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Abstract

We study the dynamic assignment of cross-trained workers in serial production lines
characterized by stochastic process times and inventory buffers between stations.
Throughput maximization is the objective. Each worker is trained for a subset of tasks,
where emphasis is placed on systems with each worker trained for a zone of stations with
stations near the zone boundaries being served (shared) by one or more other workers
as well. Using sample path comparisons, we identify structural properties of optimal
worker allocation policies. We identify when (i) a worker can prioritize the job in the most
downstream station (last-buffer–first-served), and (ii) only the downstream (as opposed
to upstream) server should serve a single task.
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1. Introduction

Motivated by the increasing use of flexible workers in manufacturing systems, we study the
optimal dynamic assignment of such workers in serial production lines. Each job entering the
line consists of N tasks that have to be performed in order from the first of N stations until
the last. We seek properties of worker allocation strategies that maximize the job completion
rate, that is, the throughput of the line. A flexible workforce is sometimes used as a means
of improving the performance of nonpaced manufacturing lines under challenging conditions,
such as varying demand, processing times, resource availability, etc. As opposed to traditional
settings where each worker performs a single specific task, flexible workers are trained for
more than one task (usually with some overlap) so that instead of being forced to idle because
of lack of work, they can assist with bottlenecks, thus enhancing productivity in lines that
are not paced but have significant variability. Hopp and Van Oyen [13] provided a literature
survey on workforce flexibility as well as a framework for evaluating a flexible workforce
in an organization. Specifically, they established the connection between cross-training and
the organization’s objectives, and discussed methods for identifying and implementing an
appropriate worker flexibility strategy.

As pointed out by Askin and Chen [7], there are two types of work sharing, dynamic
assembly line balancing (DLB) and moving worker modules (MWM). In DLB, which was
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first introduced by Ostolaza et al. [19], there is an equal number of machines and workers.
Each worker stays with his/her machine, but machines are flexible (e.g. hand tools, welding
equipment, sewing machines, computers, etc.) so that workers can also perform the tasks of
their upstream/downstream neighbors. McClain et al. [18] showed that even in lines without
buffers, DLB can be effective. In a later paperAnuar and Bukchin [5] used simulation to evaluate
several worker allocation rules in DLB systems and for most of them they showed significant
improvements in cycle times versus systems with no work sharing. In MWM, each worker is
trained to work within a ‘zone’ of stations. Machines are not flexible as in DLB, but workers
can move from station to station. The well-known bucket brigades introduced by Bartholdi and
Eisenstein [8] are an example of such a system. For deterministic processing times, they showed
that sorting workers from slowest to fastest and allowing preemptions ensures the balancing
of the line without the need for buffers. Similar systems with random processing times were
studied by Bischak [10], Bartholdi et al. [9], and McClain et al. [17].

In general, each cross-training pattern is characterized by the sets of tasks that workers are
capable of performing. It is not important to our purposes whether this is accomplished by
using flexible machines or by moving from machine to machine within a zone. The most
extensive form of cross-training is full cross-training, in which workers are trained for all tasks.
Van Oyen et al. [22] showed that when workers can collaborate on the same job, throughput is
maximized by a policy where workers are assigned to the same job throughout the production
process, as in the traditional craft mode of production. Throughput maximizing policies were
also determined by Andradóttir et al. [3], [4], Andradóttir and Ayhan [2], Arumugam et al. [6],
and Kirkizlar et al. [15], [16] for a variety of two- and three-stage models. From a practical
point of view, full cross-training is often too expensive and difficult to implement, so partial
cross-training systems have naturally received increasing attention. Gel et al. [12] studied a
two-stage system with two workers, one flexible (trained for both tasks) and one specialist
(trained for one task). For a CONWIP (constant-work-in-process) structure, they established
the optimality of the ‘fixed-before-shared’ principle for the flexible worker: fixed tasks (those
only the flexible worker can perform) should be given strict priority over shared tasks. Gel
et al. [11] studied a DLB system with two workers and three tasks. Assuming exponential
processing times, they used MDP (Markov decision process) analysis to investigate the extent
to which various factors affect the performance improvement that can be achieved relative to
static worker allocations. For the same system with Erlang-distributed processing times, Askin
and Chen [7] defined the tradeoff between the cost of WIP and the cost of cross-training. Hopp
et al. [14] demonstrated the effectiveness of D-skill chains where each worker is trained for the
task in his/her base station and D − 1 more tasks down the line (U-shaped lines are assumed),
with strong emphasis on the merits of 2-skill chains. Finally, Parvin et al. [21] presented a zone
chaining pattern with limited cross-training that can achieve high throughput.

For any given cross-training pattern, an efficient worker allocation rule needs to be imple-
mented. There are two kinds of decision to be made: (i) the task to which a worker should be
assigned when he/she becomes available, and (ii) the worker to perform a task when two or
more workers are available for a single task. As seen from the literature survey, optimal worker
allocation policies have only been obtained for systems with few workers/tasks (see [12]) or
under restrictive assumptions such as fully cross-trained and collaborating workers (see [22]).
For general systems with many workers/tasks and possibly differing processing requirements
and worker speeds, it is not to be expected that one can completely determine the optimal policy.
Ahn and Righter [1] partially characterized optimal task selection policies for general production
lines. In this paper we extend some of their results as we prove properties of optimal policies
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under more general assumptions on service time distributions and worker skills. In addition,
we derive properties of optimal worker selection strategies. Our paper also differs from theirs
in the methodology used in the proofs. We use sample path comparisons in continuous time to
characterize policies that maximize throughput along any sample path. On the other hand, they
used a discrete-time model and applied inductive schemes on the number of periods defining
the length of the time horizon.

The paper is organized as follows. The model is described in Section 2. Optimal task and
worker selection policies are characterized in Sections 3 and 4, respectively. We conclude in
Section 5.

2. Model description

We consider a tandem system consisting of N stations (N ≥ 3), where each station requires
a specific task type that has to be performed for each job entering the system. We consider
both open systems with external arrivals, and closed (CONWIP) systems, where each departure
triggers an arrival so that the total WIP remains constant. The system is attended by M cross-
trained workers, where M ≤ N . Tasks may have different processing requirements and workers
may have different speeds (possibly depending on tasks as well), that is, service times may be
task type and/or worker dependent. We assume that (i) workers cannot collaborate (but multiple
workers are allowed to work in parallel at the same station if a distinct job is available for each
one), (ii) idling is allowed, (iii) task preemption is not allowed, and (iv) workers can move from
station to station instantaneously. Assumptions (i)–(iii) make the problem more difficult. Task
nonpreemption is both a practical reality in many operations and a reasonable assumption for
tractability when service times are general in distribution.

We denote by Ti, i = 1, 2, . . . , M , the set of tasks (which is identical to the labels of the
stations) that can be performed by worker i. We assume that successive tasks performed
at station i by the same worker are independent and identically distributed; however, the
distribution on the task processing time may vary by station. Adopting the terminology in Gel
et al. [12] we distinguish tasks into fixed tasks that can be performed by only one worker, and
shared tasks that can be performed by more than one worker. Workers that have at least one fixed
task are termed exclusive. Analytical results are only possible for sets {Ti, i = 1, 2, . . . , M}
of special form, which also arise from practical considerations. For example, it is reasonable
to train workers to work in adjacent stations, so each Ti corresponds to a zone in the line, or
possibly a zone that has a generalized zone structure of adjacency as in the case of U-shaped
lines where workers can work on both ends of the line, e.g. stations {N − 1, N, 1, 2}. This
approach can greatly reduce worker walk times, may improve the ability of the system to
utilize ‘visual control’, may enhance efforts to create accountability for product quality, and
seems to simplify the challenge of identifying an effective dynamic control policy that can be
implemented. Ahn and Righter [1] studied systems with Ti = {k : ki ≤ k ≤ �i}, where ki

and �i are nondecreasing sequences with k1 = 1 and �M = N . The two workers in Gel et
al. [11] had training sets given by T1 = {1, 2} and T2 = {2, 3}. The lines for which Gel et
al. [12] proved the ‘fixed-before-shared’ optimality had T1 = {1}, T2 = {1, 2} or T1 = {1, 2},
T2 = {2}. The D-skill chains introduced by Hopp et al. [14] are examples of U-shaped lines
with Ti = {i, (i + 1) mod N, . . . , (i + D − 1) mod N}, i = 1, 2, . . . , N . Finally, the FTZC
model of Parvin et al. [21] is a U-shaped CONWIP line with W workers with 0 to N −W fixed
tasks per worker for which every worker has one downstream shared task and one upstream
shared task such that the fixed tasks, if any, are located between the two shared tasks.
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In this paper we clarify principles of optimal worker control (task selection by available
workers and worker selection for available tasks) that apply to open and/or closed queueing
models. Our work is also distinguished by its generality of formulation regarding service time
distributions and worker skills.

We determine properties of worker allocation policies that maximize job completions along
any sample path. For a realization ω that fixes the sequence of arrival and service times, we
denote by Dπ

t (ω) the number of job completions by time t under a worker allocation strategy π .
Therefore, we aim to characterize a policy π∗ such that Dπ∗

t (ω) ≥ Dπ
t (ω) for all t , π , and ω.

Starting with an arbitrary policy π , we define π∗ as a modification of π and show that, for
any sample path, the number of job completions under π∗ is not less than those under π . In
the following sections we provide partial characterizations of optimal policies, most of which
apply to systems with fixed tasks and exclusive workers.

3. Optimal task selection

In this section we consider time instants when only a single worker is available to serve two
or more jobs of different types and must choose which to serve.

3.1. General processing times

Our first theorem addresses problems with arbitrary service time distributions and exclusive
workers that are trained to work in a zone where the only shared task is the most upstream
task of the zone. We show that the nonidling last-buffer–first-served (LBFS) policy is optimal
when fixed tasks are present. In other words, once a job becomes available in the worker’s most
upstream fixed station, he/she serves this job through all the stations in his/her skill set. This is
a pick-and-run-type policy introduced by Van Oyen et al. [22].

Theorem 1. Consider worker i with Ti = {m : ki ≤ m ≤ �i}, where only ki may be a
shared task. Assuming arbitrary distributions for service times, the job completion process is
maximized along every sample path by a policy that

(i) does not idle worker i when fixed tasks are present, and

(ii) follows the LBFS rule among the worker’s tasks.

Proof. We prove part (ii) first. Let τ be a time instant when worker i becomes available
with at least two stations in set Ti having waiting jobs, and let k be the most downstream such
nonempty station. For any policy π that assigns worker i to some other station � in set Ti ,
where � < k, we construct an alternative policy π̃ that assigns worker i to station k and is such
that Dπ̃

t (ω) ≥ Dπ
t (ω) along every sample path ω. Because service times are task and worker

dependent, sample path ω is defined by sequences Sw
j (l, ω), l = 1, 2, . . ., where Sw

j (l, ω) is the
time duration of the lth service performed by worker w in station j . We construct policy π̃ to be
identical to π except that at time τ worker i is assigned to station k and then follows the sequence
of actions taken under π after time τ ; the first action in that sequence is a service in station �,
and the rest (that may include idle periods) are determined from the realization of the arrival and
service processes. Policy π̃ is well defined as it can always mimic π with respect to actions taken
by workers other than i because at any time all stations where these workers can be assigned
(those not fixed to worker i) have at least as many jobs under π̃ as under π . The two policies
are coupled at the time of the first service completion under π in station k, denoted by τc(ω).
Time periods [τ + Si

�(1, ω), τc(ω) − Si
k(1, ω)] under π and [τ + Si

k(1, ω) + Si
�(1, ω), τc(ω)]

under π̃ include the same sequence of actions by worker i. Comparing the two policies, we see
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that we have the same number of job completions unless k is the last station (k = N), in which
case we have Dπ̃

t (ω) = Dπ
t (ω) + 1 for τ + Si

k(1, ω) ≤ t ≤ τc(ω). Repeating the argument
every time policy π does not give priority to the most downstream station proves part (i) of the
theorem.

The proof of part (i) is based on a similar construction of the alternative policy π̃ . After the
service completion in station k, worker i idles for the same amount of time he/she would have
idled under π , say I (ω), which can be calculated by observing the sample path realization.
Then he/she replicates the actions taken under π until the two policies are coupled the first time
a service is completed in station k. The evolution of policies π and π̃ along some sample path
ω is essentially identical to that in part (ii) with Si

�(1, ω) replaced with I (ω).

Theorem 1 provides a very general result as it holds for general processing times and workers
with different speeds. Unfortunately, optimal policies are complex and it is not clear whether
the worker should work on a shared task or idle when fixed tasks are not present. It is also
restrictive with respect to the task set of the exclusive worker under consideration (while the task
sets of all other workers may be arbitrary). However, as shown in the detailed technical report
of Pandelis and Van Oyen [20], Theorem 1 also holds for worker i with Ti = {m : ki ≤ m ≤ �i}
in settings where ki and �i are the only shared tasks.

It could be argued that the LBFS rule is optimal within a worker’s fixed tasks, irrespective
of the number of shared tasks. Ahn and Righter [1] showed the optimality of this rule for fixed
tasks with identically distributed processing times (see Theorem 2.1(ii) therein), a result that
we will generalize in the following section. For general processing times and worker zones
with an arbitrary number of shared tasks on both ends, it can only be shown that the LBFS rule
is optimal within the class of policies that give priority to fixed tasks (see [20]). Note that this
is a reasonable heuristic for preventing starvation of downstream workers that could arise from
bottlenecks in upstream fixed stations.

3.2. Identically distributed processing times

Theorem 1(ii) can be extended to exclusive workers with more general training/skill sets
under the assumption that service times are identically distributed within zones with at most
one shared task upstream and no other shared tasks. As an example, consider worker i with
Ti = {1, 2, 3, 5, 7, 12}, where tasks 1, 7, and 12 are shared. Then, the following theorem
applies to the set T̃i = {1, 2, 3} (a set of consecutive stations such that only station 1 is shared)
if the service times for tasks 1, 2, and 3 are identically distributed.

Theorem 2. Consider worker i, and let T̃i ⊆ Ti such that T̃i = {m : ki ≤ m ≤ �i}, where

(i) only ki may be a shared task, and

(ii) processing times for all tasks performed by worker i in set T̃i are identically distributed.

Then the job completion process is maximized along every sample path by a policy that follows
the LBFS rule for tasks in set T̃i .

Proof. As in the proof of Theorem 1, we consider a time instant τ when some policy π assigns
worker i to some station � ∈ T̃i other than k, the most downstream nonempty station in set T̃i .
The result will be proved by constructing a policy π̃ that assigns worker i to station k and is such
that Dπ̃

t (ω) ≥ Dπ
t (ω) for every sample path ω. Because service times are task independent

in set T̃i , a sample path ω is defined by sequences Sw
j (l, ω), j /∈ T̃i , Sw

ki
(l, ω), w �= i, and
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Si

T̃i
(l, ω), l = 1, 2, . . ., where Si

T̃i
(l, ω) is the time duration of the lth service performed by

worker i in set T̃i . We define π̃ as follows. After time τ policy π̃ is identical to π except when
worker i is assigned under π to a station that is empty under π̃ , in which case π̃ assigns worker i

to the most downstream nonempty station in set T̃i upstream of the one served under π . This
construction is valid because assumption (ii) ensures that service completions by worker i occur
simultaneously under π and π̃ . Moreover, for workers other than i, policy π̃ can always mimic
π because these workers can only be assigned to station ki and the stations outside T̃i where
along any sample path there are at least as many jobs under π̃ as under π . It can be shown that
eventually we have coupling of π and π̃ in terms of the number of jobs present in each station
and the number of job completions. The details of the proof for both open and CONWIP lines
are relegated for the sake of brevity to Pandelis and Van Oyen [20].

Remark 1. Under certain assumptions, Theorem 2 also holds for the minimization of the total
holding cost along any sample path. Let h(j), j = 1, 2, . . . , N , be the holding cost per unit
time incurred by each job in station j , and let Hπ

t (ω) be the total holding cost accrued on [0, t)

under policy π along sample path ω. Also, let hπ
t (ω) be the total holding cost rate (summed

over all jobs present in the system) at time t under policy π . Assuming that h(j) is a concave
function, it can be shown by the same sample path arguments that hπ̃

t (ω) ≤ hπ
t (ω) for all t

and ω. Therefore, Hπ̃
t (ω) ≤ Hπ

t (ω) for all t and ω.

As already stated, Theorem 2 extends Theorem 2.1(ii) of [1] which establishes the optimality
of the LBFS rule among a worker’s fixed tasks in the class of nonidling, nonpreemptive policies
(idling is permitted in our formulation). The result of Theorem 2 has also been proved in
[1, Lemma 3.1] under more restrictive assumptions: workers of equal speeds and deterministic
processing times that are either equal to one time unit or can take arbitrary values provided
that preemptions are allowed. It may seem that giving priority to a worker’s fixed tasks over
any shared task may always be optimal; however, Pandelis and Van Oyen [20] provided a
counterexample.

4. Optimal worker selection

In this section we consider instances in time at which two or more workers are competing
for a single task available to them. There may be other jobs and workers in the system, but our
focus is on those workers that are available and there is only one available job to which they
can be assigned at time t . We restrict attention to cross-training patterns with workers arranged
in consecutive training sets Ti = {k : ki ≤ k ≤ �i} with (ki) and (�i) being nondecreasing
sequences. To permit U-shaped lines, we allow �i > N , so to speak, in the sense that k > N

and �i > N are interpreted as their modulo N stations. For example, with a U-shaped line
with N stations, Ti = {ki, ki + 1, . . . , N, N + 1} corresponds to Ti = {ki, ki + 1, . . . , N, 1}.
When the workers have equal speeds, i.e. they are equally skilled, it is intuitively reasonable that
preference should be given to downstream workers, so that the other workers are kept available
for new tasks arriving from upstream. In the rest of the section we formalize conditions
under which priority to downstream workers maximizes the job completion process along any
sample path.

The following theorem refers to the case when two or more workers are competing for a
single shared task, S. Let W = {j, j +1, . . . , j +K −1} be a set of K ≥ 2 workers arranged in
consecutive training sets with j being the most upstream worker (with respect to the workflow
direction).

https://doi.org/10.1239/jap/1339878806 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1339878806


588 D. G. PANDELIS AND M. P. VAN OYEN

Theorem 3. Consider a time instant when the only task available to the workers in set W is S.
Assuming that

(i) the workers in set W have equal speeds,

(ii) j is an exclusive worker,

(iii) each of the workers j + 1, . . . , j + K − 1 has at most one task shared with workers not
in set W ,

there exists a policy that assigns a worker other than j to task S and has at least as many
completions along any sample path as any policy that assigns worker j to S in the cases of
CONWIP systems, and open systems where the first task in the line does not belong to the
training sets of workers j + 1, . . . , j + K − 1.

Proof. Let π be a policy that assigns j to S. We define an alternative policy π̃ that assigns
some other worker k ∈ W to S, keeps j idle until task S is completed, and is identical to π

afterwards. Because workers j and k have equal speeds, the service time of task S is equal
under policies π and π̃ along any sample path. Our assumptions ensure that along any sample
path it is not possible for π to assign k to some task during the service of S. Such a task could
become available in one of three ways: by an external arrival in an open system, a service
completion by an upstream neighbor of j , and a service completion by some worker m /∈ W .
The first scenario is not possible because k is not trained for the first task in the line. The second
is not possible because j is busy at S and has at least one fixed task upstream of S (assumption
(ii)). The third scenario would only be possible if k had more than one shared task with workers
not in W , which is not the case (assumption (iii)). Therefore, the two policies are coupled at
the time of service completion at S, implying that they have the same performance.

Theorem 3, which applies to all CONWIP and almost all open models, shows that an optimal
policy would not give preference to the most upstream worker. However, it holds under rather
restrictive assumptions and does not specify the worker to whom preference should be given.
Nevertheless, it can provide a basis for good heuristic policies, particularly for systems with
limited cross-training.

5. Conclusions

We studied the problem of the dynamic assignment of cross-trained workers in serial produc-
tion lines in order to maximize throughput. We considered quite general models with respect to
processing time distributions, worker speeds, and worker cross-training patterns. Our research
into this class of systems suggests that optimal policies are very complex. Using exchange
arguments, we were able to determine structural properties of policies that maximize the job
completion process along any sample path, thereby providing some structure to a general class
of models. Our results extended previous work in the literature and provided valuable insights
that we expect will lead to good heuristic policies.
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