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Abstract

We examine the valuation of American options in a discrete time setting where the exercise
price is known a priori but varies with time. (This is in contrast with the classical Black-
Scholes [2] analysis, which lies in a continuous time framework and with constant exercise
price.) In particular we consider a time series of exercise prices which are themselves a
realisation of the share price random walk — that of the previous year, say.

1. Introduction

A financial option is the right to buy (or sell) an asset at a specified time in the future
(the expiry date, T) for a known amount (the exercise price, E). As this is a right
and not an obligation, the holder of such a right can only benefit from it. To see this,
consider the possible events which can occur at expiry, for an option to buy. If the
asset price, S, is below the exercise price then the option will not be exercised as the
asset can be obtained more cheaply by buying it directly. If the asset price is above
the exercise price then the option is worth S — E; since the asset may be bought for
E and immediately sold for 5, the positive difference is a riskless profit. Since the
holder of an option can only benefit, the option has a positive value and the holder
must pay a premium for the option. The problem is how to value an option prior to
expiry when the outcome (at expiry) is not known a priori.

The problem for the fair value of an option was first solved by Black and Scholes
[2]. They construct a portfolio of one option and a predetermined number of assets
which, because of the correlation between the random movements of the asset and
option prices, eliminates all the indeterminacy in the change in value of the portfolio.
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(Their means of eliminating risk is known as 'A-hedging'.) Their analysis results
in the well known Black-Scholes partial differential equation. Other authors have
derived valuation formulae in the context of discrete time and asset price charges.
Typically the asset price follows a binomial random walk and changes only across
discrete time steps (see, for example, Cox, Ross and Rubinstein [5]). See Hull [14]
and Wilmott et al. [20] for a general introduction to the subject.

The discussion above describes a European call option. The adjective call refers
to the right to buy the asset at expiry. It is also possible to purchase put options which
give the holder the right to sell the asset. The difference between calls and puts is
essentially a difference in the payoff, the value of an option at expiry. The adjective
European indicates that the right can only be exercised at expiry. There are also
American options which give the holder the right to exercise the option at any time
up to and including the expiry date. It is the American feature which is of interest to
us here. (We refer the reader to Cox and Rubinstein [6], Hull [14], Dewynne et al.
[9] or Wilmott et al. [20] for a more complete discussion of the differences between
the valuation of European and American options.) In the Black-Scholes framework,
the valuation of an American option is a free boundary problem (see also Dewynne
et al. [9]), similar to the 'oxygen consumption problem' (Crank and Gupta [7]). As
such, American options are path dependent — if the value of the asset underlying the
option crosses an optimal exercise boundary (the free boundary), the option should
be exercised immediately and thus cease to exist before expiry (assuming the holder
acts optimally).

In this paper we consider the valuation of American put options in a discrete time
setting and with an exercise price that varies discretely in time. The life time of the
option is divided into N equal discrete time steps of size St. The payoff for early
exercise at a time nSr is given by

Pn(S) = max(E" -S,0), (1)

where En is the exercise price at time step n and is known in advance. If the option is
not exercised before the expiry then its value at expiry is PN(S) = max(£w — 5, 0).
We are particularly interested in a sequence of exercise prices, (£")^_,, which cannot
be represented by a smooth function.3 In our example we take this sequence to be a
realisation of a geometric Brownian random walk. We have in mind a situation where
the exercise price En is the price that the underlying asset had, say, a year ago. Thus,
although random, the exercise prices are known in advance.
3When the exercise price is a known smooth function of time then the Black-Scholes continuous time
analysis is applicable. In this situation it is well known that the valuation problem may be formulated
as a linear complementarity problem (Wilmott et al. [20]) or variational inequality (Jaillet et al. [16]).
These formulations, which are independent of the precise form of the payoff function, may be solved
numerically by finite difference methods or finite element methods (Wilmott et al. [20]). The standard
method is to use the projected-SOR algorithm of Cryer; see Elliott and Ockendon [11] or Crank [8].
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In our model, time is taken to be discrete, whereas the asset price can attain any
strictly positive value; S is a continuous variable. Our model thus lies between the
Black-Scholes [2] (continuous time and asset price) and the Cox, Ross and Rubinstein
[5] (discrete time and asset price) models. For completeness we also mention the jump
model of, for example, Cox and Ross [3] which is a continuous time and discrete asset
model. It is important to distinguish between these models. The total elimination of
risk by A-hedging is only known to be possible in two cases:

1. in the continuous time, continuous asset price case of Black and Scholes,
where we can apply Ito's lemma and

2. the discrete time and asset price binomial model.

In other situations, such as the discrete time trinomial case or the discrete time,
continuous asset price situation considered here, we cannot eliminate risk totally and
are left with a risky portfolio. Thus we must value this residual risk and we discuss
this further shortly.

A practical application of our model is in connection with the Retail Price Index
(RPI), which is the difference between the price of a basket of goods compared with
the price of the same basket one year earlier. A significant proportion of the UK Gross
National Product now has its future price rises limited directly with reference to RPI
— the 'RPI - x' formula. This includes, in the UK, British Telecom, British Gas and
all the electricity and water companies, for example.

In Section 2, we consider one way of valuing such an option using arguments
similar to those of Black and Scholes. This leads us to a difference equation which
is inherently unstable and ill-posed. We then consider, in Section 3, a related model
which leads to a well-posed valuation problem for the option. Finally, in Section 4,
we present a numerical example.

2. An unstable model

We begin with an assumption about the random nature of asset prices. The com-
monest and simplest assumption is that the asset price 5 follows a geometric Brownian
motion given by the stochastic differential equation

dS = (iSdt + <?SdX, (2)

where /JL and a are constants (the underlying growth and standard deviation re-
spectively) and dX is a Wiener process, see 0ksendal [18], with g\dX~\ = 0 and
<g[dX2] = dt. Here & is the expectation operator. A discrete time version of this
continuous random walk is

SS = fiSSt + oS<j>V8t
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where St is a fixed, small time-step, <f> is a random variable drawn from a standardised
normal distribution (zero mean and unit variance) and SS is the jump in the asset price.
Time increases in fixed steps St, but SS and hence S can take any real value. Note
that S has the fractal property of being self-similar over time scales much larger than
St (Peters [19], Chapter 8).

With the notation V (S) as the value of the put when the price of the underlying
asset is S and the time is nSt, and the expiry date denoted by n = N, we now address
the problem of valuing our put option. We first follow the ideas of Black and Scholes
[2] and attempt to construct a risk free portfolio consisting of one such option and a
number of assets, A". Note that A" is fixed from time nSt to (« + l)St. We write the
value of this portfolio as Fl", so that

XV = V + AnS. (3)

This is the value of the portfolio at time nSt. At time (n + l)St the value of the assets
will have changed to S + SS, with 55 unknown a priori, and hence the value of the
option will have changed to V"+1(S + SS). The number of assets owned will be the
same as at time nSt. The change in the value of the portfolio <5FI is

SW = Vn+1(S + SS) + A"SS- V". (4)

For the rest of this section we assume that V" has everywhere a well-defined second
derivative with respect to S; this will lead to inconsistencies within the model, but the
ideas which occur as a consequence of the analysis are indispensable when we come
to construct a consistent model.

Supposing that Vn+1 has two derivatives with respect to 5, we may use a stochastic
Taylor series expansion to show that

SW = Vn+l(S) + 8SVZ+l(S) + ±o2S2(p28tV£i(S)-V"(S) + An8S + 0(StV2). (5)

We see that the choice
A" = -Ks

n+1(S) (6)

leads to the elimination, to leading order, of the random component of dW (the <f>
contained within SS). This is the concept of A-hedging.4

If our model was a continuous time model, we could apply Ito's lemma (see
0ksendal [18]) to (4), effectively replacing <f>2 by its expected value, 1. Such a
portfolio would be wholly riskless and its return could be set equal to that from a
risk-free deposit. This would result in the Black-Scholes equation. Here, however,
the portfolio is not entirely riskless; it contains a random (j)2 term as well as the smaller
terms of O((<503/2) that we are going to ignore. This residual risk must be valued. We
4Note that A" is the derivative of V at the current asset price but the next time-step.
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make the common assumption that the owner of the option is risk-neutral and expects
to make as much from this portfolio as if the cash equivalent had been invested in a
riskless account. Thus we set

S[&W] = rWSt, (7)

where r is the risk free interest rate. Bringing together (3), (5), (6) and (7), we find
that

(1 -I- rSt)V = V+1 + 8t (\o2S2Vn
s+

X + rSVZ+l) + O (8t3/2) . (8)

Henceforth we assume that 8t is sufficiently small, compared to the overall life of the
option, for terms of 0(<5f3/2) to be negligible. In practice, this means that we assume
terms of O(8t3/2) are of the same or smaller order of magnitude as other effects that
we have deemed negligible, for example, transaction costs (Leland [17], Hodges and
Neuberger [13], Dewynne et al. [10]) and the nonconstant volatiles (Black [2]).

The equation bears similarities to the Black-Scholes partial differential equation.
Consider the limit 8t -> 0. We can write V+l - V = V,(S, t)8t and, on dividing
throughout by 8t, (8) becomes identical to the Black-Scholes equation,

(T2S2

V, + —Vss + rSVs-rV=0. (9)

We do not take this limit and, indeed, when we come to consider American options
we shall see that no sensible limit exists.

Note that (8) is a difference equation for V given V+i. No boundary conditions
are required in 5 since there are no 5 derivatives of V. Provided that V"+l has finite
S-derivatives, it is clear that

y+i(0)
" • < 0 > =

TT7J7-
and that, if V+1(oo) = 0, then V(oo) = 0. This gives a recipe for calculating
the value of an option given some final data, that is, the payoff atn = N. Now we
examine the effect of variable exercise price and early exercise.

In Figure 1 we see a schematic representation of the naive method of valuation
proposed. We see V" which can, in principle, be evaluated from V"+l. Also shown
is the payoff at time n given by max(£" — 5, 0), that is, the payoff for a put option
with exercise price E". Observe that for S < SJ we have implied that V(S) <
max(£" - S, 0).5

In a case where early exercise is permitted and the value of the option is less than
the payoff, an arbitrager would purchase this option, immediately exercise it and sell
5We have implied here that there is only a single free boundary. In fact, there may be no free boundary.
There may, however, be at most one free boundary. We justify this comment in the following section.
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FIGURE 1. A schematic diagram showing V"(5), K"+I(S), E" and SS.

the assets, thus realising a riskless profit. Such an opportunity would not last and thus
it must be the case that

V"I (5)>max(£"-5,0) . (10)

Our algorithm for valuation is now amended slightly so that we first compute U" (5)

as
rSt)U" - Vn+l + St (±CT2S2

and our option value at time step n is given by V = max(£/"(S), E" — 5). We call
this the cut-off procedure. Again it is instructive to note how this differs from the
continuous Black-Scholes limit. Suppose that in the Black-Scholes continuous world
we have a constant exercise price. The above arbitrage criterion (10) is then of the
form

V(S,t)>max(E-S,0). (11)
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The American option valuation problem may thus be interpreted as an obstacle prob-
lem, very similar to the 'oxygen consumption problem' (Crank and Gupta [7]). This
is a free boundary problem and in order to find the location of the free boundary 5/(0
we require a second boundary condition (at 5 = 5/(0) (see Dewynne et al. [9],
Jacka [15] or Wilmott et al. [20]). In fact, V(S, t) must meet the payoff function,
max(5 — E, 0), smoothly so that the gradient is continuous (see for example Dewynne
et al. [9] or Wilmott et al. [20]).

In the case we are considering, as mentioned above, we have no freedom to
prescribe the boundary conditions hence we advocate the cut-off procedure. We do
note, however, that the hedging argument used in deriving (8) is not valid in an
O(<5/1/2) neighbourhood of 5 = S}+1 since V+1(S) does not have a well defined first
or second 5 derivative there. We discuss this shortly but we next demonstrate a flaw
in the model presented in this section which has important consequences.

The change of variable 5 = ex reduces (8) to a constant coefficient linear diffusion-
reaction equation. We temporarily ignore V"+1 terms in the resulting equation and set
r to zero. Our simplified equation then takes the form

V" = Vn+l + \o2V"+x8t. (12)
2

We now consider the stability of (12) to a small oscillatory perturbation, that is, we
set Vn+l = sinkx. We find that

V = (1 - \a28tX2) sin Xx.

Thus a perturbation will grow if A.2 > 4/(a2St). We conclude that our model is
unstable to small wavelength perturbations. The natural 5-scale for the growing
oscillations is O((cr<501/2)- This is exactly the magnitude of the jump in asset price
in a time St. The consequence of this instability is to make hedging, for which we
require V+i to have a local Taylor series expansion, an impossibility. Our original
assumption that V" has a Taylor series expansion does not hold and we must discard
our model in its present form. This analysis can be repeated with the first derivative
terms retained and r nonzero, but the conclusion is the same.

3. A stable model

In the previous section, our differential-difference equation model breaks down
because of short wavelength instabilities. We now attempt to regularise the model.

First, let us comment on the work of Harrison and Pliska [12] in a continuous
time setting. They show that when an option can be hedged the value of an option
is the same as the discounted present value of the expected payoff under the modified
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risk-neutral random walk
dS = rSdt + crSdX

It follows, as can be seen from the Black-Scholes equation, that in continuous time
the option value is independent of /x. Our differential-difference equation is also
independent of //,; the approximate A-hedging has eliminated the parameter ix to
leading order, although it does appear in the small terms we have neglected.

In a discrete time and continuous asset price model there may not be a unique
fair value for the price of an option. If, however, we follow the A-hedging policy
A = — Vg+i then we eliminate the dependence on (i. We therefore adopt the valuation
policy based on the insight of Harrison and Pliska [12]: to determine V from V+l

we calculate the expected value of V"+1 given S at time n and then take the maximum
of its discounted present value and its payoff if exercised early.

Since the asset price follows a lognormal random walk, the probability density
function for the future distribution of 5' (at time St in the future) is

exP ( -^4TT (log(S'/S) " (r ~ ?r ) 8 t M L d3)

if 5' > 0 and zero otherwise, where S is the current value of the asset price. Thus,
in this model, the value V(S) (if the option is not exercised at time step nSt) is the
discounted conditional expectation under the "risk-neutral"density (13) of V+l(S)
given that the asset price at time n8t is S, that is,

f
The smoothing which is achieved by this integral version of the valuation recipe
ensures that the solution is stable. If the option is exercised at time nSt then

V(S) = E" -S (15)

and we take the value of the option to be the maximum of the two values (14) and
(15). Clearly, if the value given by (14) exceeds that given by (15) the option should
be held or sold, and if the value given by (15) exceeds that given by (14), the option
should be exercised.

Note that (14) is equivalent to solving the (continuous time) Black-Scholes [2]
partial differential equation, (9), from time (n + l)St to nSt with final data V+l(S)
S > 0. Insisting on a nonsingular solution is equivalent to the boundary conditions
V"(0) = rV(0) (see (9) and note that V(0, t) remaining bounded is equivalent to
S2VSS -+ 0 and 5 Vs -+ 0 as 5 -> 0) and V(oo) = 0. Solving (9) numerically is
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in fact simpler than evaluating (14) numerically. Since we intend solving our model
numerically, we choose to solve (9).6

As before, in order to eliminate arbitrage possibilities, we must insist that the value
V (5) is greater than or equal to the payoff function and must be cut off as necessary.
This will generally result in discontinuities in Vs" which would not be sustainable
in continuous time but which are allowed (and inevitable) in discrete time. Our
American option valuation is therefore, strictly speaking, no longer a free boundary
problem since our formulation (14) does not permit us to prescribe any boundary
conditions. We end this section with a suggestion for the name for the type of option
which we are discussing here. In the same spirit which names options on interest rate
caps as 'captions' and options on interest rate swaps as 'swaptions' we will name our
options — whose payoff depends on a fractal time series — 'fractions'.

4. Discussion of the model and an example

As an example, in this section we choose a sequence of exercise prices E" which
is a realisation of the asset price over some prior period. This sequence is known
beforehand and we take the volatility, a for the asset price's present random walk to
be the same as that calculated from the prior period.

Since the standard deviation for En+l — E" is aStl/2 over a period of order St, the
motion of the payoff 'obstacle' is greater in magnitude than the change in V before
we apply the cut off (which is 0(50)- We also apply the cut-off condition

V"(0) = max(£", e~rS'Vn+l(0)). (16)

If V(0) = E" then the cut-off condition has come into effect and there will be a
'free' boundary7, at S = SJ. Although the point Sn

f is found from the cut-off condition
we continue to call it a free boundary since, if it exists, it can only be determined
by solving the problem. If V(0) > E" then the option value lies above the payoff
and there is no free boundary. We conclude that the free boundary need not move
6Note that, in principle, it is possible to give an analytic expression for the value of this option, since its
valuation consists in a sequence of calculations of discounted expected values and application of a cut-off
procedure. Given that the payoff is known for expiry and that the sequence E" is given in advance, it is
clearly possible to time-step back from the payoff by applying (14) and then taking the maximum of (14)
and (15) at each step, providing a new 'payoff 'for the previous time-step. Such an analytical procedure
will, in general, lead to an unmanageable number of quadratures.
7The free boundary, if it exists, is unique. This follows from (14) and the fact, noted above, that V may
be found by solving the Black-Scholes equation with V+1 as final data. The Black-Scholes equation is
backward parabolic, may be reduced to the heat equation and therefore satisfies the maximum principle.
Thus, since -Vs also satisfies (a modified) Black-Scholes equation, it follows that Vs < 1 always as
Vs < 1 finally (and also after a cut-off has been applied).
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continuously but may appear and disappear as n varies depending only upon the size
and direction of the jumps in E". This is illustrated in our example. Note also that the
time series V" (0) can be determined immediately from the sequence E" starting with
VN(0) = EN without having to solve for V(S) for 5 > 0.

Although we choose to step backward in time discretely via a solution of a partial
differential equation rather than using the integral representation (14), we note that
there is no sensible limiting problem as St -*• 0. We cannot go to the limit St -*• 0
because of the cut-off constraint — the magnitude of the jumps in the height of the
obstacle are O(8ti/2) and so swamp the natural jumps in V" which are O(<50> for fixed
S. Our choice of a finite-difference scheme necessarily requires the use of a truncated
grid and application of a boundary condition at some maximum value Sm. We take
this boundary condition to be V"(Sm) = 0 for all times nSt. We also note that this
introduces errors into the numerical solution, but these errors can be made arbitrarily
small (for finite values of o2T, where T is the expiry date of the option) by taking a
sufficiently large value of 5m.8

The Black-Scholes equation (9) becomes a constant coefficient, linear parabolic
equation under the transformation S = Eex where E is some typical value of the
time series E". We make this transformation and solve the resulting equation using a
standard implicit finite difference scheme. We then test for early exercise and apply
the cut-off if necessary.

In Figure 2, we show the results for our model for a sequence of exercise prices
which are taken from the daily closing prices of the Financial Times Stock Exchange
100 (FTSE 100) index from the six months before October 19"\ 1987, to six months
after (N = 252). The FTSE 100 indices have been scaled so that the maximum value
of E" is 1. The volatility during this period is 0.281556 and this is taken to be the
value for a. The interest rate is taken to be 0.09 p.a.

The figure shows the series £"(•), V(0)(o) and S£(x). When V"(0) > E" there is
no free boundary. Otherwise SJ must be found as part of the solution of the problem.
Observe the large regions where there is no free boundary and the option is held
regardless of the asset price. Within the regions where early exercise is optimal there
are smaller and smaller regions where the free boundary disappears, and where it is
therefore optimal to retain the option until a later date. An obvious comparison to
make is with a Cantor set — here, however, the fractal nature of the early exercise

8As we know the sequence E" and we have a maximum principle for the Black-Scholes equation, it is
a relatively simple matter to obtain an upper bound on Vn(Sm) and hence on the error introduced by
approximating this value by zero. It is then not difficult to obtain a bound on the maximum difference
between the solution of the actual problem posed on the positive S axis and the numerical problem solved
on the interval [0, Sm]. The details are routine.
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FIGURE 2. Results of the model using real data. The series £"(•), V"(0)(o) and Sf(x) are shown.

See text for details.

region does not go beyond a finite time-scale (one day, in this example). In Figure 3,
we show V"(S) against 5 at a time during the life of the option when there is a free
boundary.
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FIGURE 3. The option price, V"(S), vs. S (dimensionless) at n = 128.
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