A. Even though G can
be represented by more than one matrix A, the polynomial <f>(G; x) is well defined
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[2] Integral starlike trees 121

because all choices for A are similar, and so yield the same polynomial. We call
G an integral graph if <f>(G; x) has only integer roots. We shall call a tree T starlike
if T is homeomorphic to a star Kx,m. If m < 2, T is in fact a path. For m ^ 3, tree
T has a unique vertex v of degree m and T— v is a union of w paths. If r has n
vertices, we may write

(i) T-v = nJmipi,

where m = 2 " i j and n = 1 + S""i- We use this notation to identify all integral
starlike trees.

THEOREM 1. The starlike tree T is integral if and only if T is one of these trees:
(i) T=K1and<f>(T;x) = x;
(ii) T-v = mxPx with mx = k2^l a perfect square and<f>(T; x) = (x2-k2)xm^-1;

(iii) T— v = m2P2 with m2 +1 = k2>4 a perfect square and

PROOF. If J is any tree of one of these types, it is routine to verify that the
characteristic polynomial given above is correct, and so the backward implication
is trivial.

We assume T is integral and starlike, and we proceed to demonstrate that T
must be one of the types listed. First, if T is a path, Px, we have the trivial integral
tree Kx. If T= P2, then T is the first instance of type (ii). If T= Pn is any longer
path, then its largest eigenvalue (see Schwenk (1973), (1974)) is 2COSTT/(« + 1 )

which is not integral. Having disposed of the easy cases, we now consider starlike
trees with a unique vertex v of degree m^3. Our strategy is to determine the
maximum number of integral eigenvalues T may have as a function of
mx,m2, ...,mn_3. This bound will then provide restrictions on the values of the
/Mf's. We begin with a computational lemma:

LEMMA la. For

x <KPi+l> X) X-l'

PROOF. In Harary et al. (1971) we find the recurrence relation

(2)

Now since the largest root offtP^; x) is less than 2, <f>(Pi-i', x) is positive and so
\ ; x)/<f>(Pi+1; x) for x^2. Moreover,

(3) # P i + 1 ; x) =
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Therefore, we may verify recursively that for x ^ 2

(4) <f>(PM; x) - <f>(Pt; x) > ftPt; x) - ^ ( ? w ; je) > ... > <f>(P2; *) - ^ ; x) > 0.

In particular, since ^(Pf_iJ *)<<A(Pi; x) we may substitute in (2) to obtain

(5) tf.Pi+1; *) > x4iPt; x) - <KPi; *)

and so #P«; x)/#Pi+1; *)< l/(x-1) for

We return to the proof of the theorem. Suppose T has an eigenvalue A > 2. This
value cannot be a multiple eigenvalue because by the interlacing theorem (see
Schwenk and Wilson (1978)) that would require A>2 to be an eigenvalue of T— v.
Consider the eigenvector associated with A. Its ^-component must be nonzero (lest
A be an eigenvalue of T— v) and so we may normalize it to equal 1. It is routine to
verify that each branch of length /, ultu2...uiv produces eigenvector components
of

(6) ( l / # P i ; A), # P i ; A)/#Pi; A),..., flP^; A)/#P<; A), 1)

To be an eigenvector, the sum of the components neighboring v must equal A times
the u-component (see Sachs (1964)) and so

(7) A - l = 2
i=l

Applying the lemma, we find

(8) £ ^ ^

Recalling that m = ^lmi ,we take reciprocals and multiply by mX to obtain

(9) A(A-l)<m<A2<A(A+l) .

Obviously, there is at most one integer value for A satisfying (9). By the pairing
theorem (see Sachs (1964) or Schwenk and Wilson (1978)), T can have only two
eigenvalues other than 0 and ± 1.

Sachs' Theorem (see Sachs (1964) or Schwenk and Wilson (1978)) tells us that 0
is an eigenvalue with multiplicity —1 + 2 w2A.+1 unless this yields — 1 whence 0
has multiplicity 1.

Similarly, 1 is an eigenvalue with multiplicity — 1 — 2 m3k+2 unless this yields — 1,
in which case 1 is a simple eigenvalue if £ w3fe+1 = 1, and 1 is not an eigenvalue if
2w 3 J : + 1 # 1. These statements can all be verified by constructing the appropriate
number of eigenvectors in each circumstance. Moreover, the multiplicity of — 1 is
the same as the multiplicity of 1 by the pairing theorem (see Sachs (1964)). We may
now complete the proof by considering four cases:
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Case 1. S ^ s i + i = 0 and 2 m3k+i = 0. Then we have at most five eigenvalues, but

m ^ 3 and m1 = 0 imply n ̂  7. Thus, no integral trees are possible.

Case 2. 2 w2 J ; + 1 = 0 and 2 w3 f c + 2# 0. Then there are n = 1 + 2 w^ = 1 + 2 2 w3A:+2

eigenvalues. This equation can be solved only if m2 is the only nonzero term. Now

T— v = m2 P2, and the largest eigenvalue for T is an integer if and only if m2 +1 is

a perfect square as specified in type (iii).

Case 3a. Tim2k+1^0, 2ffI3*+2 — 0 and 2w3fc+i = 1- This time

n = 1 + 2 »»»< = 3 + 2

can be solved only if m1 = w3 = 1 and all other mt = 0. But then T= P5 which is
not integral.

36. H^ t+ i^C , Sm3*;+2 = 0 and S % + 1 / 1 . Then

n =

can be solved provided mi = 0 for all i>2. This yields T= Klmi which is integral
if and only if m^ is a perfect square as prescribed under type (ii).

Case 4. 2'"2fc+i#0 and 2>"3fc+2^0- This time

Consequently, we have found all the integral starlike trees.

3. Double stars

We would now like to examine the trees homeomorphic to a double star, that is,
to a tree obtained by joining the centers of two stars with an edge. Unfortunately,
the details are too involved to allow us to analyze trees in which the two vertices
of high degree are nonadjacent, and so we shall limit our attention to those trees
having exactly two vertices u and v of degree greater than two, and these two
vertices are adjacent. Let T have mi branches of length Pi at u and rt branches of
length Pt at v so that

n—5

(10) T-u-v=\){mi+rl)Pi.

Furthermore, m = 1 + 2 m% and r = 1 + 2 rf are the degrees of « and v while
n = 2+2'( 'wi+ri) is the number of vertices in T.
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THEOREM 2. If T is an integral tree and T has exactly two adjacent vertices of
degree exceeding two, then T is either a double star T— u — v— {mx + rx) Pt where
the polynomial x* — (mx + r1+l)x2 + m1r1 has only integral roots or

T-u-v = m1P1 + r2P2

where the polynomial xi — (m1 + r2 + 2)x2 + rn1r2 + m1+l has only integral roots.

PROOF. AS in the previous theorem, we count the number of possible eigenvalues
for T. For A ̂  2, any eigenvector for A cannot have a zero coordinate on v or u,
for otherwise A is also an eigenvalue of one of its branches, that is, of a path.
If the eigenvector a has v and u coordinates both positive and A > 2, then every
coordinate of a is positive. Similarly, if 5 is positive at v but negative at u, then 5
is positive on all the branches at v and negative on all branches at u. Finally, if the
v coordinate of a is negative, — a fits one of the descriptions given above. Since
at most two vectors of this description can be mutually orthogonal, we conclude
that T has at most two eigenvalues larger than 1 and at most two eigenvalues less
than — 1. It remains to specify the multiplicities of 0, 1 and — 1. Let s be the
common multiplicity of ± 1. We list the possibilities for each:

Q . If 2 m2k+1 > 0 and 2 r2k+1 > 0, then 0 has multiplicity - 2 + 2 m2k+1 + 2 r2k+1.

C2. If 2 ™2k+1 = 0 or 2 fik+i — 0> then 0 has multiplicity 2 mu+i + 2 r2k+i-

Dv If 2 m3k+2 > 0 and 2 r3k+2 > 0, then 5 = 2 m3k+2+2 r3lc+2 - 2.

D2. If 2 m3k+2 = 2 m3k+1 = 2 r3k+2 = 2 r3k+1 = 0, then 5 = 1 .

D3. If 2 m3k+2 = 2 r3k+2 = 0 and 2 m3k+1 = 2 r3k+1 = 2, then s = 1.

Z>4. If 2 mzk+i = 0, 2 m3k+1 = 1 and 2 r3k+2 > 0, then s = 2 r3k+2.

D5. If 2 m3k+2 = 0, 2 m3k+1 ^ 1 and 2 r3k+2 > 0, then 5 = 2 r3k+2 - 1 .

A>- If 2 rzk+2 = °> S r3k+i = 1 and 2 msk+2 > 0, then 5 = 2 m3k+2.

&T If 2 r3k+2 = 0, 2 r3k+l * 1 and 2 ™3k+2 > 0, then 5 = 2 m3k+2 - 1 .

Ds. Otherwise, 5 = 0.

These possibilities can now be combined to form sixteen possible cases labeled
CiDj. Most of these cases produce impossible equations. For example, in Cx D2,
if we let c denote the number of eigenvalues with | A | > 2, then the total number of
vertices equals the number of eigenvalues, and so

(11)
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This reduces to

(12) 2 + 2(w2 + r2) + 2(w3 + r3) + 4(m4 + 7-4)+... = c.

If c = 2, this forces mi = ri = 0 for / ^ 2. But / ^ < £ ™3A.+1 = 0, which makes the
degree of u equal to one! Thus, c = 2 is impossible. Hence, c must equal 4, but now
only one of m2, r2, mz and r3 can be nonzero. Without loss of generality, say
r2 = rs = 0. Then /"i^S^ft+i = 0, and so v has degree one. This last contradiction
permits us to deduce that no integral trees satisfy case Cx D2.

The other cases are treated similarly, and all but four provide negative results.
The only solutions occur in cases Q D3, Cx Ds, C2D5 and C2 D7.

In case Cx D3, we find equation (12) is satisfied, and the unique tree is the double
star with m1 = rx = 2.

Case Q Ds requires

(13) 4 + 2(m2 + r2 + m3 + r 3 ) + . . . = c .

This can only be solved if mi and rt equal zero for all i>2 , and then, by Sachs'
Theorem (Sachs (1964)).

(14) 4>(T; x) = xn-(m1+r1 + l) xn~2+mi rx x""4.

This polynomial has only integral roots if and only if x*—(ntj^+^
factors into (x2—ai){xi—b2) with a^b both positive integers.

In case C2 D5, the eigenvalue count yields

(15) 4 + 2(m2+w3 + r3)+. . . = c.

This can only be solved if all w^'s are 0 except m1 and all r /s are 0 except r2. Again
Sachs' Theorem yields

(16) <f>(T; x) = (xi-iy*-1xm^xi-(m1 + r2 + 2)x2 + m1r2 + m1+l).

Case C2 D7 is analogous, but replaces m1 and r2 with r± and m2. This completes the
proof of the theorem.

It is intriguing to try to specify all solutions to equation (14) with r^m^ One
family of solutions occurs when m1 = rx = a(a+1) for any positive integer a, for
which

(17) <f>(T; x) = (x*-a*)(x2-(a+ iy)x^*+2a-2

The first two instances (a = 1 and 2) give the integral double stars displayed in
Harary and Schwenk (1974). The difficult problem of finding all solutions of (14)
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in integers has been solved by Graham (1978). He finds that

(18)

where the integers A, B, C satisfy

(19) {A*-X)(B2-\) = C2.

The values for A, B, Ccan be found in terms of Chebyshev polynomials. Similarly,
in equation (16) we find

(20)

where this time (A2— 1)(B2— 1) = C2 —4. These integral solutions can be found
recursively by the method developed by Graham.

4. Trees of large diameter

It happens that all the integral trees found so far have diameter at most four.
In this section we construct one more family of integral trees, which also happen
to have diameter four, but are not starlike. Let T = T(r, m) be formed by joining
the centers of r copies of Klm to a new vertex v. Thus, T— v = rKlm. Moreover,
T has rm endpoints.

THEOREM 3. T(r, m) is integral if and only if both m and r+m are perfect squares.

PROOF. From Theorem 2 of Schwenk (1974), we have

(21) <f>(T(r,m);x) = x<KT-v;x)- £ <f>(T-v-u; x).
uadj v

This reduces to

(22) <KT(r, m);x) = (x* - m)"'1 (x2-m- r) x™^+\

and so the conclusion of the theorem is evident.

REMARKS. We note that the case m = 1 is identical to Theorem 1 (iii). The
smallest member of this family with m> 1 is shown in Fig. 1.

Christopher Godsil has observed that one can construct integral trees of
diameter 6 by attaching t new endpoints to each vertex of the trees T(r, m) in
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Theorem 3. The parameters t, r, m must be chosen so that m, m+r, t, m+4t and
m + r+4t are all perfect squares. To accomplish this, select

m = (a2-Z>2)2, r = (c2-</2)2-(a2-62)2 and t = a2*2 = c2*/2.

For example, a = 3, b = 2, c = 6, d = 1 gives an integral tree of diameter 6 with
1 123 236 vertices. Integral trees of larger diameter should also be constructable.
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FIG. 1. The smallest integral tree of the form T(r, m) with m = 4, r = 5.
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