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HENG HUAT CHAN , SONG HENG CHAN � and PATRICK SOLÉ

(Received 20 December 2024; accepted 21 December 2024)

Abstract

H. H. Chan, K. S. Chua and P. Solé [‘Quadratic iterations to π associated to elliptic functions to the
cubic and septic base’, Trans. Amer. Math. Soc. 355(4) (2002), 1505–1520] found that, for each positive
integer d, there are theta series Ad , Bd and Cd of weight one that satisfy the Pythagoras-like relationship
A2

d = B2
d + C2

d . In this article, we show that there are two collections of theta series Ab,d , Bb,d and Cb,d of
weight one that satisfy A2

b,d = B2
b,d + C2

b,d , where b and d are certain integers.
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1. Introduction

One of the most famous identities of Jacobi states that( ∞∑
m,n=−∞

qm2+n2
)2
=

( ∞∑
m,n=−∞

(−1)m+nqm2+n2
)2
+

( ∞∑
m,n=−∞

q(m+1/2)2+(n+1/2)2
)2

. (1.1)

One can view (1.1) as a solution to

A2 = B2 + C2, (1.2)

where A, B and C are theta series of weight one. This identity is instrumental in the
parametrisation of Gauss’ arithmetic–geometric mean by modular forms [2, 8].

In [5], Chan et al., motivated by the study of codes and lattices, found that, for any
positive integer d,

( ∞∑
m,n=−∞

q2(m2+mn+dn2)
)2
=

( ∞∑
m,n=−∞

(−1)m+nqm2+mn+dn2
)2

+

( ∞∑
m,n=−∞

q2((m+1/2)2+(m+1/2)n+dn2)
)2

. (1.3)
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Identity (1.3) provides an infinite number of solutions in theta functions of weight one
to (1.2). For more information on this generalised Jacobi identity, see [6, 7].

Recently, while studying theta series associated with binary quadratic forms of
discriminant −15, we discovered the identity

( ∞∑
m,n=−∞

q2m2+mn+2n2
)2
=

( ∞∑
m,n=−∞

(−1)m+nq2m2+mn+2n2
)2

+

(
2

∞∑
m,n=−∞

q2(2(m+1/2)2+(m+1/2)n+2n2)
)2

. (1.4)

We establish the following analogue of (1.3) for which (1.4) is a special case.

THEOREM 1.1. Let d be any positive integer and let 1 ≤ b ≤ d − 1. Then

( ∞∑
m,n=−∞

qdm2+bmn+dn2
)2
=

( ∞∑
m,n=−∞

(−1)m+nqdm2+bmn+dn2
)2

+

(
2

∞∑
m,n=−∞

q2(d(m+1/2)2+b(m+1/2)n+dn2)
)2

. (1.5)

When d = 2 and b = 1, we recover (1.4) from (1.5). The proof of (1.5) is given in
Section 2.

Our discovery of (1.5) provides a motivation for deriving the following two-variable
version of (1.3): that is,

( ∞∑
m,n=−∞

q2(bm2+bmn+dn2)
)2
=

( ∞∑
m,n=−∞

(−1)m+nqbm2+bmn+dn2
)2

+

( ∞∑
m,n=−∞

q2(b(m+1/2)2+b(m+1/2)n+dn2)
)2

. (1.6)

Observe that, when b = 1, (1.6) implies (1.3). We give a proof of (1.6) in Section 3.

2. Proof of (1.5)

The Jacobi one-variable theta functions are defined by

ϑ2(q) =
∞∑

j=−∞
q(j+1/2)2

,

ϑ3(q) =
∞∑

j=−∞
qj2
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and

ϑ4(q) =
∞∑

j=−∞
(−1)jqj2 .

We first express the theta functions in (1.5) in terms of ϑj(q), j = 2, 3, 4.

LEMMA 2.1. For |q| < 1,

Ab,d =

∞∑
m,n=−∞

qdm2+bmn+dn2
= ϑ3(q2d+b)ϑ3(q2d−b) + ϑ2(q2d+b)ϑ2(q2d−b), (2.1)

Bb,d =

∞∑
m,n=−∞

(−1)m+nqdm2+bmn+dn2
= ϑ3(q2d+b)ϑ3(q2d−b) − ϑ2(q2d+b)ϑ2(q2d−b) (2.2)

and

Cb,d = 2
∞∑

m,n=−∞
q2(d(m+1/2)2+b(m+1/2)n+dn2) = ϑ2(qd+b/2)ϑ2(qd−b/2). (2.3)

PROOF. We observe that

dm2 + bmn + dn2 =
(
m n

) ( d b/2
b/2 d

) (
m
n

)
.

Next, since (
d b/2

b/2 d

)
=

(
1 1
1 −1

) (
d + b/2 0

0 d − b/2

) (
1 1
1 −1

)
,

we find that

dm2 + bmn + dn2 =
2d + b

4
(m + n)2 +

2d − b
4

(m − n)2.

Therefore,
∞∑

m,n=−∞
qdm2+bmn+dn2

=

∞∑
m,n=−∞

q(2d+b)(m+n)2/4+(2d−b)(m−n)2/4

=

∞∑
m,n=−∞
m+n even

q(2d+b)(m+n)2/4+(2d−b)(m−n)2/4 +

∞∑
m,n=−∞
m+n odd

q(2d+b)(m+n)2/4+(2d−b)(m−n)2/4

= ϑ3(q2d+b)ϑ3(q2d−b) + ϑ2(q2d+b)ϑ2(q2d−b),

which completes the proof of (2.1). The proof of (2.2) is similar to the proof of (2.1).
To prove (2.3), we need the identity

∞∑
m=−∞

(−1)mq(m+1/2)2
= 0. (2.4)
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Identity (2.4) is true because
∞∑

m=−∞
(−1)mq(m+1/2)2

=

∞∑
s=−∞

(−1)sq(s−1/2)2
=

∞∑
t=−∞

(−1)t+1q(t+1/2)2
.

From (2.4), we deduce that, for any integer �,
∞∑

m=−∞
(−1)mq(m+�+1/2)2

= 0. (2.5)

A consequence of (2.5) is that
∞∑

n=−∞
q(2n+�+1/2)2

=

∞∑
n=−∞

q(2n+1+�+1/2)2
. (2.6)

We are now ready to prove (2.3). Write

Cb,d = 2
∞∑

m,n=−∞
q(2d+b)(m+1/2+n)2/2+(2d−b)(m+1/2−n)2/2.

Let k = m − n. Then

Cb,d = 2
∞∑

k=−∞
q(2d−b)(k+1/2)2/2

∞∑
n=−∞

q(2d+b)(2n+k+1/2)2/2

=

∞∑
k=−∞

q(2d−b)(k+1/2)2/2
∞∑

s=−∞
q(2d+b)(s+1/2)2/2 = ϑ2(q(2d−b)/2)ϑ2(q(2d+b)/2),

which is (2.3). The last equality follows by writing

2
∞∑

n=−∞
q(2d+b)(2n+k+1/2)2/2 =

∞∑
n=−∞

q(2d+b)(2n+k+1/2)2/2 +

∞∑
n=−∞

q(2d+b)(2n+k+1+1/2)2/2

=

∞∑
s=−∞

q(2d+b)(s+1/2)2/2,

where we have used (2.6) in the first equality. �

Using (2.1) and (2.2), we deduce that

A2
b,d − B2

b,d = 4ϑ2(q2d+b)ϑ2(q2d−b)ϑ3(q2d+b)ϑ3(q2d−b).

Next, it is known from Jacobi’s triple product identity that

ϑ2(q) = 2q1/4
∞∏

j=1

(1 − q2j)(1 + q2j)2

and

ϑ3(q) =
∞∏

j=1

(1 − q2j)(1 + q2j−1)2.
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Therefore,

2ϑ2(q2)ϑ3(q2) = ϑ2
2(q). (2.7)

Replacing q2 by q and using (2.3), we deduce that

A2
b,d − B2

b,d = C2
b,d

and the proof of (1.5) is complete.
It is possible to derive (2.7) without using Jacobi’s triple product identity. For more

details, see [4, page 58].
When d = 1 and b = 0, (1.5) becomes

( ∞∑
m,n=−∞

qm2+n2
)2
=

( ∞∑
m,n=−∞

(−1)m+nqm2+n2
)2
+

(
2

∞∑
m,n=−∞

q2((m+1/2)2+n2)
)2

,

which reduces to

ϑ4
3(q) = ϑ4

4(q) + 4ϑ2
2(q2)ϑ2

3(q2). (2.8)

By (2.7), we arrive at (1.1). Next, (2.8) can then be written as

ϑ4
3(q) + ϑ4

2(q) = ϑ4
3(q) − ϑ4

2(q) + 8ϑ2
2(q2)ϑ2

3(q2). (2.9)

Identity (2.9) appeared in [1, page 140] and the functions

ϑ4
3(q) + ϑ4

2(q), ϑ4
3(q) − ϑ4

2(q) = ϑ4
4(q) and 2ϑ2

2(q)ϑ2
3(q)

play important roles in Ramanujan’s theory of elliptic functions to the quartic base
(see [3, Theorem 2.6(b)] and [1, (1.10) and (1.11)]).

3. Proof of (1.6)

The proof of (1.6) is similar to the proof of (1.3). First, we need a lemma.

LEMMA 3.1. Let 0 < b < 4d. Then

Ab,d =

∞∑
m,n=−∞

q2(bm2+bmn+dn2) = ϑ3(q2b)ϑ3(q2(4d−b)) + ϑ2(q2b)ϑ2(q2(4d−b)), (3.1)

Bb,d =

∞∑
m,n=−∞

(−1)m−nqbm2+bmn+dn2
= ϑ4(qb)ϑ4(q4d−b) (3.2)

and

Cb,d =

∞∑
m,n=−∞

q2(b(m+1/2)2+b(m+1/2)n+dn2) = ϑ2(q2b)ϑ3(q2(4d−b)) + ϑ3(q2b)ϑ2(q2(4d−b)).

(3.3)
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PROOF. The proof of (3.1) follows by writing Ab,d as

Ab,d =

∞∑
m,n=−∞

q2b(m+n/2)2+n2(4d−b)/2.

Splitting the sum into two sums with one summing over even integers n = 2� and the
other summing over odd integers n = 2� + 1, we find that

Ab,d =

∞∑
m,�=−∞

q2b(m+�)2+2�2(4d−b) +

∞∑
m,�=−∞

q2b(m+�+1/2)2+2(�+1/2)2(4d−b)

= ϑ3(q2b)ϑ3(q2(4d−b)) + ϑ2(q2b)ϑ2(q2(4d−b)),

and this completes the proof of (3.1). Next, write Bb,d as

Bb,d =

∞∑
m,n=−∞

(−1)m−nqb(m+n/2)2+n2(4d−b)/4.

Splitting the sum into two sums with one summing over even integers n = 2� and the
other summing over odd integers n = 2� + 1 and using (2.5), we find that

Bb,d =

∞∑
m,�=−∞

(−1)mq2b(m+�)2+2�2(4d−b) +

∞∑
m,�=−∞

q2b(m+�+1/2)2+2(�+1/2)2(4d−b)

=

∞∑
m,�=−∞

(−1)�q(4d−b)�2
∞∑

m=−∞
(−1)m+�qb(m+�)2

= ϑ4(q4d−b)ϑ4(qb),

and (3.2) follows. Finally, to prove (3.3), write

Cb,d =

∞∑
m,n=−∞

q2b(m+1/2+n/2)2+2n2(4d−b)/4.

Splitting the sum into two sums with one summing over even integers n = 2� and the
other summing over odd integers n = 2� + 1, we deduce that

Cb,d =

∞∑
m,�=−∞

q2b(m+�+1/2)2+2(2�)2(4d−b)/4 +

∞∑
m,�=−∞

q2b(m+�+1)2+2(2�+1)2(4d−b)/4

= ϑ2(q2b)ϑ3(q8d−2b) + ϑ3(q2b)ϑ2(q8d−2b),

and the proof of (3.3) is complete. �

To complete the proof of (1.6), we note that

Ab,d − Cb,d = (ϑ3(q2b) − ϑ2(q2b))(ϑ3(q8d−2b) − ϑ2(q8d−2b))

and

Ab,d + Cb,d = (ϑ3(q2b) + ϑ2(q2b))(ϑ3(q8d−2b) + ϑ2(q8d−2b)).

https://doi.org/10.1017/S0004972724001412 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972724001412


[7] An analogue of an identity of Jacobi 7

But it is immediate that

ϑ3(q4) − ϑ2(q4) = ϑ4(q)

and

ϑ3(q4) + ϑ2(q4) = ϑ3(q).

Therefore,

(ϑ3(q4) − ϑ2(q4))(ϑ3(q4) + ϑ2(q4)) = ϑ4(q)ϑ3(q) = ϑ2
4(q2),

where the last equality follows from [2, page 34]. Therefore,

A2
b,d − C2

b,d = (ϑ3(q2b) − ϑ2(q2b))(ϑ3(q8d−2b) − ϑ2(q8d−2b))

× (ϑ3(q2b) + ϑ2(q2b))(ϑ3(q8d−2b) + ϑ2(q8d−2b))

= ϑ2
4(qb)ϑ2

4(q4d−b) = B2
b,d,

and the proof of (1.6) is complete.

4. Concluding remarks

We have found infinitely many solutions to X2 + Y2 = Z2, where X, Y and Z are
theta series of weight one. The Borweins’ identity states that

( ∞∑
m,n=−∞

qm2+mn+n2
)3
=

( ∞∑
m,n=−∞

ωm−nqm2+mn+n2
)3

+

( ∞∑
m,n=−∞

q(m+1/3)2+(m+1/3)(n+1/3)+(n+1/3)2
)3

, (4.1)

where ω = e2πi/3. This is the only example of a solution to X3 + Y3 = Z3 with X, Y and
Z being theta series of weight one. Are there infinitely many solutions to X3 + Y3 = Z3,
where X, Y and Z are theta series of weight one, apart from (4.1)? This appears to be
an interesting question.
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