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This IAU Colloquium on Radial and Nonradial Pulsations as Probes of 
Stellar Physics is dedicated to the memory of our former fellow countryman and 
former professor at the University of Liege, the astrophysicist Paul Ledoux. The 
opportunity is the fiftieth anniversary of the publication of his valuable paper on 
the effect of a small uniform axial rotation on nonradial stellar oscillations. The 
paper was published in 1951 in the Astrophysical Journal under the title "The 
nonradial oscillations of gaseous stars and the problem of Beta Canis Majoris" 
(Ledoux, 1951). 

The paper resulted from a work Paul Ledoux had carried out during a stay 
at the Princeton University Observatory in 1950-1951. The idea of this work had 
occurred to him by a reading of a paper by Otto Struve (1950) on W.F. Meyer's 
study of the radial velocity of the star /3 Canis Majoris. 

Paul Ledoux' contribution can briefly be described as follows. In pulsation 
theory, the normal linear, adiabatic (isentropic) oscillation modes of a spherically 
symmetric star are expressed in terms of spherical harmonics of the colatitude 
and the azimuthal angle, both defined with respect to a frame of reference whose 
origin coincides with the mass centre of the star. The degree of a spherical har
monic is usually denoted by £, which is the notation adopted by Ledoux in his 
comprehensive review article on variable stars published in collaboration with 
Walraven in 1958 in the Handbuch der Physik (Ledoux & Walraven, 1958); the 
azimuthal number of a spherical harmonic is commonly denoted by m. In a 
nonrotating spherically symmetric star, the eigenfrequencies of the nonradial 
oscillation modes of a degree £ and a given radial order are (2£ + l)-fold de
generate with respect to the azimuthal number m. In his paper of 1951, Paul 
Ledoux showed by means of a first-order perturbation method that, in a slowly 
uniformly rotating star, the Coriolis force lifts the degeneracy completely, so 
that the eigenfrequencies of the nonrotating star are splitted up into (2£ + 1) 
equidistant eigenfrequencies. With regard to the /3 Canis Majoris stars, nowa
days referred to as the @ Cephei stars, Paul Ledoux concluded that 

the existence of two periods very close to each other as well as a phase 
shift of a quarter-period between the broadening of the lines and the 
corresponding radial velocity can be accounted for if the oscillation 
corresponds to a spherical harmonic of degree 2 in a rotating star. 

Paul Ledoux' paper is remarkable also since it contained the seeds of various 
subsequent developments. One may think of three main developments. First 
of all, his theory has been the basis of a theory of magnetic variable stars he 
proposed in collaboration with Renson, in 1967, in terms of nonradial pulsations 
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that are maintained in a superadiabatic region by the buoyancy force in presence 
of rotation, as well as by a toroidal magnetic field (Ledoux & Renson, 1967). 

Secondly, at Paul Ledoux' suggestion, the effects of a small uniform axial 
rotation on oscillation periods of stars have been determined up to the second 
order in the angular frequency of rotation, order at which the star's distortion 
due to the centrifugal force has to be taken into account. An appropriate per
turbation procedure was developed by Simon (1969) for radial stellar oscillations 
and was extended by Smeyers & Denis (1971) to nonradial stellar oscillations. 
Later, the effects of a small uniform axial rotation on oscillation periods of poly-
tropic models were determined extensively by Saio (1981) (see also Unno et al. 
1989, Section 19.2). 

Parallel investigations have gone on into the effects of the distortion caused 
by an equilibrium tide (Denis, 1972; Saio, 1981). For several decades, these 
investigations were restricted to polytropic models. Recently, we have extended 
the procedure to arbitrary physical models of stars in collaboration with our 
graduate student T. Reyniers. 

Thirdly, Ledoux' theory of nonradial oscillations for the phenomenon of 
the p Cephei stars has been a starting-point for the identification of modes in 
variable stars from line profile variations in spectra. For this type of analysis, 
Ledoux' theory was usefully worked out by Osaki (1971). Balona, on his side, 
proposed the use of the moment method (Balona, 1986a, 1986b, 1987). The 
method was first applied to observed line profile variations of a /3 Cephei star 
by our colleague Aerts and her coworkers (Aerts et al., 1992) and has now been 
used by several researchers (Mantegazza et al., 1994; Aerts & Krisciunas, 1996). 
I presume that we shall hear more about the identification of pulsation modes 
during this colloquium. 

Paul Ledoux was born in August 1914 in Forrieres, a village in the Belgian 
Ardennes. After remarkable secondary-school studies, he entered the University 
of Liege in 1933, where he studied physics and graduated with the highest hon
ours in 1937. Paul Ledoux' interest in astrophysics was awaked by the, at the 
time, young Prof. Pol Swings, who testified later that one had not to be a great 
prophet to foresee that Paul Ledoux would become a brilliant scientist. 

After his studies and military service, Paul Ledoux, giving preference to 
theoretical research, went to the Institute of Theoretical Astrophysics in Oslo, 
where Prof. S. Rosseland introduced him into the subject of the radial oscillations 
and the stability of the stars. There he also published his first paper on the 
theory of stellar oscillations in the Astrophysica Norvegica (Ledoux, 1940). 

In May 1940, Paul Ledoux left Oslo because of the invasion of the German 
Army in Norway and went to the Stockholm Observatory, where he stayed until 
November. Then he undertook a long journey through Russia and Siberia and, 
after various tribulations, reached the Yerkes Observatory of the University of 
Chicago in December 1940 (Swings, 1989). 

Although it lasted only about one year, Paul Ledoux' stay at Oslo has 
had a decisive influence upon his scientific career. From that time on, he would 
dedicate his best energies mainly to the field of stellar oscillations and stellar sta
bility. In the introduction of his review article entitled "Stellar Stability", which 
was also published in the Handbuch der Physik (Ledoux, 1958), he specified the 
main purposes of the study of stellar stability as follows: 
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The most immediate purpose of the study of stellar stability is 
to discover the sources of the incipient instabilities which must be 
responsible for the observed variability of a great number of stars . . . 

Apart from the interpretation of variable stars, the study of sta
bility has a more general meaning for the problem of stellar structure 
since any stability criterion may be looked upon as a necessary con
dition to be satisfied by any hydrostatic model. 

At the Yerkes Observatory, Paul Ledoux began a long-lasting and fruitful 
association with Chandrasekhar and published some of the results of his re
search in Oslo and Stockholm. In a paper in collaboration with Pekeris (Ledoux 
& Pekeris, 1941), he first applied variational methods for the determination of 
the fundamental radial oscillation mode of a star. In another paper (Ledoux, 
1941), he showed that a main-sequence star with a mass larger than a critical 
mass of the order of 100 M 0 becomes vibrationally or pulsationally unstable, 
that is, the amplitude of an harmonic oscillation increases exponentially in time 
since the driving processes in the core that are related to the nuclear-energy 
sources overcome the damping due to the energy transfer by radiation. Paul 
Ledoux' conjecture was that this instability would lead to finite oscillations, 
shock waves in the external layers, and mass loss. His result was confirmed and 
improved by Schwarzschild and Harm in 1959, who repeated Ledoux' compu
tations "on the basis of . . . detailed models for massive stars" and did so "not 
only for homogeneous models appropriate for the initial main sequence but also 
for inhomogeneous models representing subsequent evolution phases". In the 
1970's, numerical studies of the nonlinear effects showed that a star undergoes 
a swelling and mass losses. 

Paul Ledoux' stay at the Yerkes Observatory was also of short duration. In 
September 1941, he left his family in the United States and joined the Belgian 
Armed Forces in Great Britain. Later he served within the Meteorological Sec
tion of the Royal Air Force (R.A.F.) and ended the war in the former Belgian 
Congo. There, he took advantage of his spare time to take up again his research 
on stellar stability, and conceived the idea of applying the virial theorem to the 
radial oscillations of stars. This application led to a simple derivation of the 
approximate formula for the period of the fundamental radial mode he had de
rived before by means of a variational method. He also derived a formula for 
the period in the case in which the star is in a steady uniform rotation. He sent 
a manuscript about his work to Chandrasekhar. The latter found Ledoux' piece 
of work highly interesting and, as not to lose time, took the initiative of submit
ting it to the Astrophysical Journal for publication. The paper appeared in 1945 
with Paul Ledoux as author and the R.A.F., Stanleyville (today Kisangani), in 
the Belgian Congo, as the author's affiliation (Ledoux, 1945). 

The virial approach has subsequently been extended to other problems of 
stellar stability. Chandrasekhar & Fermi (1953) used it to take into account the 
effects of a magnetic field. Virial equations of higher orders were derived and 
applied to stability analyses of equilibrium configurations by Chandrasekhar and 
collaborators (see Chandrasekhar's book entitled Ellipsoidal Figures of Equilib
rium, 1969). 

Demobilized in September 1945, Paul Ledoux got his PhD degree at the 
University of Liege, went back to the Yerkes Observatory, where he rejoined 
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his family, and stayed there for one year (Swings, 1989). Among the first, he 
examined the effects of changes of chemical composition on the stellar structure 
that are built up by the thermonuclear reactions in a star's core. He particularly 
considered the, at that time, new type of difficulty which arises at the boundary 
between a convective core and a radiative envelope of a main-sequence star 
as the mean molecular weight increases in the convective core because of the 
hydrogen-burning and remains unchanged in the radiative envelope. In his study, 
Paul Ledoux introduced a generalized form of the Schwarzschild criterion for 
convective stability in which the effect of a spatial variation in the chemical 
composition on a mass element moving with an unvarying chemical composition 
is taken into account. This criterion is now referred to as the Ledoux criterion 
and can be written in the general form 

dlnT /d\nT\ xp dlnji 
dlnP ~ U l n P 7 a d ~ ~xr d l n P ' 

where 
- - fdlnP\ _ (dlnP\ Xll-\d^)py

 XT-\dWT)p^ 
Paul Ledoux also introduced the notion of turbulent mixing that leads to the 
building up of a transition zone between the convective core and the radiative 
envelope with a varying mean molecular weight ~fi. In his paper of 1947, he 
stated 

. . . when ~p is assumed to change discontinuously at a point . . . , tur
bulence in a small region surrounding that point will immediately 
result. This resulting turbulence will lead to a small amount of mix
ing of the internal and the external parts. And . . . a neighboring 
stable state can be reached in consequence of this turbulence . . . 

Such transition zones are nowadays known as semi-convection zones and are 
considered to be present in many stars. 

This important discovery has been a basis for his These d'Agregation pour 
I'Enseignement Superieur, which he presented in 1949 at the University of Liege 
(Ledoux, 1949). After the acceptance of this thesis, Paul Ledoux' academic 
career really began. He became full professor in 1959. 

With one of his first students, Paul Ledoux considered the energy genera
tion by the carbon cycle and the proton-proton reaction in white dwarfs. He 
showed that white dwarfs are vibrationally unstable with respect to these nu
clear reactions, so that the presence of hydrogen in the internal regions of white 
dwarfs must be excluded (Ledoux & Sauvenier-Goffin, 1950). 

With another student, the late Arsene Boury, he studied the vibrational 
stability of stars that are originally composed of hydrogen or of a mixture of 
hydrogen and helium, and he discussed the implications of it for the possible 
enrichment of interstellar matter by helium produced in stars (Ledoux & Boury, 
1959). 

Paul Ledoux devoted a great deal of attention to the study of the nonradial 
oscillations of gaseous stars and their complex spectra of eigenfrequencies. It 
is one of his very special merits that he realized the importance of nonradial 
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oscillations in stellar stability and foresaw that the progress of observational 
techniques would reveal the presence of such oscillations in variable stars and 
close binaries. In an introductory lecture on nonradial oscillations delivered in 
1974 in Canberra, Australia, he stated (Ledoux, 1974): 

There has been lately quite a renewal of interest in the response 
of stars to nonradial perturbations aroused either by attempts at 
interpreting some types of variable stars like the /3 Canis Majoris 
stars and the new white dwarf variables, or by phenomena in the 
external layers of the Sun like the 5-min oscillation discovered by 
Leighton, or by the hope to add somewhat to our knowledge of con
vection and its penetration in nearby convectively stable zones, or 
by the desire to explore some new aspects of stellar stability which 
may be of great importance for the evolution of the star. On the 
other hand, one must expect that such non-radial motions should be 
easily excited in a variety of close double stars with eccentric orbits 
and it is likely that, with the extraordinary progress in observational 
techniques, these should become observable and be identified as such 
pretty soon. Finally there is a direct evidence in novae, perhaps even 
in planetary nebulae, for the presence of non-radial velocity fields. 

Nearly at the time of the beginning of Paul Ledoux' scientific career, two 
important papers had been published on the nonradial oscillations of compress
ible masses in hydrostatic equilibrium. The first paper was by Pekeris (1938) on 
the nonradial oscillations of the compressible equilibrium sphere with uniform 
mass density, often denoted shortly as the compressible homogeneous model. The 
model cannot directly be applied to stars but has served to illustrate some prop
erties of the general problem. Pekeris had shown that, for each degree £ of the 
spherical harmonic, two spectra of eigenvalues exist for the square of the angular 
frequency: one spectrum of positive eigenvalues increasing indefinitely with the 
radial order of the mode, and another spectrum of negative eigenvalues tending 
towards zero as the radial order of the mode increases. 

The second important paper was by Cowling (1941) on the nonradial os
cillations of polytropic models. By neglecting the Eulerian perturbation of the 
gravitational potential, as was already done before by Emden (1907), and re
ferring to analogies with the eigenvalue problems of the Sturm-Liouville type, 
Cowling had come to conclusions partly similar to the results of Pekeris with 
regard to the homogeneous model: for each degree £ of the spherical harmonic, 
the eigenvalue problem of the nonradial oscillations of the polytropic models 
admits of two spectra of eigenvalues for the square of the angular frequency; one 
spectrum consists of indefinitely increasing eigenvalues, and the other spectrum, 
of eigenvalues decreasing towards zero. 

A first point of difference was that, for the particular case of the polytropic 
model with index n = 3, for which Cowling had made some calculations, the 
eigenvalues of both spectra are positive. In his paper, Cowling had called the 
modes associated with the eigenvalues of the first spectrum pressure modes or 
p-modes, and the modes associated with the eigenvalues of the second spectrum, 
gravity modes or g-modes. 

Another point of difference was that, for £ > 2, Cowling had distinguished 
a fundamental mode or /-mode which is associated with an eigenvalue situated 
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between the eigenvalues for the p-modes and those for the g-modes. The mode 
is characterized by the property that the radial component of the Lagrangian 
displacement and the Eulerian perturbation of the density keep the same sign 
along each radius of the model. 

Paul Ledoux studied the papers by Pekeris and Cowling very carefully (see 
Sauvenier-Goffin 1951) and laid himself out to establish a closer link between 
them. The modes of the compressible homogeneous model that are associated 
with positive eigenvalues for the square of the angular frequency could mani
festly be identified as Cowling's p-modes. However, the interpretation of the 
modes of the compressible homogeneous model that are associated with nega
tive eigenvalues for the square of the angular frequency and that are dynamically 
unstable was less obvious. Paul Ledoux related the unstable character of the 
modes to the violation of Schwarzschild's criterion for local convective stability 
in the equilibrium model; he interpreted the dynamically unstable modes, in 
the homogeneous model and in other models as well, as g-modes which render 
the starting convective motions in superadiabatic regions of these models (see 
Ledoux & Walraven, 1958, Section 76; Ledoux, 1958, Section 16). In his These 
d'Agregation pour I'Enseignement Superieur, he observed: 

II semble . . . que sous son aspect le plus general, la question de la 
stabilite dynamique se rattache a celle de la stabilite vis-a-vis des 
courants de convection a laquelle est associee le critere de K. Schwarz-
schild.1 

Paul Ledoux was probably the first to stress, in such an explicit way, the con
nection between the global dynamic instability of a star through g-modes and 
the local convective instability (Ledoux, 1949, Section 3.4). 

For a certain time, another intriguing question was the apparent absence of 
/-modes in the compressible homogeneous model. This absence did raise some 
doubts about Cowling's identification of the /-modes as modes distinct from 
the p- and the g-modes. The matter was clarified in 1964 when Chandrasekhar 
showed, by the use of a variational principle (see also Chandrasekhar & Lebovitz, 
1964), that the modes of the incompressible homogeneous model that had been 
determined by Kelvin one century before (Thomson, 1863) are also modes of 
the compressible homogeneous model. It then became clear that Cowling's / -
modes are the transpositions of the Kelvin modes of the homogeneous model to 
the models with density stratifications and that they have a character definitely 
different from that of the p- and the g-modes. In particular, the /-modes asso
ciated with 1=1, which are time-independent, represent uniform translations 
of the equilibrium star and are the only admissible divergence-free modes in a 
model with density stratification (Robe, 1965). 

Under Paul Ledoux' stimulating guidance, Cowling's classification of the 
nonradial oscillations was confirmed for physical models of massive stars com
posed of a convective core in adiabatic equilibrium and a radiative envelope 
(Smeyers, 1967). In these models, the g-modes are all dynamically stable. An 
interesting question raised by Ledoux was what influence the introduction of 

l I t seems . . . that in its most general form the question of dynamic stability is related to the sta
bility with respect to convective flows, with which the criterion of K. Schwarzschild is associated. 
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a slight superadiabatic gradient of temperature into the convective core would 
have on the (/-modes. Dynamically unstable (/-modes were expected to arise, 
but it was unclear how this would occur. The question was resolved both on the 
basis of numerical computations for an artificial model and on the basis of an 
analogy with the eigenvalue problems of the Sturm-Liouville type. It resulted 
that, in stars containing one or more superadiabatic regions, each (/-spectrum of 
eigenvalues is decomposed into a spectrum of positive eigenvalues and a spec
trum of negative eigenvalues. The (/-modes associated with positive eigenvalues 
were denominated g+-modes and are mainly related to the convectively stable re
gions, while the (/-modes associated with negative eigenvalues were denominated 
(/"-modes and are mainly related to the convectively unstable regions (Ledoux 
& Smeyers, 1966). 

On the same line of thought, Lebovitz (1966) showed that Schwarzschild's 
criterion for convective stability is not only a sufficient but also a necessary 
condition for a star to be dynamically stable. Lebovitz' proof implies that g~-
modes exist in any stellar model that contains a superadiabatic zone, however 
small this zone may be. It also fully confirmed Paul Ledoux' earlier view on 
the connection between the global dynamic instability of a star with respect to 
(/-modes and the local convective instabilities in the same star. 

A next step forwards in the study of the nonradial oscillations of stars un
der Paul Ledoux' guidance consisted of a series of investigations on the effect of 
the central condensation of stellar models on the numbers of nodes in the eigen-
functions of lower-order modes. Robe pointed out that, in centrally condensed 
polytropes, the /-mode and the lowest-order p-and (/-modes gain additional 
nodes (Robe, 1968; Ledoux, 1969; Ledoux, 1974). A regularity in the numbers 
of nodes was observed by Scuflaire (1974). Later on, the anomalous numbers of 
nodes found for lower-order modes in centrally condensed models were shown 
to be related to phenomena of mode bumping or avoided crossings of (/+-modes 
with the /-mode and the lowest-order p-modes of the same degree. Avoided 
crossings occur in models with a higher central condensation of the mass, since 
the eigenfrequencies of the (/+-modes increase while those of the /-mode and 
the p-modes remain almost unchanged (Osaki, 1975; Shibahashi & Osaki, 1976; 
Aizenman et al., 1977). 

In addition to this, the set of admissible normal modes of a gaseous star in 
hydrostatic equilibrium was complemented by the toroidal modes as a result of a 
group-theoretical study by Paul Ledoux' collaborator Perdang (1968). Although 
they seem to be trivial modes at first sight, toroidal modes are essential for the 
description of motions in a star with vorticity around the local normal to the 
equipotential surface. 

Another special scientific merit of Paul Ledoux is that he opened the field 
of the asymptotic representations of stellar oscillations in 1962 by developing an 
asymptotic representation of higher-order radial oscillations of a star (Ledoux, 
1962; Ledoux, 1963). He soon tried to extend his investigation to low-degree, 
higher-order nonradial oscillations with the collaboration of a student (Iweins, 
1964). His aim was to apply the same asymptotic method either to a second-
order differential equation in the radial component of the Lagrangian displace
ment or to a second-order differential equation in the Eulerian pressure pertur
bation. Both differential equations were derived in the Cowling approximation. 
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However, both differential equations have a singularity whose position along the 
radius depends on the eigenfrequency of the mode considered and is called there
fore a mobile singularity. In order to avoid these mobile singularities, Ledoux 
proposed to use one differential equation from the star's centre and the other 
one from the star's surface, and to join the resulting asymptotic solutions at 
a point of their common domain of validity. To Ledoux' regret, this work was 
never published despite its importance. The same procedure has been redis
covered a few years later by Vandakurov (1967) and has been used by other 
investigators for many years. I especially refer to Tassoul's (1980) second-order 
asymptotic theory for low-degree higher-order p- and g-modes in the Cowling 
approximation. 

The field of the asymptotic representation of stellar oscillations is well de
veloped at the present time. Monique Tassoul has made major progress in 1990 
by returning to the use of a system of differential equations in the divergence 
and the radial component of the Lagrangian displacement established earlier 
by Pekeris (1938). Prom then on, one no longer needs to adopt the Cowling 
approximation, nor is one any longer confronted with mobile singularites in the 
equations. Furthermore, boundary-layer techniques and multiple variable ex
pansion procedures have proven to be adequate for the representation of p- and 
g+-modes as standing waves that originate from waves propagating to-and-fro in 
a cavity inside the star (Smeyers et al., 1995, 1996). A still major unsettled ques
tion remains the derivation of asymptotic solutions from the star's surface that 
are not based on the assumption that the mass density is an analytic function 
near that surface. For the small frequency separations of low-degree, high fre
quency p-modes, an alternative description based on a generalization of the first 
Born approximation for the scattering of acoustic waves modified by buoyancy 
and gravity in the stellar core has been developed by Roxburgh & Vorontsov 
(1994). 

Today we all realize that the theory of the nonradial oscillations of stars 
has been fundamental for the identification of solar 5-min oscillations as global 
p-modes of higher degrees and low radial orders (Deubner, 1975) and for the 
development of the helioseismology (see, e.g., Deubner & Gough, 1984). 

Paul Ledoux also stressed the importance of the secular or thermal stability 
besides that of the dynamic and the vibrational stability. In a review published 
in 1965 (Ledoux, 1965), he noted: 

While the problems of dynamical and vibrational stability have been 
the object of extensive studies that led to precise criteria, secular 
stability has been rather neglected up to now. Its discussion seems 
to stem from a remark by H.N. Russell a long time ago, when very 
little was known of nuclear reactions in stellar interiors except that 
they should provide a much longer lifetime for ordinary stars than 
that allowed by the Helmholtz-Kelvin contraction hypothesis. 

Already at the beginning of the 1960's, he was aware of a number of delicate 
problems that might arise in computations of stellar evolution and emphasized 
the necessity of supplementing these computations at some phases of the evo
lution by studies of secular stability (Ledoux, 1960). In his review of 1965, he 
also noted: 
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With the increasing importance of evolutionary considerations, 
the need for an adequate solution to the general problem of secu
lar stability will probably be felt more urgently. In fact, it is on 
this basis that the method of treating stellar evolution (as a series 
of equilibrium or quasi-equilibrium configurations), the type of time 
derivatives to be kept, the time step to be adopted, should be justi
fied. It may also throw light on particularly complex phases of stellar 
evolution when the nonlinear character of the general problem and 
error feedback in the time derivatives makes it difficult . . . , starting 
from a given quasi-equilibrium solution, to determine the one im
mediately following after a finite time step. Furthermore, there is 
always a possibility that, in continuing a series of models by finite 
steps, one might overpass the critical point where stability is lost 
without noticing it, at least for some time. 

In all these respects, a comparison with the classical problem of 
the evolution of a mechanical system depending on a slowly varying 
parameter might be of interest. In that case the theory of linear se
ries of equilibrium configurations and of exchange or loss of stability 
at their bifurcation, turning, or terminating points as developed by 
Poincare . . . yields a global view of the stability problem which, for 
instance, has proved very useful in the discussion of the evolution 
of an incompressible mass in solid rotation with a slowly increasing 
angular velocity. 

As a final note on Paul Ledoux' scientific merits, I may draw the attention 
to a point that again concerns the influence of a uniform axial rotation on 
nonradial stellar oscillations. In 1978, Papaloizou & Pringle showed that the 
introduction of a uniform axial rotation generates a new set of modes besides 
the known sets of p-, g-, and /-modes. At the first order of approximation, 
the modes have angular frequencies proportional to the angular frequency of 
rotation Q and are independent of the star's structure. They were denoted 
rotation modes or r-modes by Papaloizou & Pringle and originate from purely 
toroidal time-independent displacement fields in the nonrotating equilibrium 
star. With regard to the discovery of the r-modes in rotating stars, Morris 
Aizenman (1980) had the following comment on a passage in the review article 
on variable stars by Ledoux & Walraven published in the Handhuch der Physik 
(Ledoux & Walraven, 1958, under Eq. (82.20)): 

It is interesting to note a comment made by Ledoux (1958). In 
analyzing the results of the compressible [homogeneous] model, he 
[Ledoux] stated that for the axially symmetric mode there is an addi
tional solution which is directly proportional to the angular rotation 
frequency. He discarded this solution as spurious and referred to an 
earlier analysis (Ledoux, 1949). The spurious solution is, in fact, the 
toroidal solution obtained by Papaloizou and Pringle. The result 
Ledoux obtained in 1949 is consistent with that of Papaloizou and 
Pringle because the solution is independent of [the star's] structure 
through terms including fi2. 

The earlier analysis referred to is in Paul Ledoux' These d'Agregation pour 
UEnseignement Superieur. 
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In conclusion, Paul Ledoux has been a scientist of great stature. One is 
struck by the number of questions of stellar stability he thought deeply about. 
He played a substantial role in establishing a solid foundation for the theory 
of stellar stability. Paul Ledoux' mastery of the field of stellar stability has 
found his clearest expression in the numerous reviews of the subject written by 
him and especially in the two remarkable reviews published in Volume 51 of the 
Handbuch der Physik (1958), which have been authoritative for a very long time. 

Paul Ledoux was not only an outstanding scientist, he was also a wise 
and high-minded person, modest with regard to his own accomplishments, and 
always affable, in harmony with his family name. 
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