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Abstract

A Brahmagupta quadrilateral is a cyclic quadrilateral whose sides, diagonals and area are all integer
values. In this article, we characterise the notions of Brahmagupta, introduced by K. R. S. Sastry
[‘Brahmagupta quadrilaterals’, Forum Geom. 2 (2002), 167–173], by means of elliptic curves. Motivated
by these characterisations, we use Brahmagupta quadrilaterals to construct infinite families of elliptic
curves with torsion group Z/2Z × Z/2Z having ranks (at least) four, five and six. Furthermore, by
specialising we give examples from these families of specific curves with rank nine.
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1. Introduction

In [11], Dujella and Peral illustrate a connection between Heron triangles and elliptic
curves. Recall that a Heron triangle is a triangle whose side lengths and area are
all integers. Specifically, they used Heron triangles to generate certain families of
elliptic curves with high rank. More generally, a polygon with integer sides, diagonals
and area is known as a Heron polygon. In this work, we use Heron quadrilaterals to
similarly find families of elliptic curves with high rank.

Let E be an elliptic curve over Q. The well-known theorem of Mordell and Weil
states that E(Q) ' E(Q)tors × Z

r, where r is a nonnegative integer called the rank of
E. By a theorem of Mazur [20], the only possible torsion groups over Q, E(Q)tors, are
Z/nZ for n = 1, 2, . . . , 10, 12 or Z/2Z × Z/2nZ for 1 ≤ n ≤ 4.

Let T be an admissible torsion group for an elliptic curve E over Q. Define

B(T ) = sup{rank E(Q) : torsion group of E over Q is T },
G(T ) = sup{rank E(Q(t)) : torsion group of E over Q(t) is T },
C(T ) = lim sup{rank E(Q) : torsion group of E over Q is T }.

There exists a conjecture in this setting which says that B(T ) is unbounded for
all T . Even though B(T ) is conjectured to be arbitrarily high, it appears difficult to find
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examples of curves with high rank. See [9, 10] for tables with the best known lower
bounds for B(T ),G(T ) and C(T ), including references to the papers where each bound
is found.

Throughout this paper, the elliptic curves we generate all have the torsion group
T = Z/2Z × Z/2Z. There have been a variety of techniques used to find high-rank
elliptic curves with torsion group T . The best result B(T ) ≥ 15 is due to Elkies [9].
Elkies also established the best known lower bounds for G(T ) and C(T ), which are
7 and 8, respectively [10, 12]. Elkies’ technique involves using K3 surfaces of high
rank and their moduli. In another direction, Dujella et al.used irregular Diophantine
m-tuples to prove B(T ) ≥ 8, C(T ) ≥ 4. These results were subsequently improved to
B(T ) ≥ 11, C(T ) ≥ 5, again using the theory of rational Diophantine m-tuples [1, 7, 8].

Dujella and Peral [11] used Heron triangles to find families of elliptic curves over
Q(t) with ranks (at least) three, four, and five, and torsion subgroup T , showing that
C(T ) ≥ 5. They also gave examples (from these families) of curves with rank 9 and
10; thus B(T ) ≥ 10. This improved upon earlier work by Izadi et al. [15] which had
used Heron triangles to find a family of curves with rank three, and examples of curves
with rank seven.

In a similar fashion, we use Heron quadrilaterals to find families of high-rank
elliptic curves with torsion group T . We first construct a family with rank at least four,
and then by specialising find subfamilies with ranks (at least) five and six. In particular,
the rank-six family provides the best lower bound for C(T ) other than Elkies’ bound
mentioned above. We also performed a computer search within our first rank-four
family, and were able to find examples of curves with rank nine.

2. Brahmagupta quadrilaterals

A cyclic polygon is one with vertices upon which a circle can be circumscribed.
Mathematicians have long been interested in Brahmagupta’s work on Heron triangles
and cyclic quadrilaterals. For example, consider Kummer’s complex construction
to generate Heron quadrilaterals outlined in [6]. The existence and parametrisation
of quadrilaterals with rational side lengths (and additional conditions) has a long
history [2, 5, 6, 13, 14]. Buchholz and Macdougall [3] have shown that there exist
no nontrivial cyclic quadrilaterals with rational area and having the property that the
rational side lengths form an arithmetic or geometric progression.

We will refer to a cyclic Heron quadrilateral as a Brahmagupta quadrilateral [19].
Sastry [19] used Pythagorean triangles to construct general Heron triangles and cyclic
quadrilaterals whose side lengths, diagonals and area are integers, that is, Brahmagupta
quadrilaterals. He introduced a rational parametrisation of the four sides of these
quadrilaterals: 

a = (t(u + v) + 1 − uv)(u + v − t(1 − uv)),
b = (1 + u2)(v − t)(1 + tv),
c = t(1 + u2)(1 + v2),
d = (1 + v2)(u − t)(1 + tu),

(2.1)
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where t, u, v ∈ Q such that abcd , 0. Brahmagupta’s formula gives the area S of a
cyclic quadrilateral, in terms of the side lengths a, b, c and d:

S =
√

(s − a)(s − b)(s − c)(s − d), (2.2)

where s = (a + b + c + d)/2. Letting d = 0, this reduces to Heron’s well-known
formula for the area of a triangle in terms of its side lengths. Brahmagupta also
determined formulas for the lengths of the diagonals:

D1 =

√
(ac + bd)(ad + bc)

ab + cd
and D2 =

√
(ac + bd)(ab + cd)

ad + bc
.

Using the parametrisation in (2.1), it is easily checked that the area S and diagonal
lengths D1,D2 are rational.

3. Elliptic curves and Brahmagupta quadrilaterals

A priori, there is no reason to associate Brahmagupta quadrilaterals with elliptic
curves. However, by the area formula (2.2) we see the point (α, β) = (s, S ) lies on
the quartic

β2 = (α − a)(α − b)(α − c)(α − d). (3.1)

This quartic is birationally equivalent to an elliptic curve in the following manner.
Taking ζ = −1/α, (3.1) turns into

β2 =

(
a +

1
ζ

)(
b +

1
ζ

)(
c +

1
ζ

)(
d +

1
ζ

)
,

or equivalently
(ζ2β)2 = (1 + ζa)(1 + ζb)(1 + ζc)(1 + ζd).

By the substitution

x =
(1 + aζ)(d − b)(d − c)

1 + dζ
, y =

ζ2β(d − a)(d − b)(d − c)
(1 + dζ)2 ,

the curve (3.1) thus turns into

E : y2 = x(x + (b − a)(d − c))(x + (c − a)(d − b)), (3.2)

or
E : y2 = x3 + Ax2 + Bx, (3.3)

where A = (b − a)(d − c) + (c − a)(d − b) and B = (b − a)(d − c)(c − a)(d − b).
Equation (3.2) (or (3.3)) defines an elliptic curve so long as no two of a, b, c, d are
equal. We note that by setting d = 0, this elliptic curve becomes the same elliptic curve
studied in [11], which arose from Heron triangles.
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Assuming that no two of a, b, c, d are equal, the curve E has three 2-torsion points:

T1 = (0, 0), T2 = ((a − b)(d − c), 0), T3 = ((a − c)(d − b), 0),

which shows the torsion group T contains Z/2Z × Z/2Z. It can be easily checked that
T ' Z/2Z × Z/2Z by using the specialisation monomorphism [20, Theorem III.11.4].
In addition, a simple calculation verifies that the following three points also lie on E:

P1 =

( (b + c + d − a)(d − b)(d − c)
a + b + c − d

,
4S (d − b)(d − c)(a − d)

(a + b + c − d)2

)
,

P2 = ((b − d)(c − d), (a − d)(b − d)(c − d)),
P3 = (ad + bc, (ab + cd)D1) = (ad + bc, (ad + bc)D2),

where a, b, c, d and S are as in Section 2. The points P1 and P2 both come from
rational points on (3.1). Specifically, P1 is the image of (s, S ), while P2 is the image
of the point at infinity. The point P3 is easily found, and is rational since D1 (or D2) is.

By the specialisation theorem [20], in order to prove that the family of elliptic curves
defined in (3.3) has rank at least three over Q(t, u, v), it suffices to find a specialisation
t = t0, u = u0, v = v0 such that the points P1, P2, P3 are linearly independent points on
the specialised curve over Q. If we take (t, u, v) = (2, 4, 3), then the points

P1 = (−14720, 456320),
P2 = (−9760, 907680),
P3 = (56120, 14310600)

are linearly independent points of infinite order on the elliptic curve

y2 = x3 + 10313x2 − 79016960x.

Indeed, the determinant of the Néron–Tate height pairing matrix of these three points
is the nonzero value 6.62644785139830, according to SAGE [18].

3.1. Families with rank at least four. We specialise in order to find families of
elliptic curves with higher rank. Note that x3 + Ax2 + Bx = x2(x + A + B/x). Thus, if
we can find a value x0 such that x0 + A + B/x0 = y2

0 is a square, then (x0, y0) is a point
on the curve y2 = x3 + Ax2 + Bx. So a natural approach to find additional rational
points on E is to examine the factors f of B, and check if f + A + B/ f is a square
polynomial. The irreducible factors of B are

u,
u − v,
1 + v2,
1 − uv,
2t − u + t2u,
2t − u − v + t2u − 2tuv + t2v,
1 + 2tu + 2tv − uv − t2 + t2uv,
1 + 2tu + 4tv − 2uv − t2 − v2 − 2tuv2 + 2t2uv + t2v2.
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Searching through all factors of B failed to lead to a fourth linearly independent point
on E. However, we widened the search by modifying these factors slightly. For
example, one factor of B is

−u(u − v)(1 + v2)(2t − u + t2u)(2t − u − v + t2u − 2tuv + t2v).

If we change u − v to u + v and let

x4 = −u(u + v)(1 + v2)(2t − u + t2u)(2t − u − v + t2u − 2tuv + t2v),

then x4 + A + B/x4 will be a square provided that

h = (u + v)(1 − t2 + 2tv)(t2u + 2t2v2u − t2v + 2tv2 + 2tuv − u − 2uv2 + v)

is square. Note that h is a quadratic polynomial in u, for which we can easily
parametrise all rational solutions to h = j2. Indeed, letting

u =
−v(m + 1 − t2 + 2tv)(m − 1 + t2 − 2tv)

2t4v2 + 4tv3 − 8t2v2 − 4t3v3 + 1 − 2t2 + 2v2 + t4 + m2 , (3.4)

then h is a square for arbitrary m. We denote the elliptic curve which depends on
t, v and m (with u as in (3.4)) as Et,v,m. By specialisation we verify that x4 is the
x-coordinate of a fourth linearly independent point P4. We take (t, v,m) = (2, 3, 1),
which makes u = −12/31. Then the points

P1 = (566596800/923521, 1313937979200/887503681),
P2 = (256646880/923521, 3686732431200/887503681),
P3 = (125014617000/28629151, 16575/961),
P4 = (437088960/923521, 482983300800/887503681)

are independent points of infinite order on the elliptic curve

y2 = x3 −
984279015

923521
x2 +

7732400922892800
27512614111

x,

since the corresponding height pairing matrix has nonzero determinant
105.651433982602 [18]. This shows that the family of elliptic curves Et,v,m has rank
at least four over Q(t, v,m) with independent points P1, P2, P3, P4.

We can similarly find other families with rank at least four. For example, if we
change 1 − uv to 1 + uv, then

x′4 = −(1 + uv)(t2uv + 2ut − uv + 1 − t2 + 2tv)
× (−2uv − 2utv2 + 2ut + 2t2uv + 4tv − t2 + t2v2 + 1 − v2)

similarly leads to a quadratic polynomial in u which we need to be square in order for
x′4 to be the x-coordinate of a rational point P′4 on E. Setting

u =
8t3v3 + 2t2v2 − v2t4 − 16t2v4 − 8tv3 − v2 − m2 − 4t3v52t4v4 + 4tv5 + 2v4

v(m − v + t2v − 2tv2)(m + v − t2v + 2tv2)
leads to a second family where we obtain a fourth linearly independent point. The
independence can be easily verified, and we omit the details.
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3.2. Families with ranks five and six. Using the rank-four family Et,v,m from the
previous subsection, we set t = 3, v = 2. It was observed experimentally that the
resulting family of curves had high ranks. These curves are defined by E3,2,m : y2 =

x3 + Ax2 + Bx, where

A = 24 · 53 ·
13m8 − 6848m6 + 923136m4 + 17973248m2 − 1419444224

(m2 − 336)4 ,

B = 210 · 56 ·
(m − 4)(m + 4)(m2 + 16)(m − 28)(m + 28)(m2 − 80)

(m2 − 336)7

× (m2 − 176)(m2 + 176)(m2 − 784)(3m2 + 752)(m4 − 256).

A calculation checks that if we let

x5 = −52 ·
(m − 4)(m + 4)(m2 + 16)(m2 − 176)(m2 + 176)(3m2 − 752)

(m2 − 336)4 ,

x6 = 53 ·
(m − 4)(m + 4)(m2 + 16)(m2 − 176)(3m2 − 752)

(m2 − 336)3

then these will be x-coordinates of rational points on the curve E3,2,m if −(3m2 − 832)
and 5(3m2 − 752) are respectively squares. Setting

m = 4
3w2 − 10w − 9

w2 + 3
, (3.5)

then −(3m2 − 832) = 16(5w2 + 18w − 15)2/(w2 + 3)2. Thus with this value of m, we
are led to a fifth point P5, whose x-coordinate is x5. If we take w = 4 (with t = 3 and
v = 2), then m = −4/19 and u = −36/379. Then the points

P1 =

(2407523415840
20632736881

,
74527294860743040
2963706958323721

)
,

P2 =

(5708320080
54439939

,
353413512792960

7819807277899

)
,

P3 =

(1105374240
54439939

,
3204192524457600

7819807277899

)
,

P4 =

(2189208949920
20632736881

,
66799447910432640
2963706958323721

)
,

P5 =

(87152347653408
7448418014041

,
6922116696889413422208

20328066027142402339

)
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are independent on the rank-seven specialised curve

y2 = x3 −
4595501059952

20632736881
x2 +

13904787542147195950080
1123244937204690259

x.

Indeed, the determinant of the height pairing matrix of these five points has nonzero
value 18322.9878246105. Hence, in light of the specialisation theorem, the family
which we denote by Et,v,m with m defined in (3.5) has generic rank equal to (at least)
five over Q(t, v,m).

To increase the rank to six, we need 5(3m2 − 752) to be a square. Using (3.5), this
is equivalent to

E6 : z2 = 5(5w4 − 180w3 + 6w2 + 540w + 45).

Note the rational point (0, 15) is on E6, and hence E6 is an elliptic curve. Using
standard transformations, E6 is isomorphic to

E′6 : y2 + 180xy − 27000y = x3 − 8070x2 − 22500x + 181575000.

Specifically, given a point (x0, y0) on E′6, let w = (30x0 − 242100)/y0 and m =

4(3w2 − 10w − 9)/(w2 + 3). Then x6 leads to a rational point on our elliptic curve
arising from a Brahmagupta quadrilateral. Specialising shows that these six points
are independent. For example, if we take the point (x0, y0) = (181806, 61174224)
on E′6, then w = 635/7453, which makes m = −42003212/3212401 and u =
49973671730004/26610765059003. The specialised curve Et,v,m is

y2 = x3 +
7464814131653897571967263151619135103328958047281380650000

501452086548406443006704876667043173755384278600372081
x2

+
3060263006557775008751062983866670716202422694636141978026580228620357104744696463097717561 · 1010

59839813497 · 44477 x,

which has the six points P1, . . . , P6 with x-coordinates

x1 = −
175042925511340801103040626060078771913109540119074100000

501452086548406443006704876667043173755384278600372081
,

x2 = −
259664020764184884239589179455329739431064424016079455938150400

11340651884179093713876285479025076860756165354979201
,

x3 = −
116166630956048059520459277603831108062100000

18843956024434340978059272476330985593027
,

x4 = −
5561692620878478285106701180548803794167393757086770500000

501452086548406443006704876667043173755384278600372081
,

x5 = −
2110779340236837411880152140173397358578581969258734060616536410100000

5174744928846858302968610182945153285378408723870881766948480940881
,

x6 = −
188646383378266741353279509248532161905016786055462100000

194460584555652587681392870591278745345396455616982627
.
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These points are linearly independent, as the canonical height pairing matrix has
nonzero determinant 2491225492.50894. We note that the rank of E′6 is two, being
generated by (−1130, 156800) and (−930, 140400). As there are thus an infinite
number of points on E6, we obtain an infinite number of Brahmagupta curves with
rank at least six.

We note that the equations for the rank-five and rank-six families above can be
simplified somewhat by clearing denominators. In addition, we observed that other
families with high rank can be obtained by setting t, v and/or m to different values for
the curve Et,v,m. For example, if instead we let t = 2 and v = 3, and set

m = 3
7`2 − 2` + 28
(` − 2)(` + 2)

,

then

x′5 =
(b − a)(c − a)(m2 − 351)

270
is the x-coordinate of a fifth point P′5, leading to a family with five linearly independent
points. We omit the details.

4. Search for higher rank

We did a computer search to look for individual curves Et,v,m with high rank.
Because computing the rank of an elliptic curve can be time-consuming, we used
Mestre–Nagao sums [16, 17] to perform an initial sieving process. These sums are of
the form

S (N, E) =
∑

p≤N, p prime

(
1 −

p − 1
#E(Fp)

)
log p.

Elliptic curves with large rank tend to have high values for S (N, E).
We used the bounds −60 ≤ t ≤ 60 and −100 ≤ v,m ≤ 100, looking for those curves

E with S (523, E) > 24 and S (1979, E) > 33. We also searched by letting t, v and m be
fractions whose numerators and denominators were bounded by 15 in absolute value.
After this initial sieving, we calculated the Selmer rank of the remaining curves with
Cremona’s mwrank program [4], and then computed the rank of those curves with high
Selmer rank. We also searched the rank-five and rank-six families, but the coefficients
quickly grew too large to be able to compute ranks. We found many examples of curves
with rank eight and nine. The results of the curves with rank nine are displayed in
Table 1, along with the curves with high rank for which we were not able to determine
the rank precisely.

5. Conclusion

We believe our approach can be used to find many other families of curves with high
rank and torsion group T = Z/2Z × Z/2Z, using as a starting point the family Et,v,m of
Section 3.1. We obtained our rank-five families by specialising t and v. However, it is
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Table 1. Curves Et,v,m with high rank.

t v m Rank
2/5 3/4 3/2 9
5/8 −3 9/8 9

2 1/8 7/6 9
2 14 26 9

14/5 10/11 13/5 9
4 −3 32 9
4 2 87 9
8 18 20 7 ≤ rank ≤ 9

10 1/4 7/4 8 ≤ rank ≤ 10
13 −3 41 9

certainly possible that such families might be found by specialising only one variable.
This would open the door to finding families with even higher rank. We leave this as
an open problem.
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