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A NOTE ON RADICAL EXTENSIONS OF RINGS 

BY 

M. CHACRON, J. LAWRENCE, AND D. MADISON 

All rings are associative. A ring T is said to be radical over a subring R if for 
every t eT, there exists a natural number n{t) such that tn{t) e R. 

In [1] Faith showed that if T is radical over R and T is primitive, then R is 
primitive. We might then ask if the same is true if prime is substituted for primitive. 
This is not in general true if T does not have a unity element or if char 7V 0. How
ever, we do have 

THEOREM 1. Suppose Tis radical over R, TandR have a unity element, char T=Q, 
and T is prime. Then R is prime. 

The above theorem follows easily from the following 

THEOREM 2. Suppose that the ring T is radical over a subring R, R and T have a 
common unity element, and T is torsion-free as a Z-module. Then TZ*=RZ*9 

where Rz* is the localization ofR at the nonzero integers. 

In proving theorem 2, we use the following 

THEOREM 3. {Kaplansky [2]) Suppose that a field K is radical over a proper 
subfield F. Then K has prime characteristic, and is either purely inseparable over F, 
or algebraic over its prime subfield. 

Proof of theorem 2. We prove the theorem by assuming that T and R are g-
algebras, and showing that R=T. 

We first show that every nilpotent element of T lies in R. Suppose x e T\R is 
nilpotent. From the sequence x, x2, x3,. . . , choose k maximal such that xk $ R. 
Since J is radical over R, 3 n such that (l+x*)n e R. Then l+nxk+' • -+xkneR, 
from which we deduce that xk e R, a contradiction. 

Now suppose that T is a commutative Artinian g-algebra and that R is also 
Artinian. Since the Jacobson radical of an Artinian ring is nilpotent, we have 
J(T)=J(R)=J. TjJ is a finite direct product of fields, and is radical over R/J. 
By Kaplansky's theorem T[J=R/J, hence T=R. 

Now let T be arbitrary. Suppose xeT. Then Q[x]=A is radical over Q[x] n 
R=B. If A is finite dimensional, then A=B, by the above result. If x is trans
cendental over Q, localize A at B*, the nonzero elements of B. Since A is radical 
over B, AB* is a field, radical over the field BB*. Hence, once again, AB*=BB*. 
Take r eB, r^O, such that rxsB, and let s=rn, where xn eB. We now have 
sA^B. Let I=(s)9 and note All is radical over Bjl. However, A/1 is Artinian, and 
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so the problem is reduced to the previous case, thus A/I=BlL Since I^B, A=B, 
and therefore R=T. This completes the proof. 

Although we have TZ*=RZ*> we do not necessarily have R=T. Let T=Z[x] 
and let R be the subring generated by {1, 2x, x2, x 3 , . . . } . Then t2 e R for every 
t e T, but R^T. 

We conclude this paper with an example of a prime ring T, without unity, 
radical over a subring R which is not prime, where char. 7T=0. Let F be the free 
Z-algebra on countably many noncommuting variables, xl9 x 2 , . . . . We assume 
that Z is not embedded in F. Since F is countable, we can order the elements, 

/ I ? / 2 J • • • • Let S be the set of monomials occurring as terms in the set 
{y* : k=1, 2 , . . . } , and let S' be the multiplicative closure of S. Let E be the subring 
of F generated by S, and let / be the two-sided ideal generated by {x^x^.s e S'}. 
Set r=jF/ /and R=EjE n /. That Tis radical over R, and that R is not semiprime 
follows easily from our construction. Let m1 and m2 be nonzero monomials in 
T9 and let h be an integer such that xh does not occur in any generator g of I with 
(degree g)^(degree m1+degree w 2 +l ) . Then m^m^^I, hence m^m^O. It 
quickly follows that T is prime. 
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