A NOTE ON RADICAL EXTENSIONS OF RINGS

BY

M. CHACRON, J. LAWRENCE, AND D. MADISON

All rings are associative. A ring T is said to be radical over a subring R if for every $t \in T$, there exists a natural number n(t) such that $t^{n(t)} \in R$.

In [1] Faith showed that if T is radical over R and T is primitive, then R is primitive. We might then ask if the same is true if prime is substituted for primitive. This is not in general true if T does not have a unity element or if char $T \neq 0$. However, we do have

THEOREM 1. Suppose T is radical over R, T and R have a unity element, char T=0, and T is prime. Then R is prime.

The above theorem follows easily from the following

THEOREM 2. Suppose that the ring T is radical over a subring R, R and T have a common unity element, and T is torsion-free as a Z-module. Then $T_{Z^*}=R_{Z^*}$, where R_{Z^*} is the localization of R at the nonzero integers.

In proving theorem 2, we use the following

THEOREM 3. (Kaplansky [2]) Suppose that a field K is radical over a proper subfield F. Then K has prime characteristic, and is either purely inseparable over F, or algebraic over its prime subfield.

Proof of theorem 2. We prove the theorem by assuming that T and R are Q-algebras, and showing that R=T.

We first show that every nilpotent element of T lies in R. Suppose $x \in T \setminus R$ is nilpotent. From the sequence x, x^2, x^3, \ldots , choose k maximal such that $x^k \notin R$. Since T is radical over R, $\exists n$ such that $(1+x^k)^n \in R$. Then $1+nx^k+\cdots+x^{kn} \in R$, from which we deduce that $x^k \in R$, a contradiction.

Now suppose that T is a commutative Artinian Q-algebra and that R is also Artinian. Since the Jacobson radical of an Artinian ring is nilpotent, we have J(T)=J(R)=J. T/J is a finite direct product of fields, and is radical over R/J. By Kaplansky's theorem T/J=R/J, hence T=R.

Now let T be arbitrary. Suppose $x \in T$. Then Q[x]=A is radical over $Q[x] \cap R=B$. If A is finite dimensional, then A=B, by the above result. If x is transcendental over Q, localize A at B^* , the nonzero elements of B. Since A is radical over B, A_{B^*} is a field, radical over the field B_{B^*} . Hence, once again, $A_{B^*}=B_{B^*}$. Take $r \in B$, $r \neq 0$, such that $rx \in B$, and let $s=r^n$, where $x^n \in B$. We now have $sA \subseteq B$. Let I=(s), and note A/I is radical over B/I. However, A/I is Artinian, and

so the problem is reduced to the previous case, thus A/I=B/I. Since $I \subseteq B$, A=B, and therefore R=T. This completes the proof.

Although we have $T_Z^* = R_Z^*$, we do not necessarily have R = T. Let T = Z[x] and let R be the subring generated by $\{1, 2x, x^2, x^3, \ldots\}$. Then $t^2 \in R$ for every $t \in T$, but $R \neq T$.

We conclude this paper with an example of a prime ring T, without unity, radical over a subring R which is not prime, where char. T=0. Let F be the free Z-algebra on countably many noncommuting variables, x_1, x_2, \ldots . We assume that Z is not embedded in F. Since F is countable, we can order the elements, f_1, f_2, \ldots . Let S be the set of monomials occurring as terms in the set $\{f_k^k : k=1, 2, \ldots\}$, and let S' be the multiplicative closure of S. Let E be the subring of F generated by S, and let I be the two-sided ideal generated by $\{x_1sx_1:s \in S'\}$. Set T=F/I and $R=E/E \cap I$. That T is radical over R, and that R is not semiprime follows easily from our construction. Let m_1 and m_2 be nonzero monomials in T, and let h be an integer such that x_h does not occur in any generator g of I with (degree $g) \leq (\text{degree } m_1 + \text{degree } m_2 + 1)$. Then $m_1x_hm_2 \notin I$, hence $m_1x_hm_2 \neq 0$. It quickly follows that T is prime.

References

1. C. Faith, Radical extensions of rings, P.A.M.S. 12 (1961), 274-283.

2. I. Kaplansky, A theorem on division rings, Can. Jour. Math. 3 (1951), 290-293.

CARLETON UNIVERSITY, OTTAWA, ONTARIO, CANADA.

424