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Abstract
This paper presents a formulation of snapshot positioning as a mixed-integer least-squares problem. In snapshot
positioning, one estimates a position from code-phase (and possibly Doppler-shift) observations of global navigation
satellite system (GNSS) signals without knowing the time of departure (timestamp) of the codes. Solving the problem
allows a receiver to determine a fix from short radio-frequency snapshots missing the timestamp information
embedded in the GNSS data stream. This is used to reduce the time to first fix in some receivers, and it is used
in certain wildlife trackers. This paper presents two new formulations of the problem and an algorithm that solves
the resulting mixed-integer least-squares problems. We also show that the new formulations can produce fixes even
with huge initial errors, much larger than permitted in Van Diggelen’s widely-cited coarse-time navigation method.

1. Introduction

The fundamental observation equation in a global navigation satellite system (GNSS) is

𝑡𝑖 − 𝑡𝐷,𝑖 =
1
𝑐
‖ℓ̊ − 𝜌𝑖 (𝑡𝐷,𝑖)‖2 + �̊� + 𝛿𝑖 + 𝜖𝑖 ,

where 𝑡𝑖 is the observed (estimated) time of arrival of a code from satellite 𝑖, 𝑡𝐷,𝑖 is the time of departure
of the signal, 𝑐 is the speed of light, ℓ̊ is the location of the receiver, 𝜌𝑖 (𝑡𝐷,𝑖) is the location of the satellite
at the time of transmission, �̊� is the offset in time-of-arrival observation caused by the inaccurate clock
at the receiver and by delays in the analogue radio-frequency (RF) chain (e.g. in cables), 𝛿𝑖 represents
atmospheric delays and the satellite’s clock error, and 𝜖𝑖 is an error or noise term that accounts for both
physical noise and for unmodelled effects. Normally, the GNSS solver estimates ℓ̊ and �̊� by minimising
the norm of the error vector 𝜖 ; it does not know 𝜖𝑖 and does not attempt to estimate it. The quantities
𝑡𝐷,𝑖 and 𝜌𝑖 (𝑡𝐷,𝑖) are usually known; 𝑡𝐷,𝑖 is known because the satellite timestamps its transmission,
and 𝜌𝑖 (𝑡𝐷,𝑖) is known because the satellite transmits the parameters that define its orbit, called the
ephemeris. The ephemeris can also be downloaded from the Internet.

Decoding 𝑡𝐷,𝑖 takes a significant amount of time, in a global positioning system (GPS) up to 6 s
under good signal-to-noise ratio (SNR) conditions and longer in low-SNR conditions. GNSS receivers
that need to log locations by observing the RF signals for short periods cannot decode 𝑡𝐷,𝑖 . Examples
for such applications include tracking marine animals like sea turtles, which surface briefly and then
submerge again. It turns out that techniques that are collectively called snapshot positioning or coarse-
time navigation can estimate ℓ̊ and �̊� when 𝑡𝐷,𝑖 is not known. These techniques can also reduce the time
to a first fix when a receiver is turned on.

© The Author(s), 2021. Published by Cambridge University Press on behalf of The Royal Institute of Navigation. This is an Open Access article,
distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-
nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is
properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.

https://doi.org/10.1017/S0373463321000709 Published online by Cambridge University Press

https://orcid.org/0000-0002-9524-7115
mailto:stoledo@tau.ac.il
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S0373463321000709&domain=pdf
https://doi.org/10.1017/S0373463321000709


1268 Eyal Waserman and Sivan Toledo

Snapshot receivers sample the incoming GNSS RF signals for a short period, called a snapshot.
Usually (but not always), the RF samples are correlated with replicas of the codes transmitted by the
satellites, therefore determining 𝑡𝑖 for the subset of visible satellites. The correlation (and Doppler
search) is sometimes performed on the receiver, which then stores or transmits the 𝑡𝑖 data. This appears
to be the case for a proprietary technology called Fastloc, which is used primarily to track marine
animals (Tomkiewicz et al., 2010; Witt et al., 2010; Dujon et al., 2014). In other cases (Ramos et al.,
2011; Bavaro, 2012a, 2012b; Liu et al., 2012; Cvikel et al., 2015; Eichelberger et al., 2019; Harten et al.,
2020), the logger records the raw RF samples and correlation is performed after the data are uploaded
to a computer.

Techniques for estimating ℓ̊ when the 𝑡𝐷,𝑖 data are not known date back to a paper by Peterson et al.
(1995). They proposed to view 𝑡𝐷,𝑖 as a function of both 𝑡𝑖 and a coarse clock-error unknown that they
call coarse time, which in principle is identical to �̊�, but is modelled by a separate variable. They then
showed that it is usually possible to estimate ℓ̊, �̊� and the coarse time from five or more 𝑡𝑖 points. This
method does not always resolve the 𝑡𝐷,𝑖 correctly. Lannelongue and Pablos (1998) and Van Diggelen
(2002, 2009) proposed methods that appear to always resolve the 𝑡𝐷,𝑖 correctly when the initial estimate
of ℓ̊ and �̊� are within some limits (adding up to approximately 150 km). Muthuraman et al. (2012)
showed that the two methods are equivalent in the sense that they usually produce the same estimates.
However, the method of Lannelongue and Pablos is an iterative search procedure, while Van Diggelen’s
is a rounding procedure that is more computationally efficient, so Van Diggelen’s method became much
more widely used and widely cited. Van Diggelen also showed how to use an iterative procedure over a
number of possible positions when the initial estimate of ℓ̊ and �̊� is outside the 150 km limit.

All three methods use a system of linearised equations with five scalar unknowns (not the usual four),
which are corrections to the coordinates of ℓ̊, the offset �̊� (which he refers to as the common bias) and
the coarse time unknown, usually denoted by 𝑡𝑐 (we denote it in this paper by the single letter 𝑠).

Van Diggelen’s algorithm was used and cited in numerous subsequent papers, all of which repeat his
presentation without adding explanations. Liu et al. (2012), Ramos et al. (2011) and Wang et al. (2019)
describe snapshot GPS loggers whose recordings are processed using the algorithm. Badia-Solé and
Iacobescu Ioan (2010) report on the performance of the method. Othieno and Gleason (2012), Chen
et al. (2014) and Fernández-Hernández and Borre (2016) show how to use Doppler measurements to
obtain an initial estimate that satisfies the requirements of Van Diggelen’s algorithm. Yoo et al. (2020)
propose a technique that replaces the estimation of the coarse-time parameter by a one-dimensional
search, which allows them to estimate ℓ̊ using observations from four satellites, but at considerable
computational expense.

Bissig et al. (2017) use a direct position determination (Weiss, 2004) approach to snapshot position-
ing. They quantise the four unknowns ℓ̊ and �̊�, and maximise the likelihood of the received snapshot over
this four-dimensional lattice. To make the search efficient, they use a branch and bound approach that
prunes sets of unlikely solutions. It appears that this approach allows them to estimate locations using
very short snapshots, but at the cost of fairly low accuracy and relatively long running times, compared
with methods that estimate the 𝑡𝑖 data first.

In this paper we derive the observation equations that underlie the methods of Peterson et al.
(1995), Lannelongue and Pablos (1998) and Van Diggelen (2002, 2009). These authors show the cor-
rection equations, not the observation equations whose Jacobian constitutes the correction equations.
The formulation of the observation equations, which constitute a mixed-integer least-squares prob-
lem, allows us to apply a new type of algorithm to estimate the integer unknowns. A mixed-integer
least-squares problem is an optimisation problem with a least-squares objective function and both real
(continuous) unknowns and integer unknowns. More specifically, we regularise the mixed-integer prob-
lem using either a priori estimates of ℓ̊ and �̊� or Doppler-shift observations. Our approach is inspired
by the real-time kinematic (RTK) method, which resolves a position from both code-phase and carrier-
phase GNSS observations (Teunissen, 2017); carrier-phase constraints have integer ambiguities that
must be resolved.
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Our experimental results using real-world data demonstrate that our new algorithms can resolve loca-
tions with much larger initial location and time errors than the method of Van Diggelen. Van Diggelen’s
non-iterative method only works when the initial estimate is up to approximately 150 km (or equivalent
combinations), whereas our mixed-integer least-squares solver works with initial errors of up 150 s and
200 km. When using Doppler-shift regularisation, our method works even with initial errors of 180 s
and arbitrarily large initial position errors (on Earth); if the initial position error is small, the method
tolerates initial time errors of up to 5000 s.

Our implementation of the new methods and the code that we used to evaluate them are publicly
available.1

The rest of this paper is organised as follows. Section 2 presents the observation equations for the
snapshot-positioning GNSS problem. Section 3 explains how to incorporate the so-called coarse-time
parameter into the observation equations and how Van Diggelen’s method exploits it. Section 4.1
presents our first regularised formulation, which uses the initial guess to regularise the mixed-integer
least-squares problem. Section 4.2 presents the Doppler-regularised formulation. Our experimental
results are presented in Section 5. Section 6 discusses our conclusions from this research.

2. The snapshot-positioning problem: a GNSS model with whole-millisecond ambiguities

We begin by showing that when departure times are not known, the observation equations that
relate the arrival times of GNSS codes to the unknown position of the receiver contain integer
ambiguities.

We denote by 𝑡𝐷,𝑖 the time of departure of a code from satellite 𝑖, and we assume that 𝑡𝐷,𝑖 represents
a whole millisecond (in the time base of the GPS system). We denote by 𝑡𝑖 the time of arrival of that
code at the antenna of the receiver. We assume that the receiver estimates the arrival time of that code as
𝑡𝑖 = 𝑡𝑖 + �̊� + 𝜖𝑖 , where �̊� represents the bias that is caused by the inaccurate clock of the receiver and by
delays that the signal experiences in the path from the antenna to the analogue-to-digital converter, and
𝜖𝑖 is the arrival-time estimation error. The bias �̊� is time dependent, because of drift in the receiver’s
clock, but over short observation periods this dependence is negligible, so we ignore it.

The time of arrival is governed by the equation

𝑡𝑖 − 𝑡𝐷,𝑖 =
1
𝑐
‖ℓ̊ − 𝜌𝑖 (𝑡𝐷,𝑖)‖2 + 𝛿𝑖 ,

where 𝑐 is the speed of light, ℓ̊ is the location of the receiver, 𝜌𝑖 is the location of the satellite (which is
a function of time, since the satellites are not stationary relative to Earth observers), and 𝛿𝑖 represents
the inaccuracy of the satellite’s clock and atmospheric delays. We assume that 𝛿𝑖 can be modelled, for
example using models of ionospheric and tropospheric delays (dual frequency receivers can estimate the
ionospheric delay, but we assume a single-frequency receiver). Setting 𝛿𝑖 to the satellite’s clock error
correction from the ephemeris induces a location error of approximately 30 m due to the atmospheric
delays (Borre and Strang, 2012).

A receiver that decodes the timestamp embedded in the GPS data stream can determine 𝑡𝐷,𝑖 , which
leads to the following equation:

𝑡𝑖 − 𝑡𝐷,𝑖 =
1
𝑐
‖ℓ̊ − 𝜌𝑖 (𝑡𝐷,𝑖)‖2 + �̊� + 𝛿𝑖 + 𝜖𝑖 ,

the conventional GNSS code-observation equation, in which the four unknown parameters are �̊� and
the coordinates of ℓ̊ (we assume that 𝛿𝑖 is modelled, possibly trivially 𝛿𝑖 = 0, but not estimated).

1https://github.com/eyalw711/snapshot-positioning

https://doi.org/10.1017/S0373463321000709 Published online by Cambridge University Press

https://github.com/eyalw711/snapshot-positioning
https://doi.org/10.1017/S0373463321000709


1270 Eyal Waserman and Sivan Toledo

To simplify the notation, we ignore 𝛿𝑖 for now and write

𝑡𝑖 − 𝑡𝐷,𝑖 =
1
𝑐
‖ℓ̊ − 𝜌𝑖 (𝑡𝐷,𝑖)‖2 + �̊� + 𝜖𝑖 .

We use observations from all the satellites such that all the 𝑡𝑖 data lie between two consecutive whole
multiples of 𝑡code (in GPS, two round milliseconds in the local clock). This allows us to express

𝑡𝑖 = (𝑁 + 𝜑𝑖)𝑡code

with a common and easily computable 𝑁 = �𝑡𝑖/𝑡code� and for 𝜑𝑖 ∈ [0, 1). We denote 𝑁𝑖 = 𝑡𝐷,𝑖/𝑡code and
write

(𝑁 − 𝑁𝑖 + 𝜑𝑖)𝑡code =
1
𝑐
‖ℓ̊ − 𝜌𝑖 (𝑡𝐷,𝑖)‖2 + �̊� + 𝜖𝑖 .

Since GNSS codes are aligned with 𝑡code, 𝑁𝑖 ∈ Z. We denote 𝑛𝑖 = 𝑁 − 𝑁𝑖 ∈ Z, so

(𝑛𝑖 + 𝜑𝑖)𝑡code =
1
𝑐
‖ℓ̊ − 𝜌𝑖 (𝑡𝐷,𝑖)‖2 + �̊� + 𝜖𝑖

or

𝜑𝑖𝑡code =
1
𝑐
‖ℓ̊ − 𝜌𝑖 (𝑡𝐷,𝑖)‖2 − 𝑛𝑖𝑡code + �̊� + 𝜖𝑖 .

We now face two challenges. One is that we have 4+𝑚 unknown parameters: three location coordinates,
�̊� and 𝑛𝑖 , but only 𝑚 constraints. We clearly need more constraints so that we can resolve 𝑛𝑖 . The other
is that we have a set of nonlinear constraints with continuous real unknowns, the location and �̊�, and
with integer unknowns, the 𝑛𝑖 . The strategy, as in other cases with this structure, is to first linearise
the nonlinear term, then to resolve the integer parameters, and to then substitute them and to solve the
continuous least-squares problem (either the linearised system or the original nonlinear system). We
cannot linearise the nonlinear term ‖ℓ̊ − 𝜌𝑖 (𝑡𝐷,𝑖)‖2/𝑐 using a Taylor series because it is a function of
both real unknowns and of the integer unknowns 𝑛𝑖 . We cannot differentiate this term with respect to
the integer 𝑛𝑖 .

To address this difficulty, we approximate 𝑡𝐷,𝑖 by approximating the range (distance) term in the
equation

𝑡𝐷,𝑖 = 𝑡𝑖 −
1
𝑐
‖ℓ̊ − 𝜌𝑖 (𝑡𝐷,𝑖)‖2 − �̊� − 𝜖𝑖 .

For now, we denote the approximation of the propagation delay by

𝑑𝑖 ≈
1
𝑐
‖ℓ̊ − 𝜌𝑖 (𝑡𝐷,𝑖)‖2 + 𝜖𝑖

so
𝑡𝐷,𝑖 = 𝑡𝑖 − 𝑑𝑖 − �̊�.

There are several ways to set 𝑑𝑖 , depending on our prior knowledge of ℓ̊ and �̊�. One option in the GPS
system is to set it to approximately 76·5 ms; this limits the error in 𝑡𝐷,𝑖 to approximately 12·5 ms for any
Earth observer, and the error

‖ℓ̊ − 𝜌𝑖 (𝑡𝐷,𝑖)‖2 − ‖ℓ̊ − 𝜌𝑖 (𝑡𝐷,𝑖)‖2

to approximately 10 m (Van Diggelen, 2009). We substitute 𝜌𝑖 (𝑡𝐷,𝑖) = 𝜌𝑖 (𝑡𝑖 − 𝑑𝑖 − �̊�) for 𝜌𝑖 (𝑡𝐷,𝑖),

𝜑𝑖𝑡code =
1
𝑐
‖ℓ̊ − 𝜌𝑖 (𝑡𝑖 − 𝑑𝑖 − �̊�)‖2 − 𝑛𝑖𝑡code + �̊� + 𝜖 (𝐷)

𝑖 . (2.1)
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The superscript (𝐷) on the error term indicates that the error term now represents not only the arrival-
time estimation error, but also the error induced by the inexact departure time.

We linearise around an a priori solution ℓ̄ and �̄� (usually �̄� = 0, otherwise we can simply shift the 𝑡𝑖s),

𝜑𝑖𝑡code =
1
𝑐
‖ℓ̄ − 𝜌𝑖 (𝑡𝑖 − 𝑑𝑖 − �̄�)‖2 +

1
𝑐

J𝑖,:

[
ℓ̊ − ℓ̄

�̊� − �̄�

]
− 𝑛𝑖𝑡code + �̊� + 𝜖 (𝐷,𝐿)

𝑖

=
1
𝑐
‖ℓ̄ − 𝜌𝑖 (𝑡𝑖 − 𝑑𝑖 − �̄�)‖2 +

1
𝑐

J𝑖,:

[
ℓ̊ − ℓ̄

�̊� − �̄�

]
− 𝑛𝑖𝑡code + (�̊� − �̄�) + �̄� + 𝜖 (𝐷,𝐿)

𝑖 , (2.2)

where J is the Jacobian of the Euclidean distances with respect to both the location of the receiver and
to the bias, with the derivatives evaluated at ℓ̄ and at 𝑡𝑖 − 𝑑𝑖 − �̄�. The superscript (𝐷, 𝐿) on the error
term indicates that it now includes also the linearisation error.

There are now several ways to resolve the 𝑛𝑖 .

3. Shadowing

Peterson et al. (1995) introduced a somewhat surprising modelling technique, which we refer to as
shadowing. The idea is to replace the unknown 𝑏 by two separate unknowns that represent essentially
the same quantity, the original 𝑏 and a shadow 𝑠. In principle, they should obey the equation 𝑏 = 𝑠, but
the model treats 𝑠 as a free parameter; the constraint 𝑏 = 𝑠 is dropped. In the literature, 𝑠 is called the
coarse-time parameter (and is often represented by 𝑡𝑐 or 𝑡𝑐). We express this technique by splitting 𝑏
and 𝑠:

𝜑𝑖𝑡code =
1
𝑐
‖ℓ̄ − 𝜌𝑖 (𝑡𝑖 − 𝑑𝑖 − �̄�)‖2 +

1
𝑐

J𝑖,:

[
ℓ̊ − ℓ̄

�̊� − �̄�

]
− 𝑛𝑖𝑡code + �̊� + 𝜖 (𝐷,𝐿)

𝑖

=
1
𝑐
‖ℓ̄ − 𝜌𝑖 (𝑡𝑖 − 𝑑𝑖 − �̄�)‖2 +

1
𝑐

J𝑖,:

[
ℓ̊ − ℓ̄

𝑠 − �̄�

]
− 𝑛𝑖𝑡code + �̊� + 𝜖 (𝐷,𝐿)

𝑖 .

We now have five unknowns, not four.
As far as we can tell, there is no clear explanation in the literature as to the benefits of shadowing.

One way to justify the technique is to observe that Equation (2.2) is very sensitive to small (nanosecond
scale) perturbations in the additive �̊�, but it is not highly sensitive to the �̊� (now 𝑠) by which we
multiply,

J𝑖,4 =
𝜕

𝜕𝑡𝐷,𝑖
‖ℓ̄ − 𝜌𝑖 (𝑡𝑖 − 𝑑𝑖 − �̄�)‖2. (3.1)

For example, in GPS, the derivative is bounded by approximately 800 m/s for any ℓ̄ on Earth (Van
Diggelen, 2009), so J𝑖,4/𝑐 < 3 × 10−6 (versus 1 for the additive �̊�). Therefore, the dependence of the
residual (the vector of 𝜖 (𝐷,𝐿)

𝑖 terms for a given setting of the unknown parameters) on �̊� in Equation
(2.2) is highly non-convex. There are many different values of �̊� that are almost equally good, a
millisecond apart, with each of these nearly optimal hypotheses being locally well defined; if we
increase �̊� by one millisecond and also add 1 to each 𝑛𝑖 , the residual changes very little, because J𝑖,4 is
so small.

Shadowing turns this non-convexity into explicit rank deficiency, with which it is easier to deal.
With one instance of �̊� replaced by the shadow 𝑠, the constraints no longer uniquely define �̊�, only up
to a multiple of 𝑡code. For any hypothetical solution ℓ, 𝑠, 𝑏, 𝑛, the solution ℓ, 𝑠, 𝑏 + 𝑘𝑡code, 𝑛 + 𝑘 gives
exactly the same residual. We perform a change of variables, replacing the partial sum −𝑛𝑖𝑡code + �̊� by
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−𝜈𝑖𝑡code + 𝛽, where −𝜈𝑖 = −𝑛𝑖 + ��̊�/𝑡code� and 𝛽 = �̊� − �𝑏/𝑡code�𝑡code, so 𝛽 ∈ [0, 𝑡code):

𝜑𝑖𝑡code =
1
𝑐
‖ℓ̄ − 𝜌𝑖 (𝑡𝑖 − 𝑑𝑖 − �̄�)‖2 +

1
𝑐

J𝑖,:
[
ℓ̊ − ℓ̄
𝑠 − �̄�

]
− 𝜈𝑖𝑡code + 𝛽 + 𝜖 (𝐷,𝐿)

𝑖 .

𝛽 ∈ [0, 𝑡code).

(3.2)

3.1. Resolving the integer ambiguities: Van Diggelen’s method

Van Diggelen’s method exploits the fact that the 𝜈𝑖 values are very insensitive to ℓ̊ and to 𝑠. It therefore
sets ℓ̊ = ℓ̄ and 𝑠 = �̄�, truncating the Jacobian term from Equation (3.2):

𝜑𝑖𝑡code =
1
𝑐
‖ℓ̄ − 𝜌𝑖 (𝑡𝑖 − 𝑑𝑖 − �̄�)‖2 − 𝜈𝑖𝑡code + 𝛽 + 𝜖 (𝐷,𝐿,𝐴)

𝑖

𝛽 ∈ [0, 𝑡code).
(3.3)

The new subscript (𝐷, 𝐿, 𝐴) indicates that the error term now compensates also for the use of the a
priori estimates �̄� and ℓ̄ for 𝑠 and ℓ̊.

Van Diggelen uses these constraints to set the 𝜈𝑖 values in a particular way. The method selects one
index 𝑗 that is used to set 𝜈 𝑗 and 𝛽, and then resolves all the other 𝜈𝑖 values so they are consistent with
this 𝛽. That is, he assumes that 𝜖 (𝐷,𝐿,𝐴)

𝑗 = 0 so

𝜈 𝑗 =

⌈
1
𝑐 ‖ℓ̄ − 𝜌 𝑗 (𝑡 𝑗 − 𝑑 𝑗 − �̄�)‖ − 𝜑 𝑗 𝑡code

𝑡code

⌉
𝛽 = (𝜈 𝑗 + 𝜑 𝑗)𝑡code −

1
𝑐
‖ℓ̄ − 𝜌 𝑗 (𝑡 𝑗 − 𝑑 𝑗 − �̄�)‖2.

The method now substitutes this 𝛽 in all the other constraints and assigns the other 𝜈𝑖 values by setting
𝜖 (𝐷,𝐿,𝐴)
𝑖 = 0 and rounding,

𝜈𝑖 =

⌊
1
𝑐 ‖ℓ̄ − 𝜌𝑖 (𝑡𝑖 − 𝑑𝑖 − �̄�)‖ − 𝜑𝑖𝑡code + 𝛽

𝑡code

⌉
. (3.4)

When ‖ℓ̊ − ℓ̄‖ and |𝑠 − �̄� | are small enough, this gives a set of 𝜈𝑖 values that are correct in the sense that
they all differ from the correct 𝜈𝑖 values by the same integer.

Van Diggelen chooses 𝑗 in a particular way: he chooses the 𝑗 that minimises the magnitude of
Equation (3.1), which corresponds to the satellite closest to the zenith of ℓ̄ at 𝑡 𝑗 − �̄�. In our notation,
Van Diggelen’s justification for this choice is as follows. He searches for a 𝑗 for which Equation (3.3)
approximates well Equation (3.2). The difference between the two is

1
𝑐

J 𝑗 ,:
[
ℓ̊ − ℓ̄
𝑠 − �̄�

]
.

For each satellite, J𝑖,1:3 is the negation of the so-called line-of-sight vector 𝑒𝑇𝑖 , which is the normalised
direction from the satellite to the receiver; element J𝑖,4 is the range rate. Van Diggelen’s choice of 𝑗
leads to a row of J in which the first three elements are almost orthogonal to ℓ̊ − ℓ̄ and in which the
fourth element, the range rate, is small. This leads to an estimated 𝛽 that is relatively accurate, which
helps resolve the correct 𝜈𝑖 values.

Van Diggelen also shows that if we resolve the 𝜈𝑖 values by setting each 𝜖 (𝐷,𝐿,𝐴)
𝑖 = 0 separately,

then the resolved 𝛽 values might be close to 0 in one equation and close to 𝑡code in another; this leads to
inconsistent 𝜈𝑖 values and to a huge position error.
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3.2. Final resolution of the receiver’s location

Van Diggelen’s method resolves the integer 𝜈𝑖 values in Equation (3.3). Now we need to resolve the
continuous unknowns. We do so using Gauss–Newton iterations on Equation (3.2), iterating on 𝛿ℓ = ℓ̊−ℓ̄,
𝛿𝑠 = 𝑠 − �̄� and 𝛽 but keeping 𝜈 fixed. We start with 𝛿ℓ , 𝛿𝑠 and 𝛽 set to zero.

In every iteration, we use the current iterates to produce estimates of the location and bias,

ℓ̂ = ℓ̄ + 𝛿ℓ

�̂� = �̄� + 𝛿𝑠 .

We use them to improve the estimate of the ranges 𝑑𝑖 , setting

𝑑𝑖 = ‖ℓ̂ − 𝜌𝑖 (𝑡𝐷,𝑖)‖2.

This allows us to reduce the errors in Equation (2.1),

𝜑𝑖𝑡code =
1
𝑐
‖ℓ̊ − 𝜌𝑖 (𝑡𝑖 − 𝑑𝑖 − �̊�)‖2 − 𝑛𝑖𝑡code + �̊� + 𝜖 (�̂�)

𝑖

=
1
𝑐
‖ℓ̊ − 𝜌𝑖 (𝑡𝑖 − 𝑑𝑖 − �̊�)‖2 − 𝜈𝑖𝑡code + 𝛽 + 𝜖 (�̂�)

𝑖

(the second line holds because 𝑛𝑖𝑡code + �̊� = 𝜈𝑖𝑡code + 𝛽, by definition). We again linearise this and solve
the constraints

𝜑𝑖𝑡code =
1
𝑐
‖ℓ̂ − 𝜌𝑖 (𝑡𝑖 − 𝑑𝑖 − �̂�)‖2 +

1
𝑐

Ĵ𝑖,:
[
ℓ̊ − ℓ̂

𝑠 − �̂�

]
− 𝜈𝑖𝑡code + 𝛽 + 𝜖 (�̂�,𝐿)

𝑖 . (3.5)

for ℓ̊, 𝑠 and 𝛽 using in the generalised least-squares sense, where the Jacobian is evaluated at ℓ̂ and
𝑡 − 𝑑 − �̂�.

We can now explain why Van Diggelen’s method resolves the integers only once and iterates only
on the continuous unknowns. The 𝜈𝑖 values that Van Diggelen’s method resolves are not equal to the
𝑛𝑖 values in the nonlinear Equation (2.1). But when the linearisation error is small enough, the two
integer vectors differ by a constant, ��̊�/𝑡code�. This difference is compensated for by the integer part of
the continuous variable 𝛽, which is not constrained to [0, 𝑡code) in the Gauss–Newton iterations. This is
the actual function of shadowing; to allow 𝛽 to compensate not only for the clock error, but also for the
constant error in 𝜈. When the initial linearisation error is so large that 𝑛 − 𝜈 is no longer a constant, the
method breaks down.

4. A mixed-integer least-squares approach

A different approach, which has never been proposed for snapshot positioning, is to add regularisation
constraints that will allow us to resolve all the 4 + 𝑚 unknowns in the 𝑚 instances of Equation (2.2)

𝜑𝑖𝑡code =
1
𝑐
‖ℓ̄ − 𝜌𝑖 (𝑡𝑖 − 𝑑𝑖 − �̄�)‖2 +

1
𝑐

J𝑖,:
[
ℓ̊ − ℓ̄

�̊� − �̄�

]
− (�̊�𝑖 − �̄�𝑖)𝑡code − �̄�𝑖𝑡code + (�̊� − �̄�) + �̄� + 𝜖 (𝐷,𝐿)

𝑖

using mixed-integer least-squares techniques. Note that we have rewritten Equation (2.2) in a way that
emphasises a change of variables that facilitate iterative improvements: the new unknowns are ℓ̊ − ℓ̄,
�̊� − �̄� and �̊� − �̄�. We initially set �̄� and �̄� to zero.

We denote the vector of delays by 𝑔,

𝑔𝑖 =
1
𝑐
‖ℓ̄ − 𝜌𝑖 (𝑡𝑖 − 𝑑𝑖 − �̄�)‖2.
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This section proposes two sets of regularising equations and explains how to use this approach in an
iterative Gauss–Newton solver.

4.1. Resolving the ambiguities: regularisation using a priori estimates

The first set of regularising equations that we propose are

1
𝑐

J𝑖,:
[
ℓ̊ − ℓ̄

�̊� − �̄�

]
= 0.

We do not enforce them exactly, only in a (weak) least-squares sense. They favour solutions of the
mixed-integer least-squares problem that are in the vicinity of the a priori solution. This leads to the
following weighted mixed-integer least-squares problem:

ℓ̂, �̂�, �̂� = arg min
ℓ,𝑏,𝑛

							𝑊 
���
⎡⎢⎢⎢⎢⎢⎣

1
𝑐

J + [0𝑚×3 1𝑚×1] −𝑡code𝐼𝑚×𝑚

1
𝑐

J 0𝑚×𝑚

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
ℓ̊ − ℓ̄

�̊� − �̄�
�̊� − �̄�

⎤⎥⎥⎥⎥⎦
−

[
𝑡code𝜑 − 𝑔 + �̄�𝑡code − �̄�

0

] )				2

2
,

where 𝑊 is a block-diagonal weight matrix derived from the covariance matrix 𝐶 of the error terms 𝜖 ,
𝑊𝑇𝑊 = 𝐶−1. Now we have 2𝑚 constraints, which for 𝑚 ≥ 4 should allow us to resolve the integer 𝑛𝑖
values.

We propose to choose a diagonal 𝑊 as follows. We set the first 𝑚 diagonal elements of 𝑊 to the
standard deviation of the arrival-time estimator, say 𝑊𝑖,𝑖 = 1/𝜎(𝑡𝑖) ≈ 1/(10 ns). To set the rest, we use
box constraints on the a priori estimates ℓ̄ and �̄�, denoted as

|𝑥 − 𝑥 | ≤ 𝑥max

|𝑦 − �̄� | ≤ 𝑦max

|𝑧 − 𝑧 | ≤ 𝑧max

|�̊� − �̄� | ≤ 𝑏max.

By the triangle inequality����J𝑖,: [ ℓ̊ − ℓ̄

�̊� − �̄�

] ���� ≤ |J𝑖,1 |𝑥max + |J𝑖,2 |𝑦max + |J𝑖,3 |𝑧max + |J𝑖,4 |𝑏max.

We define
𝑟𝑖 = |J𝑖,1 |𝑥max + |J𝑖,2 |𝑦max + |J𝑖,3 |𝑧max + |J𝑖,4 |𝑏max,

so ����J𝑖,: [ ℓ̊ − ℓ̄

�̊� − �̄�

] ���� ≤ 𝑟𝑖 .

We convert the hard box constraints into soft-weighted least-squares in order to allow for using a mixed-
integer least-squares solver. We need to set 𝑊𝑚+𝑖,𝑚+𝑖; if we assume that the error in the constraint is
Gaussian and that an error of 𝑟𝑖/𝑐 is acceptable (from the inequality above), then setting𝑊𝑚+𝑖,𝑚+𝑖 = 𝑐/𝑟𝑖 ,
say, makes sense. In practice, we use 𝑊𝑚+𝑖,𝑚+𝑖 = 𝑐/(100 km) in the experiments below.

This mixed-integer least-squares minimisation problem can be solved by a generic solver, such as
one of the solvers that have been developed for RTK.
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4.2. Doppler regularisation

It turns out that Doppler shifts allow us to regularise Equation (2.2) in a more effective way. GNSS
receivers estimate not only the time of arrival of the signal, but also its Doppler shift. The estimated
Doppler shift is biased, because of the inaccuracy of the receiver’s local (or master) oscillator; it is
also inexact. We now show a novel technique to use the Doppler-shift observations to to regularise
Equation (2.2).

Our technique is based on two assumptions. One is that the receiver is stationary, or more precisely,
that its velocity is negligible relative to the range rate, which is up to approximately 800 m/s. This
assumption can be easily removed, but its removal leads to additional unknowns and more complicated
expressions that we do not present here. The other assumption is that the local oscillator and the sampling
clock in the receiver are derived from a single master oscillator in a certain (very common) way. Again,
this assumption can be removed if another unknown is added.

The Doppler-shift formula for velocities much lower than the speed of light is

�̊�𝑖 ≈ −
1
𝑐

𝑑

𝑑𝑡
‖ℓ̊ − 𝜌𝑖 ‖2 𝑓0.

The Doppler observations that the receiver makes are

𝐷𝑖 = −
1
𝑐

𝑑

𝑑𝑡
‖ℓ̊ − 𝜌𝑖 ‖2 𝑓0 + 𝑓 + 𝜖 (𝛿)

𝑖 , (4.1)

where 𝑓 is the frequency offset (bias) of the receiver and 𝜖 (𝛿)
𝑖 is an error term that represents the

observation error and the (negligible) slow-speed approximation. Therefore, the quantities −𝑐𝐷𝑖/ 𝑓0 are
biased estimates of the range rate. We denote the a priori estimates of the Doppler shifts by �̄�𝑖 .

We differentiate Equation (2.2) by time,

𝑑

𝑑𝑡
(𝜑𝑖𝑡code) =

𝑑

𝑑𝑡

(
1
𝑐
‖ℓ̄ − 𝜌𝑖 (𝑡𝑖 − 𝑑𝑖 − �̄�)‖2 +

1
𝑐

J𝑖,:
[
ℓ̊ − ℓ̄

�̊� − �̄�

]
− 𝑛𝑖𝑡code + (�̊� − �̄�) + �̄�

)
+ 𝜖 (𝐷,𝐿,𝜕)

𝑖 .

We first manipulate the equation a little, to make it easier to differentiate:

𝑑

𝑑𝑡
(𝑐𝜑𝑖𝑡code − ‖ℓ̄ − 𝜌𝑖 (𝑡𝑖 − 𝑑𝑖 − �̄�)‖2 − 𝑐�̄�)

=
𝑑

𝑑𝑡

(
J𝑖,:

[
ℓ̊ − ℓ̄

�̊� − �̄�

]
− 𝑐𝑛𝑖𝑡code + 𝑐(�̊� − �̄�)

)
+ 𝜖 (𝐷,𝐿,𝜕)

𝑖 . (4.2)

We denote

𝐻 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

J1,1 J1,2 J1,3 J1,4 + 𝑐 −𝑐𝑡code
...

...
...

...
. . .

J𝑖,1 J𝑖,2 J𝑖,3 J𝑖,4 + 𝑐 −𝑐𝑡code
...

...
...

...
. . .

J𝑚,1 J𝑚,2 J𝑚,3 J𝑚,4 + 𝑐 −𝑐𝑡code

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The first three columns of 𝐻 are identical to those of J, the next is the fourth column of J but shifted
by 𝑐 and the last 𝑚 columns consist of a scaled identity matrix. We now express the derivative on the
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right-hand side of Equation (4.2) as

𝑑

𝑑𝑡


������
𝐻

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
ℓ̊ − ℓ̄

�̊� − �̄�
𝑛1
. . .
𝑛𝑚

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
�������
= 𝐻


������
𝑑

𝑑𝑡

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
ℓ̊ − ℓ̄

�̊� − �̄�
𝑛1
. . .
𝑛𝑚

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
�������
+

(
𝑑

𝑑𝑡
𝐻

) ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
ℓ̊ − ℓ̄

�̊� − �̄�
𝑛1
. . .
𝑛𝑚

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

We assume that the receiver is stationary, so ℓ̊ − ℓ̄ is time-independent, so (𝑑/𝑑𝑡)(ℓ̊ − ℓ̄) = 0. The
derivatives of the integers 𝑛1, . . . , 𝑛𝑚 are also zero. The derivative of the remaining element in the
vector, (𝑑/𝑑𝑡)(�̊� − �̄�), is not zero and will need to be estimated. It represents the frequency offset of
the receiver, which biases the observed Doppler shift. It is multiplied by a column whose elements are
very close to 𝑐 (the range rate is tiny relative to the speed of light), which allows it to compensate for
the frequency bias.

To differentiate 𝐻, we exploit the known structure of J. For each satellite, J𝑖,1:3 is the negation of the
so-called line-of-sight vector 𝑒𝑇𝑖 , which is the normalised direction from the satellite to the receiver;
element J𝑖,4 is the range rate. The derivatives of these quantities are shown by Van Diggelen (2009,
Equation 8.6), Fernández-Hernández and Borre (2016) and other sources:

𝑑

𝑑𝑡
J𝑖,1:3 =

𝑒𝑇 𝑑
𝑑𝑡 ‖ℓ̄ − 𝜌𝑖 ‖ +

(
𝑑
𝑑𝑡 (ℓ̄ − 𝜌𝑖)

)T

‖ℓ̄ − 𝜌𝑖 ‖
,

where the satellite position 𝜌𝑖 and its velocity (𝑑/𝑑𝑡)𝜌𝑖 are taken at 𝑡𝐷 . To reduce the number of
unknowns, we assume that the receiver is stationary, so (𝑑/𝑑𝑡)ℓ̄ = 0, so

𝑑

𝑑𝑡
J𝑖,1:3 =

𝑒𝑇 𝑑
𝑑𝑡 ‖ℓ̄ − 𝜌𝑖 ‖ −

(
𝑑
𝑑𝑡 𝜌𝑖

)T

‖ℓ̄ − 𝜌𝑖 ‖
.

Element J𝑖,4 is the range rate of satellite 𝑖, so its derivative with respect to time is the satellite’s range
acceleration,

𝑑

𝑑𝑡
J𝑖,4 =

𝑑2

𝑑𝑡2
‖ℓ̄ − 𝜌𝑖 ‖.

We use finite differences to evaluate this second derivative. The fourth column of 𝐻 is J:,4 + 𝑐, but the
derivative of 𝑐 is obviously zero. The derivative of −𝑐𝑡code is also zero, so

(
𝑑

𝑑𝑡
𝐻

) ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
ℓ̊ − ℓ̄

�̊� − �̄�
𝑛1
. . .
𝑛𝑚

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

(
𝑑

𝑑𝑡
𝐻:,1:4

) [
ℓ̊ − ℓ̄

�̊� − �̄�

]
.

We now derive the left-hand side of Equation (4.2),

𝑑

𝑑𝑡
(𝑐𝜑𝑖𝑡code − ‖ℓ̄ − 𝜌𝑖 (𝑡𝑖 − 𝑑𝑖 − �̄�)‖2 − 𝑐�̄�).

The derivative of the a prioi range estimate ‖ℓ̄ − 𝜌𝑖 (𝑡𝑖 − 𝑑𝑖 − �̄�)‖2 is the a priori range rate, which we
can compute. The derivative of 𝑐�̄� is zero.

To understand the first term, recall that

(𝑛𝑖 + 𝜑𝑖)𝑡code =
1
𝑐
‖ℓ̊ − 𝜌𝑖 (𝑡𝐷,𝑖)‖2 + �̊� + 𝜖𝑖 ,
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so

𝑐
𝑑

𝑑𝑡
𝜑𝑖𝑡code =

𝑑

𝑑𝑡
‖ℓ̊ − 𝜌𝑖 (𝑡𝐷,𝑖)‖2 + 𝑐

𝑑

𝑑𝑡
�̊� + 𝑐

𝑑

𝑑𝑡
𝜖𝑖 .

We now rewrite Equation (4.1) as

1
𝑐

𝑑

𝑑𝑡
‖ℓ̊ − 𝜌𝑖 ‖2 𝑓0 = −𝐷𝑖 + 𝑓 + 𝜖 (𝛿)

𝑖

or
𝑑

𝑑𝑡
‖ℓ̊ − 𝜌𝑖 ‖2 = −

𝑐𝐷𝑖

𝑓0
+

𝑐 𝑓

𝑓0
+

𝑐

𝑓0
𝜖 (𝛿)
𝑖 .

We now substitute in the left-hand side of Equation (4.2):

𝑑

𝑑𝑡
𝑐𝜑𝑖𝑡code = −

𝑐𝐷𝑖

𝑓0
+

𝑐 𝑓

𝑓0
+

𝑐

𝑓0
𝜖 (𝛿)
𝑖 + 𝑐

𝑑

𝑑𝑡
�̊� + 𝑐

𝑑

𝑑𝑡
𝜖𝑖 .

The term 𝑓 / 𝑓0 is the relative local-oscillator error in the receiver. If the oscillator runs too fast, 𝑓 is
negative. Assuming that all the clocks in the receiver are derived from a master oscillator, if it runs too
fast, �̊� grows over time. Under this assumption,

−
𝑐 𝑓

𝑓0
= 𝑐

𝑑

𝑑𝑡
�̊�,

so these terms cancel each other. If our assumption on the receiver does not hold, we would need to
estimate

𝑐 𝑓

𝑓0
+ 𝑐

𝑑

𝑑𝑡
�̊�.

We have arrived at a system of 𝑚 linear equations that we use to regularise the mixed-integer equations.
The equations are:

−
𝑐

𝑓0
𝐷 −

𝑑

𝑑𝑡
‖ℓ̊ − 𝜌‖2 = 𝐻:,4 (�̊� − �̄�) +

(
𝑑

𝑑𝑡
𝐻:,1:4

) [
ℓ̊ − ℓ̄

�̊� − �̄�

]
. (4.3)

In this equation, 𝐷 represents the vector of observed Doppler shifts, (𝑑/𝑑𝑡)‖ℓ̊ − 𝜌‖2 is the vector of the
a priori range rates and �̊� − �̄� = (𝑑/𝑑 𝑡)(�̊� − �̄�) is a new scalar unknown. We have explained above how
to compute 𝐻:,4 and (𝑑/𝑑𝑡)𝐻:,1:4. The full regularised weighted least-squares that we solve is

ℓ̂, �̂�, �̂�, �̂� = arg min
ℓ,𝑏,𝑛,𝑢

								𝑊

����
⎡⎢⎢⎢⎢⎢⎣

1
𝑐

J + [0𝑚×3 1𝑚×1] −𝑡code𝐼𝑚×𝑚 0𝑚×1(
𝑑

𝑑𝑡
𝐻:,1:4

)
0𝑚×𝑚 𝐻:,4

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎣
ℓ̊ − ℓ̄
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𝑑

𝑑𝑡
‖ℓ̊ − 𝜌‖2

⎤⎥⎥⎥⎥⎦���
						

2

2

.

4.3. Iterating to cope with large a priori errors

Solving the linearised and regularised mixed-integer least-squares problem improves the initial a priori
estimates of ℓ̊ and �̊�, but not to the extent possible given the code phases. The most important factor
that limits the accuracy of the corrections is the fact that when the a priori estimates are large, the
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resolved integers, the 𝑛𝑖 values, are inexact. Therefore, we incorporate the mixed-integer solver into a
Gauss–Newton-like iteration in which we correct all the unknowns, including the integer ambiguities,
more than once.

More specifically, once we solve the mixed-integer least-squares problem for �̊� − �̄�, ℓ̊ − ℓ̄ and �̊� − �̄�
(and for �̊� − �̄� in the Doppler formulation), we use the corrections to improve the estimates of the
receiver’s location and of the departure times, and we linearise Equation (2.1) again. We now solve the
newly linearised least-squares problem again for additional corrections, and so on.

5. Implementation and evaluation

We have implemented all the methods that we described above in MATLAB.
We use Borre’s Easy Suite (Borre, 2003, 2009) to perform many routine calculations. In particular,

we use it to correct the GPS time (check_t), to correct for Earth rotation during signal propagation time
(e_r_corr), to read an ephemeris from a RINEX file and to extract the data for a particular satellite
(rinexe, get_eph and find_eph), to transform Julian dates to GPS time (gps_time), to represent Julian
dates as one number (julday), to compute the coordinate of a satellite at a given time in ECEF coordinates
(satpos), to compute the azimuth, elevation and distance to a satellite (topocent, which calls togeod to
transform ECEF to WG84 coordinates), and to approximate the tropospheric delay (tropo). We also use
a MATLAB function by Eric Ogier (ionophericDelay.m, available on the MathWorks File Exchange) to
approximate the ionopheric delay using the Klobuchar model. We take the parameters for the Klobuchar
model from files published by the GNSS Research Center at Curtin University.2

During the Gauss–Newton phase of the algorithm (after the integers have been determined), if we
have only four observations, we add a pseudo-measurement constraint that constrains the correction to
maintain the height of the target, in the least-squares sense (Van Diggelen, 2009).

We use Chang and Zhou’s MILES package (Chang and Zhou, 2007) to solve mixed-integer least-
squares problems.

We take ephemeris data from RINEX navigation files published by NASA.3
We filter satellites that are lower than 10 degrees above the horizon which have the lowest SNR and

are more likely to suffer from multipath interference.
We evaluated the code on data from several sources:

• Publicly available observation data files in a standard format (RINEX) distributed by NASA. We used
these to test our algorithms in the initial phases of the research. These results are not shown here.

• GPS simulations. We generated satellite positions ephemeris files and used them to compute times
of arrival and code phases. These simulations do not include ionospheric or tropospheric delays, so
they help us separate the issues arising from these delays from other algorithmic issues.

• Code-phase and Doppler-shift measurements collected by us using a u-blox ZED-F9P GNSS receiver,
connected to an ANN-MB-00 u-blox antenna mounted on a steel plate on top of a roof with excellent
sky view. We established the precise coordinates of the antenna (to compute errors) using differential
carrier-phase corrections from a commercial virtual reference station (VRS).4 The WGS84
coordinates of the antenna are 32·1121756, 34·8055775 with height above sea level of 61·15 m. The
code phase measurements are included in the UBX-RXM-MEASX emitted by the receiver. The data
set includes approximately 700 epochs, one every minute (so they span a little more than 11 h). The
number of satellites per epoch ranges from 8 to 13 and after filtering by elevation, between 7 and 11.

• Recordings of RF samples made by a bat-tracking GPS snapshot logger. The tag model is called
Vesper. It was designed and produced by Alex Schwartz Developments on the basis of an earlier tag
called Robin, designed and produced by a company called CellGuide that no longer exists. The tag
records 1-bit RF samples at a rate of 1,023,000 samples per second. (The sampling rate is a multiple

2http://saegnss2.curtin.edu/ldc/rinex/daily/
3https://cddis.nasa.gov/archive/gnss/data/daily/
4https://axis-gps.com
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Figure 1. Cumulative distribution function of the absolute positioning errors of four algorithms: Van
Diggelen’s non-iterative method, the Doppler constraints alone (the first phase of Fernández-Hernández
and Borre’s method), and mixed-integer least-squares (MILS) with either a priori or Doppler regulari-
sation.

of 1/𝑡code; this is known to make time-of-arrival estimate difficult (Tran et al., 2018) but the rate
cannot be changed in this logger.) The tag was configured to record a 256 ms sample every 10 min
for a few hours. It was placed next to the ANN-MB-00 antenna.

Figure 1 shows the cumulative distribution function (CDF) of four algorithms: Van Diggelen’s
non-iterative method, the Doppler constraints alone (as used in the first phase of Fernández-Hernández
and Borre’s method), and MILS with either a priori or Doppler regularisation. The data from the u-blox
receiver were used to produce these graphs. We used all 694 epochs. The initial error was of 20–21 s
(uniform distribution) and 20 km in a random uniform horizontal direction. In the MILS algorithms, the
final position was computed with the regularisation constraints; this is why the Doppler regularisation
produced less accurate results. We can see that the accuracy of MILS with a priori regularisation and
of Van Diggelen’s method is essentially identical.

Figure 2 compares the probability of success achieved by our regularised MILS solver with that
achieved by Van Diggelen’s non-iterative method and by the Doppler constraints alone. We considered
fixes that are within 1 km of the true location to be a success in obtaining the correct integer values.
Each pixel in these heat maps represents 16 different runs. Each run uses a random epoch, a random
initial location estimate and a random initial time estimate. The initial location estimates have a given
distance to the true location (the 𝑥 axis of the heat map) but a random azimuth. The initial time estimate
is a slight perturbation (uniform between zero and one second) of the given time error, which is the
𝑦 axis of the heat map. In each pixel, half of the initial time errors are positive and half are negative.
We used all the satellites in view in each epoch.

The results clearly show that the MILS algorithm, even with the simple a priori time and location
regularisation from Section 4.1, outperforms Van Diggelen’s non-iterative method. Van Diggelen’s
method obtains a correct fix in almost all cases (success probability close to 1) when the initial location
error is small and the initial time error is 150 s or less, when the initial location time error is small and
the initial location error is 100 km or less, and in other equivalent combinations of time and location
errors. The corresponding limits for the MILS algorithm with a priori regularisation are approximately
150 s and 250 km.

Doppler-shift observations expand dramatically the region of convergence in both approaches.
The MILS algorithm with Doppler regularisation obtains a correct fix as long as the initial time error is
at up to approximately 180 s (3 min); this works even with great-circle distances of 20,000 km, which
means that the initial position can essentially be anywhere on Earth. If the initial position error is small,
the method can tolerate initial time errors of up to approximately 80 min (5000 s). The heat map of the
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Figure 2. The probability of obtaining a fix with an error smaller than 1 km from the u-blox data set
using four different algorithms.

Doppler constraints alone, together with the CDF in Figure 1, indicate that these constraints produce an
estimate good enough for initialising Van Diggelen’s method, but are not accurate enough on their own.
Indeed, Van Diggelen writes about the Doppler constraints alone: ‘For less than 1 Hz of measurement
error, we expect a position error of the order of 1 km’ (Van Diggelen, 2009, Section 8.3); this explains
why the probabilities in the top-right plot in Figure 2 are usually far from 1, even with small initial errors.
In general, both approaches have similar regions of convergence and they produce similarly accurate
fixes.

Figure 3 explores how the number of satellites (observations) affects the success rates of the four
methods. We repeated the experiment whose results are shown in the heat maps in Figure 2, but only
on the 20 epochs in which 13 satellites were in view. We selected random subsets of the satellites
in view and random initial errors, within the bounds shown in Figure 2, and computed the fraction
of successful experiments. We can see that when only code phases are used, Van Diggelen’s method
is better when using 6–8 observations, probably because the weighting of the observations in the
MILS method sometimes leads to incorrect integers when Van Diggelen’s method resolves the integers
correctly. However, with 5 satellites in view or more than 8, the MILS method is better. MILS with
Doppler regularisation is superior to all the other methods.

While our Matlab implementation is not designed to carefully evaluate running times and computa-
tional efficiency, we did measure the running times and we can draw from them some useful conclusions.
The running times of a single Gauss–Newton correction step in Van Diggelen’s method and in the solu-
tion of the Doppler equations is 8–10 𝜇s, while the running time of a single Gauss–Newton correction
step in the MILS formulation is approximately 2·5 ms when using a priori regularisation and 0·6 ms
when using Doppler regularisation. While the MILS methods are clearly more expensive, they also
appear to be fast enough for real-time applications.
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Figure 3. The fraction of successful positioning (error of at most 1 km) in the spaces of initial errors
shown in Figure 2 as a function of the number of satellites (observations) used.

6. Conclusions and discussion

We have shown that Van Diggelen’s ingenious coarse-time navigation algorithm (Van Diggelen, 2002,
2009) that estimates a location from GNSS observations without departure times is essentially a spe-
cialised solver for a mixed-integer least-squares problem. Even though Van Diggelen’s algorithms have
been cited and used by many authors, the actual form of the mixed-integer optimisation problem has
never been presented; we present it in this paper for the first time.

We also show that the integer ambiguities can be resolved by regularising the mixed-integer least-
squares problem. We proposed two regularisation techniques, one that biases solutions towards an initial
a priori estimate. This extends Van Diggelen’s use of the a priori estimate to resolve the integers, but our
regularisation approach can resolve the integers with larger initial errors than those of Van Diggelen.
In effect, the general mixed-integer formulation uses the available information more effectively than
Van Diggelen’s specialised solver.

We also proposed a regularisation method based on Doppler-shift observations. This method allows
our solver to resolve the correct integers even with huge initial time or position errors. Doppler shifts
have been used in snapshot positioning before, but they were always used to produce an initial position
and time estimate that is subsequently used as an a priori estimate in Van Diggelen’s algorithm. This
approach, due to Fernández-Hernández and Borre (2016), is also extremely effective.

Our algorithm iterates over the entire mixed-integer least-squares problem more than once. If one
resolves the integers once, in the first iteration, and continues to iterate only on the continuous unknowns,
using the resolved integers, the method converges, but to fixes with larger errors.

In effect, by cleanly formulating the mixed-integer optimisation problem that underlies snapshot
positioning, we have enabled the exploration of a wide range of solvers, including the two regularised
solvers that we presented here. We believe that additional solvers can be discovered for this formulation.
In contrast, all prior research treated Van Diggelen’s algorithm as a clever black box, limiting the range
of algorithms that can be developed.

Our new methods are inspired by the RTK method, which resolves a position from both code-phase
and carrier-phase GNSS observations (Teunissen, 2017). In RTK, the position is eventually resolved by
carrier-phase constraints, which have integer ambiguities; these constraints are regularised by pseudo-
range constraints, which are less precise but have no integer ambiguities. Here the position is resolved
by integer-ambiguous code-phase constraints, which are regularised by either a priori estimates or
by Doppler-shift observations. RTK also requires so-called differential constraints at a fixed receiver,
because the carrier phase of the satellites are not locked to each other. Here we do not require differential
corrections because the code departure times are locked to whole milliseconds in all the satellites.
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