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The topological Langmuir-cyclotron wave (TLCW) is a recently identified topological
surface excitation in magnetized plasmas. We show that TLCW originates from
the topological phase transition at the Langmuir wave-cyclotron wave resonance.
By isofrequency surface analysis and two- and three-dimensional time-dependent
simulations, we demonstrate that the TLCW can propagate robustly along complex phase
transition interfaces in a unidirectional manner and without scattering. Because of these
desirable features, the TLCW could be explored as an effective mechanism to drive
current and flow in magnetized plasmas. The analysis also establishes a close connection
between the newly instituted topological phase classification of plasmas and the classical
Clemmow-Mullaly-Allis (CMA) diagram of plasma waves.
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1. Introduction

Surface waves in plasmas have been extensively studied (Trivelpiece & Gould 1959;
Gradov & Stenflo 1983; Vladimirov, Yu & Tsytovich 1994) due to their wide range
of applications (Ida & Hayashi 1971; Ionson 1978; Lopez-Rios & Vuye 1979; Moisan,
Zakrzewski & Pantel 1979; Kupersztych, Raynaud & Riconda 2004; Agranovich 2012).
Recently, a new class of surface modes in plasma produced by topological phase transition
has been investigated (Parker et al. 2020b; Fu & Qin 2021). Here, we report on studies of
the dispersion and propagation of the newly identified topological surface mode called the
topological Langmuir-cyclotron wave (TLCW) in cold magnetized plasmas.

Surface plasma waves are fluctuations propagating along the boundary between two
regions. The energy of surface waves is usually concentrated at the boundary and
attenuates rapidly in the normal direction. On the other hand, bulk (or body) waves are not
localized in the boundary and propagate through plasmas. Bulk and surface waves were
traditionally considered distinct waves and studied separately. It was realized in recent
decades that there exists a connection between some surface waves and the topological
properties of bulk waves. In the study of the integer quantum Hall effect (Thouless et al.
1982), it is found that the bulk states in quantum Hall systems can be characterized by a
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topological invariant n ∈ Z called the Chern number. At the interface between a quantum
Hall state and vacuum, chiral surface (edge) states exist (Halperin 1982) whose quantity
is equal to the Chern number in the bulk state. Such a correspondence between bulk
topological invariants and the number of chiral edge states can be generally summarized
as the bulk–edge correspondence (Hasan & Kane 2010). The bulk topology and its relation
to surface states have been widely studied not only in quantum systems (Hasan & Kane
2010; Qi & Zhang 2011; Bernevig 2013; Armitage, Mele & Vishwanath 2018), but also in
classical systems, such as those in photonics (Haldane & Raghu 2008; Raghu & Haldane
2008; Ozawa et al. 2019; Marciani & Delplace 2020), acoustics (Wang, Lu & Bertoldi
2015; Yang et al. 2015; He et al. 2016a), mechanics (Kane & Lubensky 2014; Nash
et al. 2015; Huber 2016) and fluid dynamics (Delplace, Marston & Venaille 2017; Perrot,
Delplace & Venaille 2019; Souslov et al. 2019; Tauber, Delplace & Venaille 2019; Venaille
& Delplace 2021; Zhu, Li & Marston 2021).

Magnetized plasmas have been studied from the topological point of view as well. Cold
plasmas in a constant magnetic field B0ẑ were found to have non-trivial topology. When
variation in the z-direction can be ignored, i.e. kz = 0, Chern numbers for the X waves in
two-dimensional (2-D) plasmas were calculated (Silveirinha 2015; Gangaraj, Silveirinha &
Hanson 2017) and related to surface waves via the bulk–edge correspondence (Silveirinha
2016). When kz �= 0, the non-trivial topology of the plasma as a 2-D system was found
(Parker et al. 2020b; Parker 2021b) and its topological phase diagram was established (Fu
& Qin 2021). In particular, under-dense plasmas can be regarded as a Weyl semimetal
(Gao et al. 2016; Yang et al. 2016) and host a surface states with the Fermi-arc structure
(Armitage et al. 2018). The topological matter properties of ideal magnetohydrodynamics
(MHD) plasmas with magnetic shear (Parker et al. 2020a), kinetic plasmas (Parker 2021a)
and surface waves within the continuous spectrum (Rajawat, Khudik & Shvets 2022) were
also investigated.

The topological surface wave in the present study is called the TLCW because it is
localized at the interface between two plasmas in different topological phases separated
by the phase transition at the resonance between the Langmuir wave and the cyclotron
wave (Fu & Qin 2021). Based on a one-dimensional model, we study the dispersion
of the TLCW using its isofrequency contours, from which the main physical properties
of the TLCW, such as the unidirectional (chiral) propagation and the immunity of
scattering, can be directly observed. The isofrequency contours also illustrate how
the topology of the index-of-refraction surface of bulk plasma waves evolves when
the TLCW exists. This establishes an interesting relationship between the topological
classification by the Chern number and the well-known Clemmow-Mullaly-Allis (CMA)
diagram (Clemmow & Mullaly 1955; Allis 1959; Allis, Buchsbaum & Bers 1963)
of plasma waves. Two- and three-dimensional time-dependent simulations have been
performed for the linearized fluid equations. The TLCW is excited by a Gaussian
source at a given frequency and propagates in various configurations, confirming
the physical properties found in the analysis using the isofrequency contours. The
momentum and angular momentum carried by the TLCW are also studied. Because
the excitation and propagation of the TLCW are topologically protected, it could be
explored as a robust mechanism to inject energy and momentum into magnetized
plasmas.

The paper is organized as follows. Section 2 briefly introduces the theoretical model
and the topological matter properties of cold magnetized plasmas. The frequency range
and isofrequency contours of the TLCW are given in § 3. The connection between
the isofrequency contours and the CMA diagram is addressed. Section 4 describes the
numerical algorithms and 2-D and 3-D simulation results of the TLCW.
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2. Theoretical model

This section describes the governing equations for the dynamics in cold magnetized
plasmas and briefly discusses the origin of the TLCW. We consider a cold stationary
plasma with immobile ions, and the background magnetic field is constant, i.e. B0 = B0ẑ.
Since there is no pressure in cold plasmas, any given plasma density profile n(r) is an
equilibrium. With proper renormalization, the linearized fluid equations can be written as
(Stix 1992; Fu & Qin 2021)

∂tv = −ωpE −Ωv × ẑ, (2.1)

∂tE = ∇ × B + ωpv, (2.2)

∂tB = −∇ × E, (2.3)

where v,E,B are perturbed velocity, electric and magnetic fields, ωp(r) = √
n(r) e2/ε0me

is the local plasma frequency, Ω = eB0/me is the cyclotron frequency, e > 0 is the
elementary charge, me is the electron mass and ε0 is the vacuum permittivity.

In a homogeneous bulk plasma, for each eigenmode with frequency ω and wavenumber
k, (2.1)–(2.3) reduce to

H|ψ〉 = ω|ψ〉, (2.4)

where |ψ〉 = (v,E,B)T and

H(ωp,Ω,k) =
⎛
⎝−iΩ ẑ× −iωp 0

iωp 0 −k×
0 k× 0

⎞
⎠ (2.5)

is a 9 × 9 Hermitian matrix. For each k, the system has 9 eigenmodes

ωn, |ψn〉, n = −4,−3, . . . , 3, 4. (2.6)

ordered by its value, i.e. ωi ≤ ωj for i < j. The spectrum is symmetric with respect to the
real axis, i.e. ω−n = −ωn and ω0 = 0. The dispersion relations of ωn (n = 1, 2, 3, 4) for
over-dense and under-dense plasmas are plotted in figure 1. Because the spectrum is also
symmetric with respect to the rotation of k in the plane perpendicular to the magnetic field,
ωn is plotted only as functions of kz and ky. The resonance between ω1 and ω2 happens at

k±(ωp,Ω) := ωp/c√
1 ± ωp/|Ω| . (2.7)

Topological surface modes might exist at the boundary between two bulk plasmas that
share a common eigenfrequency gap and are in different topological phases. Consider two
adjacent regions of plasma with density n1 and n2, n1 > n2 > 0, referred to as regions one
and two, and assume that the interface between the two regions lies in the y–z plane. It
has been demonstrated that (Fu & Qin 2021) the TLCW exists if and only if the plasma
parameters satisfy the inequality

ωp,1

|Ω| + ω2
p,1

c2k2
z

> 1 >
ωp,2

|Ω| + ω2
p,2

c2k2
z

, (2.8)

where ωp,i are the plasma frequencies in each region. Two regions of plasma satisfying the
inequality above are topologically different, or equivalently, there is a topological phase
transition from one region to the other.
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(b)(a)

FIGURE 1. The dispersion relation ωn(kz, ky) (n = 1, 2, 3, 4) of cold plasma with immobile
ions for (a) an over-dense plasma, i.e. |ωp/Ω>1|, and (b) an under-dense plasma, i.e. |ωp/Ω<1|.
Here, k± are the crossing points of ω1 and ω2, defined in (2.7). Different colours represent
different values of ky. Because the spectrum is also symmetric with respect to the rotation of k
in the plane perpendicular to the magnetic field, kx is assumed to be zero. The dispersion relation
ω(ky, kz) can be visualized by fixing kz and scanning all ky values.

The condition was established by invoking the principle of bulk–edge correspondence
in condensed matter physics for two bulk materials in different topological phases. The
topological phases are characterized by the numerically calculated Chern numbers over the
2-D space of perpendicular wavenumbers (Parker et al. 2020b; Fu & Qin 2021). Because
the phase transition responsible for this particular surface mode is due to the resonance
between the Langmuir wave and cyclotron wave, a proper name for it is the TLCW.

However, unlike the scenarios in condensed matters, where the wavenumber space is
periodic, the wavenumber space for plasma waves and many other waves in classical
media is topologically contractible. It is known that the topology of vector bundles over a
topologically contractible base manifold is trivial. In addition, the Atiyah–Patodi–Singer
index theorem (Atiyah, Patodi & Singer 1976) of spectral flow, which is a rigorous
mathematical statement for the bulk–edge correspondence, was only proved for the
periodic wavenumber space. But for plasmas, the wavenumber space is not periodic in
general. Recently, a rigorous analysis (Qin & Fu 2022) has been developed using the tools
of algebraic topology and a spectral flow index theorem formulated by Faure (Faure 2019)
over an R-valued wavenumber space. The analysis confirms the existence of TLCW under
condition (2.8).

3. The isofrequency contours of the TLCW

To quantitatively study the properties of the TLCW, we assume in this section that the
background plasma density n(r) is non-uniform only in the x-direction. The dispersion
relation ω(ky, kz) of a homogeneous bulk can be displayed by two different methods. The
first method is to plot ω(ky, kz) as a function of ky and kz, as in figure 1, which shows the
range of band gaps and the location of the gap closing. The other method is to examine
the level sets of the eigenfrequencies in wavenumber space, i.e. the isofrequency contours,
which are more suitable for visualizing the group velocity. The familiar CMA diagram
(Clemmow & Mullaly 1955; Allis 1959; Allis et al. 1963) of bulk plasma waves can also
be established as isofrequency contours, indicating an interesting connection between the
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CMA classification and the recently instituted topological phase classification of plasmas.
In this section, we derive the frequency range where the TLCW exists and analyse the
unique properties of the TLCW by drawing the isofrequency contours for both bulk and
surface plasma waves in a 1-D model within the frequency range.

3.1. The frequency range of the TLCW
When the TLCW exists at the interface between two regions of different topological
phases, it will fall into the common frequency gap of the bulk waves shared by the two
regions. At the interface between two regions of different topological phases, a topological
edge mode, also known as spectral flow (Faure 2019; Delplace 2022; Qin & Fu 2022),
exists and it transits between the spectrum corresponding to the two regions. Specifically,
in this paper, we define TLCW to be the topological edge mode in the frequency gap
between the bulk spectrum. As shown later, mode within the bulk frequency gap is immune
to backscattering. Strictly speaking, frequencies of topological edge modes can overlap
with the bulk spectrum, which is evident from the numerical results shown in figure 4. This
is expected since the topological mode connects the gaped bands of the bulk spectrum. But
to simplify the discussion with respect to the topological robustness, in the present context
we choose to define the TLCW in a narrow sense as the topological mode whose frequency
is in the gap of the bulk bands. This restriction simplifies the discussion with respect to
the topological robustness. We denote the frequencies of the first and second branches of
bulk waves by ω1(ky, kz) and ω2(ky, kz), respectively. In each region, the frequency gap
is between the top of the first branch maxky(ω1) and the bottom of the second branch
minky(ω2) (Fu & Qin 2021). Using this property, we obtain the possible frequency gap in
each region, which can be written as

min
kz

(
max

ky

(ω1)

)
< ω < max

kz

(
min

ky

(ω2)

)
. (3.1)

Therefore, the common range given by the inequality above from the two regions
determines the frequency range of possible TLCW. In other words, we need to solve
inequality (3.1) when the TLCW exists, i.e. under the constraint of condition (2.8). For
simplicity, we define k±

i ≡ k±(ωp,i,Ω) for i = 1, 2.
Firstly, consider region one with a higher density n1. The wavenumber kz should satisfy

the first inequality in condition (2.8). If region one is over-dense, i.e. |ωp,1/Ω| > 1, the
first inequality in condition (2.8) holds for all kz. From figure 1(a), we can see that

min
kz∈R

(
max
ky∈R

(ω1)

)
= ω1(0, 0) = 0, max

kz∈R

(
min
ky∈R

(ω2)

)
= ω2(0,∞) = ωp,1. (3.2a,b)

If region one is under-dense, i.e. |ωp,1/Ω| < 1, the first inequality in condition (2.8) gives
|kz| < k−

1 . Then from figure 1(b) it is clear that

min
|kz|<k−

1

(
max
ky∈R

(ω1)

)
= ω1(0, 0) = 0, max

|kz|<k−
1

(
min
ky∈R

(ω2)

)
= ω2(0, k−

1 ) = ωp,1. (3.3a,b)

Thus, for region one, the gap range is 0 < ω < ωp,1.
Next, for region two with a lower density n2, the second inequality in condition (2.8)

shows that the plasma has to be under-dense, i.e. |ωp,2/Ω| < 1, and |kz| > k−
2 . From
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FIGURE 2. The equilibrium structure. The dotted red and blue lines are the boundaries
between two regions.

figure 1(b), we have

min
|kz|>k−

2

(
max
ky∈R

(ω1)

)
= ω1(0, k−

2 ) = ωp,2, max
|kz|>k−

2

(
min
ky∈R

(ω2)

)
= ω2(0,∞) = |Ω|.

(3.4a,b)
Thus, the gap range for region two is ωp,2 < ω < |Ω|. Combining these two ranges, we
infer that the frequency range of possible TLCW is

ωp,2 < ω < min(|Ω|, ωp,1). (3.5)

3.2. Numerical demonstration of the frequency range
After deriving the frequency range of TLCW in (3.5), we now numerically demonstrate
it using a 1-D model. We choose the density profile to be continuous, given by
n(x) = 1

2(n1−n2){tanh[−(x − L)/δ] + tanh[(x + L)/δ]} + n2, where n1 and n2 are the
plasma densities of regions one and two, respectively, and L and δ are the location
and width of the interface. The periodic boundary condition is used at x = ±2L. The
equilibrium configuration is sketched in figure 2. The width δ will only change the
spectrum of bulk modes, but not affect the existence of TLCW, see (Qin & Fu 2022)
for a detailed discussion. In the present study, we used L = 40 and δ = 3.

Since all the extreme values of ω1,2 are reached at ky = 0 in (3.2a,b)–(3.4a,b), we show
the numerically calculated dispersion relation of the non-uniform system ω(kz) at ky = 0.
Two different cases are shown in figure 3, which are adapted from Fu & Qin (2021). The
TLCWs are shown by the red curves, while the grey curves show all other modes. The
green and magenta curves represent the bulk modes when kx = ky = 0. In figure 3(a),
both regions 1 and 2 are under-dense. We see that TLCW only exists when k−

2 < kz < k−
1 ,

and its frequency range is ωp,2 < ω < ωp,1. In figure 3(b), region 1 is over-dense while
region 2 is under-dense. Now TLCW exists when kz > k−

2 within the frequency range
ωp,2 < ω < |Ω|. Notice that the frequency of TLCW converges to |Ω| when kz → ∞.
Figure 3 confirms the frequency range derived in (3.5).

3.3. The isofrequency contours from 1-D model
After determining the frequency range of possible TLCW, we numerically calculate the
isofrequency contours for both the bulk and the surface waves. To draw the isofrequency
contours of the system, the dispersion relation ω(ky, kz) and the eigenmodes are calculated
using the method introduced in Fu & Qin (2021).

Figure 4 displays the isofrequency contours of the system when the TLCW exists.
We choose the cyclotron frequency to be |Ω| = 1, and both regions are under-dense
with ωp,1 = 0.8 and ωp,2 = 0.3. The frequency range of TLCW according to (3.5) is
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(b)(a)

FIGURE 3. The dispersion relation ω(ky = 0, kz) in the non-uniform system. The green and
magenta lines represent the bulk modes in regions 1 and 2 at kx = ky = 0; the red lines represent
the TLCW; the grey curves represent the other modes. The frequency ranges where TLCW exists
are highlighted on the right of each panel.

0.3 < ω < 0.8. The isofrequency contours at frequency ω = 0.5 are shown in figure 4(a)
for kz > 0, and the kz < 0 part can be obtained from the symmetry condition ω(ky, kz) =
ω(ky,−kz). The dispersion relations ω(ky; kz) at kz = 0.2, 0.8 and 1.0 are shown in
figure 4(b–d) for ω > 0, and the ω < 0 part can be obtained from the symmetry condition
ω(−ky, kz) = −ω(ky, kz). In these plots, coloured lines represent the surface modes or the
bulk modes with kx = 0, while the grey lines/regions represent other bulk modes with
kx = nπ/2L, where n = ±1,±2, . . ..

For the isofrequency contours in figure 4(a), the contours (green) for bulk waves in
region two are both ellipsoids, while one of the contours (magenta) for region one is a
hyperboloid. Well-defined surface waves at the left (red) and right (blue) boundaries can be
found approximately around 0.5 ≤ kz ≤ 1.1, connecting the ellipsoidal and hyperboloidal
contours. Outside this range of kz, since the density profile is continuous, the eigenmodes
of the surface waves decay slowly away from the boundaries into the bulk modes. A
closer look can be taken at specific values of kz. At kz = 0.3 from figures 4(a) and 4(b),
only bulk modes from region two exist. Near kz = 0.8, there is a gap for bulk modes
in both figure 4(a) (around 0.58 ≤ kz ≤ 0.95) and figure 4(c) (around 0.42 ≤ ω ≤ 0.67).
The surface modes that exist and fill up such a frequency gap are what we call TLCWs,
predicted by the topological phase transition and the bulk–edge correspondence. At
kz = 1.0, there exist both surface waves and bulk waves in region one. These surface waves
are not topological surface waves because they are not in the frequency gap, although they
are continuations of the topological surface waves into the frequency range of the bulk
waves.

Some physical properties of the TLCW are directly observable from the isofrequency
contours. Firstly, the TLCW is unidirectional. Since the group velocity vg = ∂ω/∂k is
perpendicular to the isofrequency contours, we can see that vg,z > 0 (vg,z < 0) for kz > 0
(kz < 0) and vg,y > 0 (vg,y < 0) on the left (right) boundary. Secondly, since by definition
the TLCW refers to the topological modes in a frequency gap of bulk modes, it is immune
to backscattering when the surface is perturbed, at least when the density perturbation is a
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(b)

(a)

(c) (d )

FIGURE 4. The dispersion relations for the system with ωp,1 = 0.8 and ωp,2 = 0.3. The
magenta and green lines represent the isofrequency contours of bulk waves in regions one and
two, assuming kx = 0. The blue and red lines represent the surface waves on the left and right
boundaries. The grey areas and lines represent the bulk waves with kx �= 0. (a) The isofrequency
contours at frequency ω = 0.5. The dashed lines represent the specific values of kz. (b–d) The
value of ω(ky) at kz = 0.3, 0.8 and 1.0, respectively. The dashed lines represent the location of
ω = 0.5. The orange areas are the frequency gaps of bulk waves.

function of the x and y coordinates only, and the scale length of the perturbation is much
larger than the wavelength of the waves. Intuitively, this is because no other bulk wave
exists for the surface waves to couple with in such a frequency gap. Although two surface
waves exist in the frequency gap, they are spatially separated, i.e. one on the left and the
other on the right boundary, and cannot interact. In § 4, these properties will be further
verified by numerical simulations in both two and three dimensions.

For comparison, two isofrequency contours at two frequencies where no TLCW exists
are shown in figure 5. Again, we choose ωp,1 = 0.8 and ωp,2 = 0.3, and the frequency
range for TLCW is 0.3 < ω < 0.8, if it exists. The isofrequency contour at ω = 0.85 is
plotted in figure 5(a). Here, the isofrequency contours of the bulk waves for both regions
are ellipsoid. There are multiple surface waves when kz < 2.1, some of which are the
continuation of the TLCW, while others are just surface waves without topological origin.
The dispersion relation ω(ky) at kz = 1 is shown in figure 5(b), which shows that ω = 0.85
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(b)(a)

(c) (d )

FIGURE 5. The isofrequency contours and dispersion relation ω(ky; kz) for (a,b) ωp,1 = 0.8
and ωp,2 = 0.3 and for (c,d) ωp,1 = 1.1 and ωp,2 = 0.9.

is not in the frequency gap of bulk modes. For the case in figure 5(c), ωp,1 = 1.1 and
ωp,2 = 0.9, and the frequency range for possible TLCW is 0.9 < ω < 1. At frequency ω =
0.75, the isofrequency contours in figure 5(c) show that both regions have an ellipsoidal
and a hyperboloidal contour for bulk waves, and there is a bulk gap around 0.7 < kz < 2.3.
As expected, there is no surface wave in the gap. At kz = 1.0, both figures 5(c) and 5(d)
show that no surface mode exists at this kz.

3.4. Relation to the CMA diagram
In the previous numerical calculation, we see that when the TLCW exists (figure 4a), the
shapes of the isofrequency contours of bulk waves in regions one and two are different. On
the contrary, when no TLCW exists (figure 5a,c), the shapes of contours of bulk waves in
two regions are the same. Here, we demonstrate that this phenomenon originates from the
relationship between the topological classification by Chern invariants and the well-known
CMA classification of the plasma waves (Clemmow & Mullaly 1955; Allis 1959; Allis
et al. 1963).

In the study of homogeneous cold plasmas, waves at given frequencies can be classified
based on the shapes of the wave normal surfaces (vp = ω/ck), or equivalently the shape
of the index-of-refraction surface (n = ck/ω). We use the second method here since,
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FIGURE 6. CMA diagram for cold plasmas with immobile ions (Clemmow & Mullaly 1955;
Allis 1959; Allis et al. 1963). The shapes of the index-of-refraction surface are sketched in each
region. When TLCW exists, region one must belong to the top right part filled by magenta, while
region two must belong to the top left part filled by green.

at a given frequency ω, the shape of the index-of-refraction surface is the same as the
isofrequency contours. Such surfaces have three possible shapes: ellipsoid, hyperboloid of
two sheets and hyperboloid of one sheet. The CMA diagram plots the different shapes of
the index-of-refraction surface in the parameter space of the plasma density and magnetic
field strength. A CMA diagram for cold plasmas with immobile ions is shown in figure 6.
In different regions of the CMA diagram, the shapes of the index-of-refraction surface
may change. This is similar to the variation of Fermi surfaces, known as the Lifshitz phase
transitions (Volovik 2017) in condensed matter physics. This transition closely connects
with the topological phase transition discussed in § 2. The frequency range of the TLCW
in (3.5) can be equivalently written as

|Ω/ω| > 1, ω2
p,1/ω

2 > 1, ω2
p,2/ω

2 < 1. (3.6a–c)

It turns out that, in the CMA diagram, the inequalities in (3.6a–c) also determine the
possible shapes of bulk waves. Region one belongs to the two parts at the top right filled
with magenta colour, where one bulk wave is a hyperboloid. Region two belongs to the
top left filled with green colour, where all bulk waves are ellipsoid. Therefore, we find that
the topological phase transition that generates the TLCW occurs simultaneously with the
transition of the shapes of the index-of-refraction surfaces. In other words, the existence
of TLCM implies different shapes of the bulk waves on the two sides of the interface and
vice versa.

The CMA diagram includes all transitions of wave shapes, one of which corresponds to
the TLCW. However, it is not known whether every transition of wave shape will lead
to a topological edge mode. For magnetized cold plasmas, TLCW is the only known
topological mode identified so far. Nevertheless, we suspect that similar mechanism might
exist for other possible topological modes and the CMA diagram could be used as a guide
for searching for these modes.

4. Numerical simulations in two and three dimensions

This section presents numerical simulation results of time-dependent propagation of
the TLCW in two and three dimensions, based on the linearized incompressible fluid
system specified by (2.1)–(2.3). We first introduce the numerical method adopted for
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time-dependent simulation and then discuss the simulation results and verify the key
physical properties of the TLCW, including the unidirectional propagation and the
immunity to scattering. The momentum and angular momentum of the waves will also
be addressed. The time-dependent wave propagation in this section can be found in the
supplementary movies available at https://doi.org/10.1017/S0022377822000629.

4.1. Numerical algorithms
To simulate the dynamics governed by (2.1)–(2.3), we solve the momentum equation (2.1)
using the Caylay transformation (Qin et al. 2013), and solve the Maxwell equations (2.2)
and (2.3) on the Yee grid (Yee 1966). The 3-D space is discretized by an Nx × Ny × Nz grid,
where the grid sizes in the three directions are Δx,Δy and Δz. In each direction, we define
integer grid points and half-integer grid points, e.g. xi = iΔx and xi+1/2 = (i + 1

2)Δx. The
time grid has a similar structure, i.e. tn = nΔt and tn+1/2 = (n + 1

2)Δt, where Δt is the
time-step size. The nine independent variables in (2.1)–(2.3) are discretized on the grid as⎛

⎜⎜⎝
v

n+1/2
x,i,j,k

v
n+1/2
y,i,j,k

v
n+1/2
z,i,j,k

⎞
⎟⎟⎠ ,

⎛
⎜⎝

En
x,i+1/2,j,k

En
y,i,j+1/2,k

En
z,i,j,k+1/2

⎞
⎟⎠ ,

⎛
⎜⎜⎝

Bn+1/2
x,i,j+1/2,k+1/2

Bn+1/2
y,i+1/2,j,k+1/2

Bn+1/2
z,i+1/2,j+1/2,k

⎞
⎟⎟⎠ , (4.1a–c)

where superscript indices are for the time grid, and subscript indices are for the spatial
grid. For variables defined on integer grid point fi, denote finite difference and average
between two adjacent grid points as

Δx[ fi] := fi+1 − fi

Δx
, fi+1/2 := fi+1 + fi

2
. (4.2a,b)

For variables defined on half-integer grid point gi+1/2, similarly,

Δx
[
gi+1/2

]
:= gi+1/2 − gi−1/2

Δx
, gī := gi+1/2 + gi−1/2

2
. (4.3a,b)

Using these notations, the discretization of (2.1)–(2.3) is

Δt

[
v

n+1/2
x,i,j,k

]
= ωp,i,j,kEn

x,ī,j,k −Ωvn̄
y,i,j,k,

Δt

[
v

n+1/2
y,i,j,k

]
= ωp,i,j,kEn

y,i,j̄,k +Ωvn̄
x,i,j,k,

Δt

[
v

n+1/2
z,i,j,k

]
= ωp,i,j,kEn

z,i,j,k̄.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(4.4)

Δt
[
En

x,i+1/2,j,k

] = Δy

[
Bn+1/2

z,i+1/2,j+1/2,k

]
−Δz

[
Bn+1/2

y,i+1/2,j,k+1/2

]
− (
ωpv

n+1/2
x

)
i+1/2,j,k ,

Δt
[
En

y,i,j+1/2,k

] = Δz

[
Bn+1/2

x,i,j+1/2,k+1/2

]
−Δx

[
Bn+1/2

z,i+1/2,j+1/2,k

]
− (
ωpv

n+1/2
y

)
i,j+1/2,k

,

Δt
[
En

z,i,j,k+1/2

] = Δx

[
Bn+1/2

y,i+1/2,j,k+1/2

]
−Δy

[
Bn+1/2

x,i,j+1/2,k+1/2

]
− (
ωpv

n+1/2
z

)
i,j,k+1/2 .

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(4.5)

Δt

[
Bn+1/2

x,i,j+1/2,k+1/2

]
= Δz

[
En

y,i,j+1/2,k

] −Δy
[
En

z,i,j,k+1/2

]
,

Δt

[
Bn+1/2

y,i+1/2,j,k+1/2

]
= Δx

[
En

z,i,j,k+1/2

] −Δz
[
En

x,i+1/2,j,k

]
,

Δt

[
Bn+1/2

z,i+1/2,j+1/2,k

]
= Δy

[
En

x,i+1/2,j,k

] −Δx
[
En

y,i,j+1/2,k

]
.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(4.6)

https://doi.org/10.1017/S0022377822000629 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377822000629
https://doi.org/10.1017/S0022377822000629


12 Y. Fu and H. Qin

Here, ωp(r) is a prescribed function, ωp,i,j,k := ωp(xi, yj, zk), (ωpvx)i+1/2 := (ωp,ivx,i +
ωp,i+1vx,i+1)/2. Notice that, although its right-hand side depends on vn+1/2 through vn̄,
(4.4) is explicitly solvable by the Cayley transformation that appears in the Boris algorithm
(Qin et al. 2013) and other structure-preserving algorithms for charged particle dynamics
(He et al. 2015; Zhang et al. 2015; He et al. 2016b, ; Fu, Zhang & Qin 2022).

The algorithm in two dimensions is a special case of the 3-D algorithm described
above. When the plasma density is invariant along the background magnetic field, ωp(r) =
ωp(x, y), we can replace the z dependence of all variables by exp(ikzz). Then, all variables
in (4.4)–(4.6) no longer depend on the index k, and a constant ikz replaces the difference
operators Δz[·].

4.2. Propagation of the TLCW in two and three dimensions
We now apply the algorithm to simulate the TLCW excited by a localized time-dependent
source in two and three dimensions. An external force that represents the source is added
to the right-hand side of the momentum equation (4.4). In the 3-D simulation, the force
we used is

F (r, t) ∼ exp
(

−|r − rs|2
δ2

)
exp(i(ksz − ωst)), (4.7)

where rs and δ are the spatial centre and width of the source and ks and ωs are the
wavenumber and frequency of the source. The direction of the force does not affect the
excitation of the surface waves. In the 2-D simulation, the force does not depend on z, i.e.
ks = 0, and the factor ikz replaces the difference operators Δz[·] in (4.5) and (4.6).

The parameters for the first case simulated are ωp,1 = 0.8, ωp,2 = 0.3, ks = 0.8 and
ωs = 0.5. The dispersion relation calculated in one dimension was shown in figures 4(a)
and 4(c). The centre of the source is on the interface. The time-dependent propagation of
the TLCW in two and three dimensions after a finite time are shown in figure 7. Notice
that the configuration is equivalent to the right interface shown in figure 2, where the blue
lines in figure 4 represent the surface waves in figure 4. In the 2-D simulation displayed
in figure 7(a), the TLCW is excited, and the excitation of bulk waves is negligible.
Furthermore, the surface wave only travels to the left side of the source, confirming its
unidirectional propagation. The same phenomena can also be observed in 3-D simulation
shown in figure 7(b), where the TLCW is excited and propagates towards the upper-left
direction in the y–z plane.

4.3. The momentum of the surface waves
In this subsection, we discuss the momentum and angular momentum carried by the
TLCW. There exist two different definitions of momentum for plasma waves (Barnett
2010; Dodin & Fisch 2012), i.e. the (Minkowski) canonical momentum and the (Abraham)
kinetic momentum. The canonical momentum of the TLCW is proportional to the
wavenumber k, and it can vary significantly, as illustrated in figure 4. However, the kinetic
momentum, which is proportional to it group velocity vg, is unidirectional. For example,
the surface waves on the right interface can only have kinetic momentum in the upper-left
or lower-left direction in the y–z plane.

For the cold plasma model given by (2.1)–(2.3), the dielectric tensor is Hermitian and
independent of k. Therefore, the kinetic momentum, the group velocity and the flux of
canonical energy are all proportional to the Poynting vectors (Stix 1992) S ∼ Re[E × B∗].
The Poynting vectors of the TLCW excited on a planar interface are shown in figure 8. As
expected, the kinetic momentum is along the direction of wave propagation
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(b)(a)

FIGURE 7. Propagation of TLCW in (a) two dimensions and (b) three dimensions at |tΩ| =
250, where ωp,1 = 0.8, ωp,2 = 0.3, ks = 0.8 and ωs = 0.5. In (a), the colour map indicates the
strength of the real part of Ez, the yellow star marks the location of the source and the dashed
line is the interface between two regions. In (b), the red and blue contours represent the locations
of Re[Ez] = ±0.15 max[Re(Ez)], the yellow sphere marks the source and the grey surface is the
interface between two regions.

(b)(a)

FIGURE 8. (a) The Poynting vectors in the 3-D simulation. The yellow sphere marks the source,
the arrows indicate the Poynting vectors and the grey surface is the interface. (b) The Poynting
vectors at the interface between two regions (at x = 30). The yellow star marks the source and
the red arrows indicate the Poynting vectors in the y–z plane, whose magnitudes are given by the
colour of the background.

4.4. Propagation of the TLCW on non-planar interface
The main properties of the TLCW are robust in more complex configurations. We now
show some simulation results of the TLCW on non-planar boundaries in both two
and three dimensions. Shown in figure 9 is the TLCW propagation on a zig-zagged
interface after a finite time, which clearly demonstrates immunity of backscattering
and unidirectional propagation. When the TLCW meets sharp turns on the interface, it
propagates along the interface without reflection or transition to bulk waves.

Additional examples are shown in figures 10 and 11, where the interface between two
regions is a square or a circle. In these configurations, the left and right boundaries
are connected and indistinguishable. As anticipated, the TLCW propagates along the
boundaries, regardless their shapes, in a unidirectional manner and without any scattering.
When viewed against the direction of the magnetic field, the TLCW propagates
clockwise if ωp,1 > ωp,2, and therefore carries a non-zero kinetic angular momentum
proportional to

∫
r × S dV . Notice that the source exciting the TLCW does not carry
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(b)(a)

FIGURE 9. (a) Two- and (b) three-dimensional simulations of the TLCW excited at a
zig-zagged interface The source was turned on at t = 0 and the field strength is plotted at
|tΩ| = 600.

(b)(a)

FIGURE 10. (a) Two- and (b) three-dimensional simulations of the TLCW excited on a square
interface. The source was turned on at t = 0 and the field strength is plotted at |tΩ| = 600.

any angular momentum. The existence of an angular-momentum-carrying surface wave
reflects the topological property of the bulk material and is predicted by the bulk–edge
correspondence. Because of these desirable properties, the TLCW could be explored as
an effective mechanism for driving current and flow in magnetized plasmas.

5. Conclusions and discussion

We have studied the dispersion relation and propagation of the recently identified
TLCW. From the excitation condition (2.8), we derived the frequency range in (3.5) where
the TLCW can be observed. It is shown that the topological phase transition responsible for
the TLCW excitation occurs at the resonance between the Langmuir wave and cyclotron
wave, and concurrently with the transition of the shapes of the index-of-refraction surfaces
in the familiar CMA diagram.

Based on the isofrequency contours, the group velocity of the TLCW is unidirectional,
and so is its kinetic momentum. Furthermore, the TLCW is immune to backscattering
because it lies in the frequency gap of bulk waves. The unidirectional propagation and
immunity of backscattering are verified using time-dependent simulations in two and three
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(b)(a)

FIGURE 11. (a) Two- and (b) three-dimensional simulations of the TLCW excited on a circular
interface. The source was turned on at t = 0 and the field strength is plotted at |tΩ| = 600.

dimensions. The excitation of the TLCW could be an effective mechanism for driving
current and flow in magnetized plasmas.

In the present study, we theoretically investigated the dispersion and propagation of
the TLCW using a linearized cold plasma model. For experimental observation, realistic
effects need to be carefully considered to better understand the properties and applications
of the TLCW. For example, the kinetic effects of wave–particle interaction will play an
essential role in the deposition of momentum carried by the TLCW. Other non-Hermitian
(Bergholtz, Budich & Kunst 2021) and nonlinear (Smirnova et al. 2020; Zhou et al. 2020;
Bergholtz et al. 2021) effects may also be important for topological waves in more complex
fluid and plasma models (Qin et al. 2019; Fu & Qin 2020; Qin et al. 2021; Zhu et al. 2021).

Supplementary movies

Supplementary movies are available at https://doi.org/10.1017/S0022377822000629.
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