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THE ALPERIN WEIGHT CONJECTURE
AND UNO’S CONJECTURE
FOR THE BABY MONSTER B, p ODD

JIANBEI AN anD R. A. WILSON

Abstract

Suppose that p is 3, 5 or 7. In this paper, faithful permutation
representations of maximal p-local subgroups are constructed, and
the radical p-chains of the Baby Monster B are classified. Hence,
the Alperin weight conjecture and the Uno reductive conjecture can
be verified for B, the latter being a refinement of Dade’s reductive
conjecture and the Isaacs—Navarro conjecture.

1. Introduction

Recently, Isaacs and Navarro [12] proposed a new conjecture that is a refinement of the
Alperin—-McKay conjecture, and Uno [15] raised an alternating sum version of the conjecture
that is a refinement of the Dade conjecture [9].

Dade’s reductive conjecture [9] has been verified for all of the sporadic simple groups
except Fi,, B and M. The use of computer algebra systems, (namely MAGMaA [6] and GAP
[10]) to study permutation (or in some cases matrix) representations of the groups has been
a central step of the program. Since the smallest faithful permutation representation of B
has degree 13571955000, it is difficult to verify the conjecture directly. However, from
the classification [16] of maximal p-local subgroups of B, we know that when p is equal to
3, 5 or 7, the normalizer of each radical p-subgroup of B is a subgroup of one of precisely
thirteen maximal p-local subgroups. Thus we can classify radical chains in these maximal
subgroups without performing any calculation in B.

In this paper, we construct a faithful permutation representation for each maximal p-local
subgroup. We then classify radical chains, and hence verify the Alperin weight conjecture
and Uno’s refinement of Dade’s reductive conjecture for B.

The paper is organized as follows. In Section 2, we fix the notation, state the conjectures in
detail, and state three lemmas. In Section 3, we explain how to construct faithful permutation
representations of the thirteen maximal p-local subgroups. In Section 4, we recall the
modified local strategy [4, S]; we also explain how we applied it to determine the radical
subgroups of each maximal subgroup, and how to determine the fusion of the radical
subgroups in B. In Section 5, we classify radical p-subgroups of B, and verify the Alperin
weight conjecture. In Section 6, we do some cancellations in the alternating sum of Uno’s
conjecture, and then determine radical chains (up to conjugacy) and their local structures.
In the last section, we verify Uno’s projective conjecture for B.
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Conjectures for the Baby Monster

2. Conjectures and lemmas

Let p be a prime and R a p-subgroup of a finite group G. Then R is radical if
Op(N(R)) = R, where O,(N(R)) is the largest normal p-subgroup of the normalizer
N(R) = Ng(R). Denote by Irr(G) the set of all irreducible ordinary characters of G,
and let BIk(G) be the set of p-blocks, B € BIk(G) and ¢ € Irr(N(R)/R). The pair
(R, @) is called a B-weight if d(¢) = 0 and B((p)G = B (in the sense of Brauer),
where d(¢) = log,(IGlp) — log,(¢(1),) is the p-defect of ¢ and B(g) is the block of
N (R) containing ¢. A weight is always identified with its G-conjugates. Let W(B) be the
number of B-weights, and let £(B) be the number of irreducible Brauer characters of B.
Alperin [1] conjectured that W(B) = ¢(B) for each B € BIk(G).

Given a p-subgroup chain

C.:Ph<P<...<Py 2.1
of G, define |C|=n,Cy: Pp < Py <...< Pg,and
N(C) = Ng(C)=N(P) NN(P)N...NN(Py). (2.2)
The chain C is said to be radical if it satisfies the following two conditions:
(a) Py= 0,(G),and
(b) Pr = Op(N(Cy)) forl <k < n.

Denote by R = R(G) the set of all radical p-chains of G. Let B € Blk(G), and let D(B)
be a defect group of B. The p-local rank (see [2]) of B is the number

plr(B) =max{|C|: C e R, C:Py< P <...< P, < D(B)}.

Let Z be a cyclic group, G = Z.G a central extension of Z by G, and C € R(G).
Denote by N (C) theApreimage n~ Y (N(C)) of N(C) in G, where n is the natural group
homomorphism from G onto G with kernel Z. Let p be a faithful linear character of Z, and let
Bbeablockof G covering the block B(p) of Z containing p. Denote by Irr (N (C), EA, d, /i)
the irreducible characters ¥ of N, G (C) such that ¥ lies over p, d({) = d and B(lﬂ)G =B,

and set k(N (C), B, d, p) = | It (N3 (C), B. d, p).
DADE’S PROJECTIVE CONJECTURE (see [9]). If O,(G) = 1 and Bisa p-block of G covering

B(p) with defect group D(é) # O0p(2Z), then

Y (=DK(Ns(C), B, d, p) =0, 23)
CeR/G
where R /G is a set of representatives for the G-orbits of R.

IfZ=1,thenG=G,B=Bandp = 1. Setk(N(C), B,d) = k(N4(C), B d, p).
The projective conjecture is then called the ordinary conjecture.

DADE’S ORDINARY CONJECTURE (see [8]). If O,(G) = 1 and B is a p-block of G with
defect group D(B) # 1, then for any integer d > 0,

Z (—=DICIk(N(C), B, d) = 0.

CeR/G
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Let H be a subgroup of a finite group G, let Q€ Irr(H) and let r(g) = rp(¢p) be the
integer 0 < r(¢) < (p — 1) such that the p’-part (|I§|/<p(1)),y of |I:1|/g0(1) satisfies

e(1)

Given an integer | < r < (p — 1)/2, let Irr(I:I, [r]) be the subset of Irr(lf]) consisting of
characters ¢ such that r(¢) = £r(mod p), and let

It (H, B,d, p, [r]) = Irr (H, B, d, p) NTrr (H, [r);
k(H, B,d, p,[r) = |Irr (H, B,d, p, [r])|.

|HI\ _
— = r(p) (mod p).
p/

Suppose that Z = 1, and let B = B € BIK(G) with a defect group D = D(B) and
the Brauer correspondent b € BIk(Ng(D)). Then k(N (D), B, d(B), [r]) is the number of
characters ¢ € Irr(b) such that ¢ has height 0 and r(¢) = +r (mod p), where d(B) is the
defect of B.

ISAACS—NAVARRO CONJECTURE (see [12, Conjecture B]). In the notation above,
k(G, B,d(B), [r]) = k(N(D), B,d(B), [r]).
The following refinement of Dade’s conjecture is due to Uno.

UNO’S PROJECTIVE CONJECTURE (see [15, Conjecture 3.2]). If O,(G) = 1 and if D(é) *
Oy (Z), then for any integer d > 0, faithful p € Irr(Z) and 1 <r < (p — 1)/2,

> DK(Ng(C). B.d. p.[r]) = 0. (2.4)
CeR/G

Similarly, if Z = 1, then the projective conjecture is the ordinary conjecture. Note also
that if p = 2 or p = 3, then Uno’s conjecture is equivalent to Dade’s conjecture.

Let G be the Baby Monster, B. Then its Schur multiplier is cyclic of order 2, and its outer
automorphism group is trivial, so Dade’s projective conjecture is equivalent to his reductive
conjecture (and Uno’s reductive conjecture is also equivalent to his reductive conjecture).
Thus it suffices to verify:

1. Dade’s ordinary conjecture for B;

2. Dade’s projective conjecture for the 2 covering group 2'B when p = 3;

3. Uno’s ordinary conjecture for B; and

4. Uno’s projective conjecture for 2-B when p > 5.

The proofs of the following two lemmas are straightforward.

LEMMA 2.1. Leto : Op(G) < P < ... < Py_1 < Q =Py < Pyy1 <...< Prbea
fixed radical p-chain of a finite group G, where 1 < m < {. Suppose that

0" 0,(G)<Pi<...<Pu1<Ppp1<...<P

is also a radical p-chain such that Ng(0) = Ng(o'). Let R~ (o, Q) be the subfamily of
R(G) consisting of chains C whose (£ — 1)th subchain, Cy_1, is conjugate to o’ in G.
Let R°(c, Q) be the subfamily of R(G) consisting of chains C whose £th subchain Cy is
conjugate to o in G. Then the map g sending any Op(G) < Py <...< Py_1 < Pyy1 <
< Pp<. . iinRT(0,0)100,(G) < Py <...< Py 1 < Q< Ppy1<...< Pp<...
induces a bijection, denoted again by g, from R~ (o, Q) onto R° (o, Q). Moreover, for any
Cin R (o, Q), we have |C| = |g(C)| — 1 and Ng(C) = Ng(g(C)).
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LEMMA 2.2. Suppose that Q is a p-subgroup of G. Then Q is radical in G if and only if
Ng(Q) < M and Q is radical in M for some maximal p-local subgroup M of G.

LeEmMA 2.3. If Q is a p-subgroup of a finite group G, then there is a radical p-subgroup
R such that

Q<R and Ng(Q) < Ng(R).

Proof. This follows by [2, Lemma 2.1]. O

3. Construction of permutation representations of maximal p-local subgroups

We will follow the notation of [7]. In particular, if p is odd, then p!+? = pfzy is an

extra-special group of order p'*2¥ with exponent p, and if § = + or § = —, then 2§+2y
is an extra-special group of order 272 with type 8. If X and Y are groups, we use X.Y,
XY and X:Y to denote an extension, a nonsplit extension and a split extension of X by Y,
respectively. Given a positive integer n, we use p” to denote the elementary abelian group
of order p", n to denote the cyclic group of order n, D, to denote the dihedral group of
order 2n, and S Dy, to denote the semidihedral group of order 2n.

The subgroups of 2B that we need to construct are given in Table 1.

The general strategy in most cases is to make appropriate subgroups of the Monster
first, and to centralize a suitable involution to get the desired subgroup of 2-B. We can then
quotient by the central involution to obtain the corresponding subgroup of B.

Table 1: Maximal p-local subgroups of B and 2'B.

Shape in B Shape in 2'B Overgroup in M

(73 x2°L3(4).2).2 (73 x2>L3(4).2).2 (7:3 x He):2

(22 x 7%:(3 x 244)).2 (Dg x 7*:(3 x 244)).2 (L2(7) x 7%:(3 x 2A4)).2
5:4 x HS:2 (D19 x 2'HS.2).2 (D19 x HN).2

51H4:01+4 A4 514422144 A4 5146.2- 1, 4

52:484 x Ss (5%2:4A4 x 2-S5).2 (5%:4 0 Qg x U3(5)):S3
53-L3(5) 2 x 53 L3(5) n/a

3 x Figy:2 (83 x 2Fip).2 3-Finy

3182146 1,(2).2 3148:221%6.y4(2) .2 31412.2-Quz:2

(3%:Dg x Us(3).22).2 (322 x 2:U4(3).2%).Dg (322 x 04 (3))"Sa
32.33.30.(8y x 2°Sy)  32.33.30:(2°S4 x 2°85y) 32.33.310(My; x 2-Sy)
33.3.33.33(L3(3) x2) 2x333.3333(L3(3) x2) 2 x Fix

33.35(L3(3) x Dg) 33.35(L3(3) x SDie) (2 x O (3))"Ss

3%:(2 x L4(3)).22 2 x 3%:(L4(3).SDi¢) (2 x Og (3))"S4
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Many of the groups required are subdirect products, and are thus easy to construct
from representations of the constituent groups. For example, to make (7:3 x He):2 we first
make the Frobenius group 7:6 generated by the permutations a = (1,2, 3,4,5,6,7) and
b =(1,3,2,6,4,5), and He:2 generated by two permutations ¢ and d on 2058 points.
Since a and c are in the respective subgroups of index 2, while » and d are not, we see that
ac and bd together generate the desired group (7:3 x He):2 acting on 7 + 2058 = 2065
points. Inside this group, we then find the involution centralizer by standard methods, and
obtain (7:3 x 22:L3(4).2).2 as the required subgroup of 2'B. Taking the quotient by the
central involution, we obtain the corresponding subgroup (7:3 x 2-L3(4).2).2 of B.

Similarly, we construct the affine group 72:(3x2S4) < 72:GL;(7) as a permutation group
on forty-nine points, and L;(7):2 as a permutation group on eight points. Thus we obtain the
direct product acting on fifty-seven points, and its subgroup (72:(3%2A4) x L2(7)).2 of index
2 in the same way as above. By centralizing an involution in the L, (7) subgroup we obtain
the required subgroup (7%:(3 x 2A4) x Dg).2 of 2B, and its quotient (7%:(3 x 2A4) x 23 .2
in B. This completes the construction of the maximal 7-local subgroups of B and 2'B.

Next consider the 5-local subgroups. We can make (Do x HN).2 as a subdirect product
on 5 4 1140000 points, and we centralize an involution to get (D19 x 2-HS:2).2 and its
quotient 5:4 x HS:2. However, these permutations are rather large, so we actually made the
group directly as a subdirect product of 5:4 and 4-HS:2. Note that there is an outer element of
(D19 x 2-HS:2)2, which acts as the outer automorphism of 2-HS:2 (multiplying elements
outside 2'HS by the central involution) and squares to the product of an involution in the
Do and the central involution of 2-HS.

Similarly, we make 5!%6:2- J, .4 by following the instructions in [14] for making groups
of extraspecial type. Specifically, we make a matrix representation in eight dimensions over
GF(5) in which a complementary 2.J,.4 and the normal 5'+¢ are represented by matrices
of shape

w 0 0 1 0 0
0 A 0| and -l I o],
0 0 1 A v 1

respectively, where A is a typical element of 2-J>.4 in its six-dimensional representation
over Fs, and § is the matrix of the symplectic form preserved by 2J, in this representation
(note that S has inadvertently been replaced by S~! from the bottom of [14, p. 316]), and x is
the scalar such that ASA” = 11.S. We can then convert to a permutation representation on the
57 = 78125 images of the vector (0, 0, 0, 0, 0, 0, 0, 1). Centralizing a suitable involution
leads to the corresponding subgroups 51442 2144 As 4 of 2B and 5!74:2!+4 A5.4 of B.

The next subgroup can be made as a subdirect product of the affine group 5%:4S; <
52:GL, (5) (on twenty-five points) and the almost simple group Uz (5):S53 (on 126 points)
leading to (5%:4 0 Qg x U3(5)):S3 on 151 points. We then centralize an involution to get
(5%:4A4 x 285).2in 2'B and 5%:4S4 x S5 in B.

Finally for p = 5, we find that 53 L3(5) is isomorphic to a subgroup of the Lyons group,
for which generators are available [17] as 111 x 111 matrices over GF(5). This can be
converted to a permutation representation on 7750 points, by permuting a suitable orbit of
vectors in a suitable subquotient of this representation. As there is no double cover of L3(5),
the corresponding subgroup of 2B is a direct product 2 x 53-L3(5). This concludes the
construction of the maximal 5-local subgroups.
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We next take 3-Fip4 acting on 3 x 306 936 points from [17], and centralize an involution
to get (83 x 2Fipy).2. Its quotient S3 x Fipy:2 is a direct product; it is thus easily constructed
as a permutation group on 3 + 3510 points.

For the next group, we could take 31+12:2-Suz:2 as constructed in [14], and convert it
into permutations on 3'3 = 1594323 points. Although this is not a subgroup of the Monster,
the involution centralizer 318:2.217004(2) 2 is isomorphic to the desired subgroup of 2-BB.
However, these permutations are rather large, so instead we take the involution centralizer
2.2100,4(2).2in 2-Suz.2, acting on an 8-space and a 4-space over GF(3). We lift the action
on the 8-space to an action of 3148:21461,(2).2 on a 10-space, and thence to an action on
3% = 19683 points. To get the double cover, we adjoin the permutation action on the eighty
non-zero vectors of the 4-space.

We take (3%2:2 x 0; (3)).S4 as a subdirect product of the affine group 32:284 on
nine points and Og’ (3):S4 on 3360 points, and then find the involution centralizer
(3%:2 x 2:U4(3).2%).Dg and its quotient (3%:Dg x U4(3).22).2. Another involution cen-
tralizer (2 x 0; (3))"S4 contains the last two 3-locals in Table 1, corresponding to certain
maximal parabolic subgroups in 0; (3):S4. These are therefore straightforward to con-
struct. The third last of the maximal 3-local subgroups listed in Table 1 is contained in Fiy3,
which becomes 2 x Fis3 in 2°B. It can therefore be constructed by using information on the
character tables of maximal subgroups of Fiy3, given in [10].

Finally, we need to construct 32.33.39(8, x 284) and its double cover. The latter
is a subgroup of the group 32.33.319:(M;; x 2-S4) in the Monster, and so has shape
32.33.3%:(2° S4 x 2 S4). We first make the corresponding subgroup of B by explicitly finding
words in the standard generators which generate this subgroup. To do this, we start from
31+8:21_+6U4(2).2, and find a subgroup 32.[37].2.33(S4 X 2), being the normalizer of a
3B-pure 32 generated by the centre and one other element of 3'*8. We then go to work
in the centralizer of an Sy to find an element swapping the two generators for the 32. First
we centralize a suitable involution in the Sy, to get a group (22 x F4(2)):2, and then we
centralize an element of order 4 squaring to this involution, to get a group 4 x 2F4(2).
In here, we find by random search, an involution that extends our 32 to Ag, in which it
is easy to find the involution that we are seeking. This involution now extends the group
32.[3%1.(54 x 2 x S3) to the maximal subgroup 32.33.3%.(S; x 2°S4) of B, which we are
seeking.

To construct a suitable permutation representation, we find a subgroup of order 25.33
centralizing an involution, and permute the 22.3% = 26244 images of a fixed vector of this
subgroup. To construct the double cover, observe that we need only to cover the quotient
S4, which we can do by taking a subdirect product with the group 2-S4 = GL,(3) acting
on eight points.

4. A local subgroup strategy and fusions

From [16], we know that each radical p-subgroup R of B is radical in one of the conjugates
M of maximal p-local subgroups constructed in Section 3 and, further, Ng(R) = Ny (R).

In [4] and [5], a (modified) local strategy was developed to classify the radical p-
subgroups R. We review this method here. Suppose that M is a subgroup of a finite group
G satisfying Ng(R) = Ny (R).

Step (1) We first consider the case where M is p-local. Let Q = O, (M), sothat Q < R.
Choose a subgroup X of M. We explicitly compute the coset action of M on the cosets of X
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in M; we obtain a group W representing this action, a group homomorphism f from M to
W, and the kernel K of f. For a suitable X, we have K = Q, and the degree of the action
of W on the cosets is much smaller than that of M. We can now directly classify the radical
p-subgroup classes of W (or apply Step (2) below to W), and the preimages in M of the
radical subgroup classes of W are the radical subgroup classes of M.

Step (2) Now consider the case where M is not p-local. We may be able to find its
radical p-subgroup classes directly. Alternatively, we find a (maximal) subgroup K of M
such that Ng (R) = Npy(R) for each radical subgroup R of M. If K is p-local, then we
apply Step (1) to K. If K is not p-local, we can replace M by K, and repeat Step (2).

Steps (1) and (2) constitute the modified local strategy. After applying the strategy, we
list the radical subgroups of each M, and then do the fusions as follows.

Suppose that R is aradical p-subgroup of M. Using the local structure, we can determine
whether or not Ny (R) is a subgroup of another maximal subgroup M’. Suppose that Ny (R)
is a subgroup of M’. By Lemma 2.3, there is a radical subgroup R’ of M’ such that R < R’
and Ny (R) < Ny (R'). Using the local structure, we can determine whether or not R is
radical in M’, and if so, we can identify R with a radical subgroup R’ of M’. Some details
are given in the proof of Proposition 5.1.

The computations reported in this paper were carried out using MAGMA V2.10-6 on a
Sun UltraSPARC Enterprise 4000 server.

5. Radical subgroups and weights

Let Ro(G, p) be a set of representatives for conjugacy classes of radical p-subgroups
of G.For H, K < G,wewrite H <g K if x 'Hx < K, and we write H € Ro(G, p) if
x~'Hx € Ro(G, p) for some x € G.

Let G be the Baby Monster B. Then

|G| =2%.313.56.72.11.13.17-19-23 .31 - 47,

and we may suppose that p € {2, 3,5, 7}, since both conjectures hold for a block with a
cyclic defect group, by [8, Theorem 7.1] and [3, Theorem 5.2]. Suppose that p is odd, so
that p = 3,5, 7.

Denote by Irr®(H) the set of ordinary irreducible characters of p-defect 0 of a finite
group H, and by d(H) the number logp(|H|p) Given R € Ry(G, p),let C(R) = Cg(R),
N = Ng(R) and N = Nop(R), where R is viewed as a subgroup of the covering group
2.B. If By = Bo(G) is the principal p-block of G, then (see [4, (4.1)])

W(Bo) = Y [t (N/C(R)R)], 5.1
R
where R runs over the set Ro(G, p) such that d(C(R)R/R) = 0. The character table of
N/C(R)R can be calculated by MAGMA, and so we find |Irr0(N/C(R)R)|. Write Wy =
| It (N/C(R)R)| and Wy, = |Irr® (N2 5(R)/C(R)R)| — | It (N /C(R) R)|; the latter will
be used to calculate the number of weights for 2.1B.

PROPOSITION 5.1. The non-trivial radical p-subgroups R of G = B (up to conjugacy) and
their local structures are given in Tables 2 and 3, according to whether p > 5 or p = 3,
where S € Syl;(G) is a Sylow 3-subgroup of G.
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Proof. Case (1) Suppose that p = 7. By [16, Section 7], B has two non-trivial radical
7-subgroups, 7 and 7%, with local structures given by Table 2.

Case (2) Suppose that p = 5. By [16, Theorem 6.4], B has four maximal 5-local
subgroups:

M; = N(5A) = 5:4 x HS:2; M, = N(5B%) = 5°"L3(5);
M3 =N@B) =542 A5 4, My = N(5A%) = 5748, x Ss.
Let M = M3 or M = My. Since |M/Os5(M)|s = 5, it follows that a Sylow subgroup of
M is its only radical 5-subgroup other than Os5(M). Thus
{5%,5%) ifi =4,

52
(s shHsy it =3 (5:2)

Ro(M;,5) = {

in addition, Ny, (5%) = 5%:484 x 5:4, and Ny, (5174.5) = 5414542,
We may take

Ro(My, 5) = {5,52,5 x 5172},
where 5 x 5 fr+2 € Syls(My). In addition,

5:4 x 54 x S5 if R =52,

N, (R) =
m (R) {5x51++24.08 if R =5x 5,12

Note that 52 € Ro(My, 5), so Ng(R) # Ny, (R) forany R € Ro(My, 5) \ {5}.
We may take

Ro(Ma, 5) = (5%, 5114, 52,5142 51H4 5,
in addition,
Cu, 54T =5 =264
Nup (525172 = 525172.GLy(5); N, (54 = 51H.GLy (5).

Table 2: Non-trivial radical p-subgroups of B with p > 5.

R C(R) N Wy Wy
T x2L3(4)2 (7:3x2L3(4):2):2
72 22 x 72 (22 x7%:(3 x 244))2 24 24
5 5 x HS:2 5:4 x HS:2
52 52 x Ss 52:484 x Ss
53 53 53.L5(5) 1 1
stk s sy Asa 30 12
525172 52 52,5172 GLy(5) 4 4
sitts s 5itt 542 16 16
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Since B has exactly two classes, SA and 5B, of elements of order 5 and |[N(5A)|5 = 54,
it follows that a generator of Cyy, (55_"'4) is in a 5B-class, and so we may suppose that
Nu, (534 < M3 = N(5B). In particular, Np, (557 # Np(51H).

Since | Ny, (52.51%2)|5 = 59, it follows that M| and M4 have no subgroup conjugate to
N, (52.5'%2). Applying Lemma 2.3, we see that Ny, (52.5'2) g M3, so by Lemma 2.2,
52.5'%2 is radical in B with Ng(52.5'%%) = Ny, (5%2.5'*2). This classifies the radical 5-
subgroups of B.

Case (3) Suppose that p = 3. By [16, Theorem 5.7], B has seven maximal 3-local

subgroups:
My = N(3B) = 3182176y, 2):2; My = N(3B?) = 32.33.3%.(84 x 284);
M3 = NGB =333°(L;(3) x Dg); My =N@BBY) =3333%(L:03) x 2);
Ms = N(3A) = S3 x Fiy:2; Mg = N(3A%) = (3%:Dg x Us(3):2%).2;

M7 = N3% =3%(2 x Ls(3)):2.

We first classify the radical subgroups of each M;, applying the modified local strategy, and
do the fusions in B using Lemmas 2.3 and 2.2.

Case (3.1) We may take
Ro(My, 3) = {3118, 3148 3 3148 32 3148 33 3148 3142 ¢y (5.3)

Since Cpy, (R) =3 = Z(R) for each R € Ro(My, 3), it follows that Ng(R) < M|, so R
is radical in B with Ny, (R) = Np(R). Thus we may suppose that R (M1, 3) € Ro(B, 3).

Table 3: Non-trivial radical 3-subgroups of B.

R C(R) N(R) Wy Wy
3 x Fip:2 S3 x Fip:2

32 32 x Us(3)22  (3%:Dg x Us(3):2%).2

36 36 36:(2 x L4(3):2):2 5 2
3Lt8 3 3180161, (3).2 11 1
33.36 33 33.39.(L3(3) x Dg) 5 2
3i+83 3 31183222432 g 10 4
3333333 33 33.3.33.3%.(L3(3) x 2) 2 2
314832 3 3148 32 (Dg x 284) 10 4
323336 32 32.33.30.(S4 x 284) 4 0
3it83 3 3183324 55 8 0
3it83itz 3 3183112 2 x 2y) 4 4
32333603 32 32.33.303.(2 x 284) 4 4
s 3 §.23 8 8
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Case (3.2) Applying the local strategy, we find four classes of radical subgroups of My;
one of them, R, has order 32 satisfying Cps, (R) = Z(R) = 3and Njs,(R) = R.2.(S4x2).
Thus a generator of Z(R) is a 3B-element as |[N(3A)|3 = 310 and we may suppose that
Ny, (R) < M;. By Lemma 2.3 and (5.3), R is radical in M1, and by the local structures,
R =y, 31+8.33.

Another radical subgroup Q of M, also has order 312 and Cu,(Q) = 32 = Z(Q). So
Np(Q) < M> and Q is radical in B. We may take

Ro(M», 3) = {32.33.36,3148.33 3233 36 3 ¢} (5.4)

and Ng(R) = Ny, (R) for each R € Ry(M>, 3), so we may suppose that Ro(M>, 3) <
Ro(B, 3).

Case (3.3) M3 has 4 classes of radical subgroups; one of them, R, has order 311 with
Cuy;(R) = Z(R) = 32 and Ny (R) = R.(2S4 x Dg). Thus Z(R) is 3B-pure, and by
[16, Theorem 4.4] we may suppose that Ny, (R) < M>. By (5.4) and Lemma 2.2, R is
non-radical in B.

Another radical subgroup Q of M3 also has order 31 and Cyu;(Q) = Z(Q) = 3, so that
Z(Q) is generated by a 3 B-element and we may suppose that Ny, (Q) < Mj. By the local
structures, we can identify Q with 3£L+8.32. We may take

Ro(Ms,3) = {33.36,3%.36.32 317832 3148 32 31, (5.5

and Ng(R) # N, (R) for R € Ro(Ma, 3)\ {33.3%, 31+%.32). Moreover, Cyy, (3°.30.3%) =
32, Cyy(348.32.3) = 3, and

33.36.32.(284 x Dg) if R = 33.30.32,

Ny (R) =
i {31++8.32.3.<22x138> if R =31""323.

Case (3.4) The fusions in B of the radical subgroups of M4 with subgroups in other
Ro(M;, 3) can be done similarly to that of Case (3.2). We may take

Ro(My, 3) = {3°.3.3%.3%,32.33 36 3, 3148 3142 ¢}, (5.6)

and Ng(R) = Ny, (R) for each R € Ry(M4, 3), so we may suppose that Ro(My, 3) <
Ro(B, 3).

Case (3.5) M7 has six classes of radical subgroups R, three of which have centralizer
Cm;(R) = Z(R) =3, and [Ny, (R)|3 > 31, So a generator of Z(R) is a 3B-element, and
we may suppose that Ny, (R) < M. By (5.3) and the local structures, we find that one of
the subgroups R is conjugate to 3'+8.3, and the other two are not radical in B.

A radical subgroup Q of M7 has order 3% and Cu;(Q) = Z(Q) = 33. Since we have
|Cpy(x)|3 > 3'! for each x € Z(Q), Z(Q) is 3B-pure, and by [16, Theorem 4.4],
Ny, (Q) = 0.2% x L3(3)) <p M; for some i = 1,2,3,4. By Lemma 2.2 and equa-
tions (5.3)—(5.6), Q is not a radical subgroup of B.

Similarly, M7 has a radical subgroup W of order 3'! with Z(W) = 32, so that Z(W)
is 3B-pure and Ny, (W) = W.(2 x 254:2):2 <g M, for some i = 1,2, 3, 4. This implies
that W is not radical in B. Thus we may take

Ro(M7,3) = (36,3346 3118 3 36 3243 32 33 36 33+6 3142y (5.7)
and Ny, (R) # Np(R) for R € Ro(M7,3) \ {3°,3178.3).
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Moreover,
Cur, (33+6) =33
Cyy (378.3) = €y, (30.37F3) = €y, (3310.3142) = 3,
Cy,(32.33.3% = 32,
and

331622 x L3(3)) if R = 336,
303213 (22 x 28y) if R = 30.32+3,
3233302 x 284:2).2 if R = 32.33.3°,
33+6'31+2.23.22 if R = 33+6.31+2'

Naty (R) = (5.8)

Case (3.6) Since Ms = S3 x Fix;:2, it follows that each radical subgroup R is of the
form 3 x R; for some R; € Ro(Fixy:2, 3). The fusion in B of elements of order 3 in Fip; is
given by [16, Proposition 3.1]. The radical subgroups of M5 and their local structures are
given in Table 4.

Note that R = 3 is 3A-pure, so that Ng(3?) # N (3%). By [16, Proposition 3.2], B
has a unique class of elementary abelian groups of order 3® containing 3A-elements, and
so M7 =g N5(3%) # N, (3°).

Since the commutator subgroup [3 X 3_1‘_+6, 3 x 3£_+6] = (3 x 3_1‘_+6)’ = 3 is 3B-pure,
Ne(3 x 31%%) <g N(3B) = My. But Nasg(R) <ars Narg(3 x 3410) for R = 3 x 31703
and R = 3 x 3°.3%; also, Cps(R) = 32 = Cus(3 x 3470, so Ng(R) <p Mj, and by
Lemma 2.2 and (5.3), none of them is radical in B.

Suppose that R = 3 x 35:3£r+2.Then [R, R = Z(35:3£r+2) =32is 3B-pure, Ng(R) <p
N(3B?) = M, and, by (5.4), R is non-radical in B.

Since (3 x 3313)" = 33 is 3B-pure, Ng(R) <g M4 and, by (5.6), R is non-radical in B.

It follows that Ny (R) # Ng(R) for any R € Ro(Ms, 3) \ {3}.

Table 4: Radical 3-subgroups of S3 x Fipy:2.

R C(R) N (R)
3 x Fip:2 S3 x Fip:2

32 32 x Ug(3):2% S5 x (83 x Us(3):2).2
36 36 S3 x 3%:(2 x Us(2):2)
3 x 3343 34 S3 x 333:13(3)

3x 3l 32 S5 x 3176.23+4:32 52
3x 33 32 S5 x 3170.3:25,

3 x 3333 32 S3 % 33.33.(2 x 8y).2
3x32.31+2 33 S3 % 3°.3172.285,.2
3x 3032 32 S5 x 31463223
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Case (3.7) We may take
Ro(Mg, 3) = {32, 3%, 3% x 3114 3332 33, (5.9)

in addition, Cjg, (3% x 3'+%) = 33 = ), (3%.3%.3%) and

(3%:Dg x 3*:A44:22).2 if R = 3°,
Numg(R) = { (3%:Dg x 317428, :22).2 if R = 3% x 3114, (5.10)
333233232223 if R = 33.32.33.

Thus Ny, (3°) #p M7

Since C (32) =p Cps; (32), we may suppose that R = 32 x 314 < Ms.Now R’ =3
is 3B-pure, and so Ng(R) < N(3B) and R is not radical in B.

It follows that Ny (R) # Np(R) for each R € Ro(Ms, 3) \ {32}

Thus the radical 3-subgroups of B are listed in Table 3, and the centralizers and normal-
izers are given by MAGMA. O

LEMMA 5.2. Let G = B and By = By(G), let BIkT (G, p) be the set of p-blocks with a
non-trivial defect group, and let Irr* (G) be the characters of Irr(G) with positive p-defect.
If a defect group D(B) of B is cyclic, then Itr(B) is given by [11, p. 387].

(@) If p =17, then Bk (G, p) = {B; | 0 < i < 8} such that D(B;) = 7*> when0 < i <2
while D(B;) = 7 when 3 < j < 8. In the notation of [7, p. 208],
Irr(B1) = {X2, X4> X105 X17, X205 X215 X225 X275 X425 X45, X465 X555 X635 X735
X775 X85> X885 X100, X103> X1065 X1185 X121, X134, X161> X1665 X167 X176}
Irr(B2) = {X7, X9: X115 X125 X31, X325 X335 X385 X435 X64, X67> X695 X745 X765
X905 X91» X925 X94»> X965 X105, X107» X112» X1155 X1175 X119, X126 X135},

and
8
Irr(By) = It (G) \ <U Irr(B,-)) .
i=1
Moreover, £(Bg) = €£(B1) = 24, £(By) = 21, £(B;) = 6for3 <i <7 and £(Bg) = 3.
(b) If p = 5, then BIkT (G, p) = {B; | 0 < i < 6} such that D(B;) = 5% fori = 1,2,
and D(B;j) =5 for 3 < j < 6. In the notation of [7, p. 208],

Irr(B1) = {X5> X9, X145 X18> X325 X40> X545 X56> X815 X93

X975 X1055 X115, X130> X135> X144> X151> X153 X159, X177}
Irr(B2) = {27, X29, X34, X44, X555 X645 X675 X745 X805 X825

X85> X91» X925 X1015 X109> X134, X136 X1565 X1625 X176}

and
6
Irr(Boy) = It (G) \ (UIIT(Bi)) )
i=1

Moreover, £(Bo) = 51, £(B1) = €(By) = 16, and £(B;) =4 for3 < j < 6.
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(c) If p =3, then BIk (G, p) = {B; | 0 < i < 5} such that D(B;) = 32f0ri =1,2,3
and D(Bj) = 3 for 4 < j < 5. In the notation of |7, p. 208],

{X30. X33, X79, X97, X107, X123, X126, X151, X164} if i =1,
Irr(B;) = § {x43, X64> X965 X109, X111, X150, X171, X173, X181} if i =2,
{X63, X765 X91, X100, X105, X1065 X154, X156, X162} if i = 3.

Moreover, £(By) =71, £(B1) = £(B2) =7, £(B3) =5 and £(Bj) =2 for j = 4,5.

In addition, let G = 2.B and let & be the faithful linear character of Irr(Z(é)). If
p € {3,5,7}, then thfre is a unique p-block B of G such that B covers the block B(§) and
the defect group D(B) is non-cyclic. In the notation of [7, p. 218], let

{xj:J €{189,192,193, 197, 202, 205, 206, 207, 208, 222, 225,234}} if p =17,
Q= 1 {xj:Jj e {204,205, 206,209}} ifp=>35,
Z ifp=3.
Then
Irr(B) = It (G) \ (QU It (G))
and Z(é) is 24,33 or 31 when p is 7, 5 or 3.

Proof. If B € BIk(G, p) is non-principal with D = D(B), then Irr®(C(D)D/D) has a
non-trivial character @ and N(0)/C(D)D is a p’-group, where N (0) is the stabilizer of 6
in N(D). By [11, p. 387], we may suppose that D is non-cyclic, so that by Proposition 5.1,
D = p°.

If p=7,then C(D) =22 x 7> and N(D) = (2% x 7%:(3 x 2A44)):2, so that N(D) has
3 orbits on Irr” (C(D)D/D) and B has three blocks with defect group D = 72

If p = 5%, then C(D) = 5% x S5 and N(D) = 5%:45, x Ss, so that N (D) has two orbits
on IrrO(C(D)D/D) and B has two blocks with defect group D = 52,

If p = 3%, then C(D) = 32 x U4(3):2% and N (D) = (3%:Dg x Uy4(3):2%).2, so that N (D)
has three orbits on Irr’(C (D) D /D) and B has three blocks with defect group D = 32,

Using the method of central characters, Irr(B) is as above. If D(B) is cyclic, then £(B)
is given by [11, p. 387].

If p = 7and B € {Bj, B>}, then the non-trivial elements of D(B) are conjugate in B,
and C(x) =7 x 2:L3(4):2 for any 1 # x € D(B). It follows that

k(B) = £(B) + Z o(b), (5.11)

beBIk(C(x), B)

where Blk(C(x), B) = {b € BIk(C(x)) : b® = B}. In particular, for b € BIk(C(x), B),
b = By(7) x b’ for some block »* € BIk(2:L3(4):2) with cyclic defect group 7. Now
Cary2(7) = 7 x 22, Np.pyay2(7) = 22 x 7:3, and so £(b) = £(b') = W(O') = 3.
Thus if an outer involution in (22 x 72:(3 x 2A4)):2 stabilizes a root block of B, then
£(B) = 27 — 3 = 24; otherwise, £(B) = 27 — 6 = 21. We may suppose that £(B1) = 24
and £(Bp) = 21.

If p = 5 and B equals Bj or By, then the non-trivial elements of D(B) are of type 5A, and
C(5A) = 5 x HS:2, so that (5.11) holds with C(x) = 5 x HS:2 and b = By(5) x b’, where
b’ € BIk(HS:2) with cyclic defect group 5. Thus W(b') = £(b') = 4 as Nys2(5) = 5:4x Ss,
and £(B) =20 — 4 = 16.
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If p =3 and B € {Bj, B>, B3}, then the non-trivial elements of D(B) are of type 3A,
and C(3A) = S§3 x Fip:2, sothat b = By(S3) x b’ for some b’ € Blk(Fiz;:2) with cyclic
defect group 3, where b € Blk(S3 x Fiz:2, B). Now

CFi22:2(3) =3x U4(3)22,
Nrin2(3) = (83 x Us(3):2).2; Nrina(3)/G x Us3)) = 2%

Thus, if an element of Ngi,,:2(3) \ Criy,:2(3) stabilizes the root block of &', then W(b') =
£(b") = 2; otherwise, W(b') = £(b") = 4. We may suppose that £(B;) = k(B;) —2 =
9—2=7wheni =1,2and £(B3) =k(B3) —4=9—4=>5.

If £,(G) is the number of p-regular G-conjugacy classes, then £7(G) = 165, £5(G) =
144 and ¢3(G) = 103. Thus £(Bp) can be calculated by the following equation, due to
Brauer:

GG = Y B+ G, (5.12)
BeBIkT (G, p)

where | IrrO(G)AI is 63, 45 or 9 when p equals 7, 5 or 3. .
The setIrr(B) is also determined using the method of central characters, and £(B) is given
by (5.12) with G replaced by G, where £7(G) = 220, {5(G) = 189 and £3(G) = 139. [J

THEOREM 5.3. Let G = 2.B, and let B be a p-block of G with a non-cyclic defect group. If
p = 3, then the number of B-weights is the number of irreducible Brauer characters of B.

Proof. We may suppose that pis 3,5 or 7. If B = Bg or B, then
W(B) =) Wn,
R

where R € Ro(B, p) with d(Cg(R)R/R) = 0,and H = N = Np(R) or N = Nrp(R),
according to whether B equals By or B. Thus Theorem 5.3 follows by Lemma 5.2 and
Tables 2 and 3.

Suppose that p = 7. Then | Irr (N (7%)/7%)| = 69, B has sixty-nine weights of the form
(7%, @), twenty-four of which are By-weights. If b € Blk(2? x 7?) is stabilized by an outer
involution of (22 x 7%:(3 x 2A4)):2, then its canonical character 6 is stabilized by Ng(7%),
50 6 has an extension to Ng(7%) and b® (7™ has twenty-four weight characters, which form
all twenty-four Bj-weights. Finally, B> has 21 = 69 — 24 — 24 weights.

If p = 5and B is Bj or By, then Ny(D)/Cg(D)D = 4S54, which has sixteen irreducible
characters, so that B has sixteen weights of the form (D, ¢).

If p =3 and B € {Bj, B2}, then Ng(D)/Cy(D)D is a semidihedral group SDig, so
that B has seven weights of the form (D, ¢).

If p =3 and B = B3, then B has five weights of the form (D, ¢), since Ng(D)/D has
nineteen irreducible characters of defect 0, and fourteen of these are weight characters of
B or B». O

6. Radical chains

Let G =B, C € R(G) and N(C) = Ng(C). We will do some cancellations in the
alternating sum of Uno’s conjecture. We first list some radical p-chains C(i) and their
normalizers for certain integers i, and then reduce the proof of the conjecture to the subfamily
RO = RO(G) of R(G), where R°(G) is the union of G-orbits of all C(i). The subgroups
of the p-chains in Tables 5 and 6 are given either by Tables 2 and 3, or in the proofs of
Proposition 5.1 and Lemma 6.1.
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LEMMA 6.1. Let RO(G) be the G-invariant subfamily of R(G) such that
{CG): 1 <i <10} withC(@i) givenin Table 5if p =5,

RY(G)/G = , D . o .
{CG) : 1 <i <36} withC(i) given in Table 6 if p = 3.
Then
> DK@, B d, Irh = Y (=DIkWN(©), B,d,[r]).  (6.1)
CeR(G)/G CeR%G)/G

Proof. Let C € R(G) be given by (2.1), so that we may suppose that P; € Ro(G, p).
Case (1) Supposethat p = 5.1f P| = O5(M1) = 5,thenC g {C(2),C(3),C4),C(5)},
since Ro(Ng(52), 5) = {52, 5°).
Leto : 1 < Q=5 <525"2 sothat o’ : 1 < 5252, Thus o and o’ satisfy the
conditions of Lemma 2.1, so there is a bijection g from R~ (o, 5°) onto R(c, 5°) such that
N(C') = N(g(C") and |C’| = |g(C")| — 1 for each C' € R~ (a, 5%). So

k(N(C), B, d,[r]) = k(N (g(C"), B, d, [r]), (6.2)

and we may suppose that C ¢ (R~ (o, 5°) UR (0, 5°)). In particular, we may suppose that
Py #G 5252 and if P = 5%, then Py #¢ 5%.5'*2. Similarly, let C' : 1 < 5% < 5% <
51%45and g(C') : 1 < 5% < 5'%*.5. Then N(C’) = N(g(C")) and (6.2) holds; hence, if
P = 5% = 05(M>), we may suppose that C €g {C(6), C(7)}.

Let C' : 1 < 5 < 544 5and g(C’) : 1 < 5745, so that N(C) = N(g(C")) =
5144 .5.4% and (6.2) holds. If P; = 5'**, then we may suppose that C =g C(8).If P; = 52,
then C =g C(9) or C(10).

Case (2) Suppose that p = 3.

Case (2.1) Let R € Ro(M1,3) \ {38} and let o(R) : 1 < Q = 3!*8 < R, so that
o(R) : 1 < R, where Ro(My,3) is given by (5.3). Then o (R) and o (R)’ satisfy the
conditions of Lemma 2.1.

Table 5: Some radical 5-chains of B.

C N(C)
cay 1 B
C2) 1 <5 5:4 x HS:2
C3 1<5<5? 5:4 x 5:4 x S5

Cd) 1<5<52<5 54x54x54
C(5) 1<5<5x517 5:4x5124.pg

c®o 1<5 53.L3(5)

(7 1<5 <5t 54H.GL2(5)
c@® 1<s5i 5iranlt As4
cCO 1<52<5 52:48, x 5:4
c10)y 1<5% 52:484 x Ss
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A similar proof to that of Case (1) shows that we may suppose that

C¢ U (R™(@(R), 3" UR (0 (R), 31*F)).
ReRo(My,3)\{31%8)

In particular, Py €6 Ro(M71,3) \ {3!78}, and if P| = 318, then C = C(2).
‘We may suppose that

Pi ¢ {3,3%,3%,33.35,33.3.33.33 32,3336 3233 36 3},

Case (2.2) Leto : 1 < Q =32.33.36 < 3233363 sothato’ : 1 < 32.33.30.3, where
32.33.36,32.33.35 3 ¢ Ro(M>, 3) given by (5.4). Then o and ¢’ satisfy the conditions of
Lemma 2.1. A similar proof to that of Case (1) shows that we may suppose that

C & (R (0,32.23.3% U R0, 32.23.3%).
In particular, Py #¢ 32.33.3%.3 and if P; = 3%2.23.3%, then P, #¢ 3%.33.39.3.

LetC':1<32233% < Sand g(C') : 1 < 32.23.3% < 314833 = § Then N(C") =
N(g(C")) = S5.23, and so (6.2) holds. Thus if P; = 32.3%.3% = 03(M>), we may suppose
that C g {C(3), C(4)}.

Case 2.3) Let C' : 1 < 333% < 3148323 and g(C’) : 1 < 3330 < 314832
314832 3 where 3!78.32 3148323 ¢ Ry (M3, 3). Then N(C') = N(g(C’)), and (6.2)
holds. We may suppose that C #g C’ and C #¢g g(C’), so that if P; = 33.3% we may
suppose that C € {C(5), C(6), C(7), C(8)}.

Case (2.4) LetC' : 1 <333.333% < Sand g(C') : 1 < 3333333 <3148 31+2 g,
where 33.3.33.33, 3148 3142 ¢ R((My, 3). Then N(C') = N(g(C")) = S.23, and (6.2)
holds. We may suppose that C #g C’ and C #¢g g(C’), so that if P; = 33.3.33.33, we
may suppose that C €g {C(9), C(10), C(11), C(12)}.

Case (2.5) Let L = Ny5(3%) = S3 x 3%:(2 x Us(2):2). We may take

Ro(L,3) = {3°% 3 x 3°.3%,3 x 3°.31%2 3 x 314632y € Ry(Ms5, 2),

and hence Ny (R) < Ny (3%) for all R € Ro(L,3). Let R € Ro(L,3) \ {3°) and
o(R):1<3<Q=3%<R,sothato(R) : 1 <3 < R. A similar proof to that of Case
(1) shows that we may suppose that

ceg | @R @®).3UR(R).3).
ReRo(L,3)\{3%}

In particular, if P; = 3,then P» ¢g Ro(L, 3)\{3°}; moreover, if P, = 3%, then C = C(17).
Let H = Ny; (3%) = 83 x (S3 x Us(3):2).2. We may take

Ro(H,3) = {3%,3%,3% x 3114 3 x 32.32.3%);

moreover, Cp, (3%) = 3%, Curg (3% x 314%) = Cpys (3 x 32.32.3%) = 33, and

S3 x 83 x 3*.286 if R =39,
Nu(R) = {83 x S3 x 31H421+4 §u if R = 32 x 31+4,
S3 x 32.32.33.23 .22 if R =3 x 32.32.33,

LetC':1<3<32<3x32323%andg(C):1 <3 <32 <32x3+% <3x323233
Then N(C') = N(g(C")) = Ny (3 x 3%2.32.3%) and (6.2) holds. It follows that if P; = 3
and P, = 32, then we may suppose that C €g {C(13), C(14), C(15), C(16)}.
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Table 6: Some radical 3-chains of B.

C N(C)
ca 1 B

c@2 1<3® 3L+, 2).2
C(3) 1<323.30 <3833 3183304 55

Cé4) 1<323336 32.33.30.(S4 x 284)
C(5) 1<3336<333632 33.30.32(284 x Dg)
c6) 1<333° 33.39.(L3(3) x Dg)
C(7) 1<330 <3832 31783228, x Dy)
C@®) 1<3330 <3832 318323 314832322 x Dg)
CO 1<333.3333<3233363 32.33.36.3(2 x 284)
C(10) 1<333.3333 33.3.33.33(L3(3) x 2)
Cc(11) 1<3%3333% <3831+ 318 31722 % 28y)
C(12) 1<3333333<3233303<¢§ §.23

C(13) 1<3<3? S3 x (83 x Us(3):2).2
C(14) 1<3<3?<3%x3H S5 x 83 x 3421 g,
C(5) 1<3<3%2<30<3x323233 S3 x 32.32.33.23 .22
C(16) 1<3<3><3 S3 x 83 x 3*:286
C(7) 1<3<3° S3 % 33:(2 x Us(2):2)
c({1s8) 1<3 S3 x Fipp:2

C(19) 1<3<3x333 S3 x 3313:L3(3)
C(20) 1<3<3x3 <3x35:3 S5 x 3%:3172.284
C@21) 1<3<3x3Lf® S5 x 3176.23+4:32 52
C(22) 1<3<3x30<3x31703 S5 x 3176.3:25,
C(23) 1<3<3x30<3x3103<3x317032 g3 3.703272
C4) 1<3<3x340<3x3533 S3x 33.3%.(2 x Sp).2
C25) 1<32<3° (3%:Dg x 3*:44:2%).2
C26) 1 <32 <30<333233 333233232223
CQ7) 1<3<32x3H (3%:Dg x 317.284:2%) .2
c28) 1<32 (3%:Dg x Us(3):2%).2
C(29) 1 <306 <336 3316, (22 x L3(3))
C30) 1 <30 <336 323336 32.33.36.(22 x 284)
C(31) 1 <30 <330 < 323336 o 33+6 3142 3346 3142 o4

C(32) 1 <36 <3346 363243 36,3243 (22 x 284)
C(33) 1<3°<383 31183020432 g
C(34) 1<3° 30:(2 x L4(3):2):2
C(35) 1<3%<323336 32.33.35.(2 x 284:2):2
C(36) 1 <3°<323336 < 33+031+2 33+6 3112 93 22
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Let J = Ny (3 x 33+3) = 83 x 333:13(3). We may take
Ro(J,3) = {3 x3313,3 x310.3,3 x 3°:3172 3 x 3110 32} € R((Ms5, 3);
moreover, N; (3 x 3'%6.3) = Ny, (3 x 3176.3), and

Sz x 39:31%7228, if R =3 x 3°:3112,

N, (R) =
s (R) S3 x 31463292 if R — 3 x 314632,

Leto :1 <3< Q=3x3"3 <3x3"03 sothato’ : 1 <3 < 3 x3'+6.3 A similar
proof to that of Case (1) shows that we may suppose that

C & (R (0,3 x3)URY 0,3 x33H3)).

LetC':1<3<3x333 <3x34032andg(C’):1 <3 <3x333 <3x33:31+2 <
3 x 311632 Then N(C') = N(g(C")) = N;(3 x 3'%6.32) and (6.2) holds. It follows that
if Py =3 and P, = 3 x 3313, then we may suppose that C €5 {C(19), C(20)}.

Let K = Ny (3 x 3170) = §3 x 31%6.23+4:32 22 We may take
Ro(K,3) = {3 x 316,3 x 31703 3 x 3933 3 x 317032} € R((Ms, 3);

moreover, Ng (R) = Ny, (R) for each R € Ro(K, 3).

LetC':1 <3 <3x310 <3x34632andg(C):1 <3 <3x310 <3x%x3533 <
3 x 31632 Then N(C’) = N(g(C")) = Nk (3 x 3'%6.32) and (6.2) holds. If P, = 3 and
P> =3 x 317 then we may suppose that C € {C(21), C(22), C(23), C(24)}.

It follows that if P = 3,then C =g C(i) for 13 <i <24

Case(2.6) Leto : 1 <32 < Q0 =32x31%% < 333233 sothato’ : 1 < 32 < 33.32.33,
where 33.32.33, 32 x 31%4 ¢ Ry (Mg, 3). A similar proof to that of Case (1) shows that we
may suppose that

C & (R (0,3% x 31" U R (0, 32 x 3114)).
In particular, if Py = 32, then P, #¢ 33.32.33. if, moreover, P, = 32 x 31+4 then
P3 #¢ 33.32.33. Thus we may suppose that C g {C(25), C(26), C(27), C(28)}.
Case (2.7) Let T = Ny, (3'18.3) = N(3'48.3) = 31+8.3.22.24 32 Dg. We may take

Ro(T, 3) = {3'18.3,30.3%+3 3346 3142y  R((M7, 3);
moreover, N7 (R) = Ny, (R) for each R € Ro(T, 3).
Let R € Ro(T,3)\ {3'18.3},0(R) : 1 <3° < Q0 =3"83 < R sothata(R) : 1 <
3% < R. A similar proof to that of Case (1) shows that we may suppose that
C¢ U (R~ (0(R),3'8.3) U R (0, 3'18.3)).
ReRo(T,3)\{31+8.3}
In particular, if P; = 3%, then P, & Ro(T, 3) \ {3'73.3}; if, moreover, P, = 31783, then
P3 & Ro(T, 3).
Let V = Ny, (3310) = 33+6,(22 x L3(3)). We may take
Ro(V,3) = {3316, 32 .33 36 36 3243 3346 3142y R\ (M7, 3);
moreover,
32333622 x 284) if R = 3%2.33.36,
Ny(R) = {30.3213.(22 x 284) if R = 30.32+3,
33+6.31+2'24 if R = 33+6‘31+2.
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Let C': 1 <30 <3316 363243 - 3346 3142 apd g(C') : 1 < 30 < 33+6 < 3346 3142,
Then N(C') = N(g(C")) = Ny (330.31%2) and (6.2) holds. If P; = 3% and P, = 331°,
then we may suppose that C €5 {C(29), C(30), C(31), C(32)}.

Since Sylow 3-subgroups of Ny, (32.33.3%) = 32.33.35 (2% 25,:2):2 are the only radical
subgroups of Ny, (3%.3%.3%) other than 32.33.39, it follows that if P; = 3%, then C =¢ C (i)
for some 29 < i < 36. O

REMARK. Let G = 2.B and let & be the faithful character of Irr(Z(G)) and B € BIk(G)
covering the block of B(§). If D(B) # 1 and p = 3,5, then

Y. DKWNG(©0), B dE )= Y (DN (C), B, d, &, [r]).

CeR(G)/G CeRY(G)/G

The proof of the remark is the same as that of Lemma 6.1, since N(C') = N(g(C"))
implies that Nz (C') = Ng(8(C')).

7. The proof of Uno’s projective conjecture

LEMMA 7.1. Let G be a finite group, and let B € BIk(G) with plr(B) = 2 and abelian
defect group D = D(B). Let O,(G) # R < D be radical, and let b € Blk(Ng(R)) with
bY = B. Then

kK(NG(R)NNG(D),b,d, p,[r]) =k(NG(R),b,d, p,[r]). (7.1

Proof. Since R is radical and D is abelian, D is a defect group of b, plr(b) # 0 and
plr(b) = 1. By [3], we see that [3, Conjecture 1.3] holds for b; that is,

k(NG(R),b,d, p,[r]) =k(NG(R) N Ng(D), b, d, p, [r])
= w(Ng(R),b.d, p,[r], R) —w(NG(R) N Ng(D),b.d, p,[r], R),

where w(H, Q) is the number of irreducible characters of H afforded by a Q-projective
O H-module. By [13], if

w(NG(R), b, d, p,[r],R) #0 or w(Ng(R)NNg(D),b,d,p,[r],R) #0,
then Cp(R) < R, which is impossible. Thus w(Ng(R) N Ng(D),b.d, p,[r],R) =
w(NG(R), b,d, p,[r], R) = 0 and (7.1) holds. O

Suppose that G = 2., and that B € BIk(G) with D(B) = p2, so that plr(B) = 2. Thus
Uno’s projective conjecture for B is equivalent to the equation
k(2.B, B,d, p, [r]) =k(N2g(D(B)), B, d, p, [r]). (7.2)

Note that if p is the trivial character, then B is a block of B.
The tables listing the degrees of the irreducible characters referred to in the proof of
Theorems 7.2 and 7.3 are available in Appendix A.

THEOREM 7.2. Let B be a p-block of the Baby Monster G = B with a positive defect. If p
is odd, then B satisfies Uno’s ordinary conjecture.

Proof. We may suppose that D(B) is non-cyclic; by Lemma 5.2, B € {By, B1, B>} when
p=7,5and B € {By, By, B>, B3} when p = 3.
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Case (1) If p =7, then D(B) = 7%, Ng(D(B)) = (2% x 7>:(3 x 2A4)):2 and

9 ifd=2andr =1,
9 ifd=2andr =2,
9 ifd=2andr =3,
0 otherwise.

k@B, B,d, [r]) =k(N(D(B)), B,d, [r]) = (7.3)

Thus (7.2) holds.

Case (2) Suppose that p = 5 and B = Bj or B;. Then D(B) = 52, N(D(B))
N(C(10)) = 52:4S4 x S5 and Theorem 7.2 follows because

10 ifd=2andr =1,
kB, B,d, [r]) =k(N(C(10)), B,d,[r]) = 110 ifd =2andr =2,

0  otherwise.

Suppose that B = By. Since Ng(C(3)) = 5:4 x 5:4 x Ss, its principal block by =
Bo(N(C(3))) has p-local rank one and N (C(4)) = N(D(bg)). Thus (7.1) holds for b = by
(with p = 1). Similarly, (7.1) holds for by = Bo(N(C(10))) with N(C(9)) = N(D(by)),
since N(C(10)) = 5%:484 x Ss.

We set k(i,d, r) = k(N(C(i)), B, d, [r]) for integers i, d and r. The values k(i, d, r)
are given in Table 7.

It follows that

10
2 (DI (C@), Bo.d. [r]) =0.

i=1

Case (3) Suppose that p = 3, so that Uno’s projective conjecture is equivalent to Dade’s
projective conjecture.

If B = By, By or Bz, then N(D(B)) = N(C(28)) = (32:Dg x U4(3):2%).2 and Theorem
7.2 follows because
9 ifd =2,

k(B, B,d) = k(N(C(28)), B,d) = .
0 otherwise.

Table 7: Values of k(i, d, r) when p = 5 and B = By.

Defect d 6 5 5 4 4 3 3 otherwise
Value r 1 1 2 1 2 1 2 otherwise
k(1,d,r) 25 22 2 1 0 6 3 0
k2,d,r)=k(5,d,r)| 0 0 0 50 50 5 20 0
k(6,d,r) 25 8 4 1 0 1 O 0
k(7,d,r) 25 8 4 4 4 1 0 0
k(8,d,r) 25 22 22 4 4 6 3 0
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Suppose that B = By; suppose also that C € RO with d(N(C)) = 8, so that C =g C (i)
for 13 <i < 160r25 <i < 28.Setk(i,d) = k(N(C(i)), B, d). The values k(i, d) are
given in Table 8.

It follows that

> (=DKW (C), By, d) = 0.
d(N(C))=8

Suppose that C € RO with d(N(C)) = 10, so that C =g C(@) for 17 < i < 24. The
values k(i, d) are given in Table 9.
It follows that

Z (=DICIK(N(C), By, d) = 0.
d(N(C))=10

Table 8: Values of k(i, d) when p = 3 and d(N(C(i))) = 8.

Defectd | 8 7 6 5  otherwise
k(13,d) | 243 108 108 36 0

k(14,d) | 243 108 135 36
k(15,d) | 243 108 135 O
k(16,d) | 243 108 108 O
k(25,d) | 162 54 63 0
k26,d) | 162 54 81 0
k@27,d) | 162 81 81 27
k28,d) | 162 81 63 27

SO o o o o o o

Table 9: Values of k(i, d) when p = 3 and d(N(C(i))) = 10.

Defectd | 10 9 8 7 6 5 otherwise
k(7,d) | 81 117 114 9 36 O
k(18,d) | 81 117 39 9 36 12
k(19,d) |54 36 39 9 0 O
k0,d) |54 36 1383 9 0 O
k21,d) | 81 144 39 54 45 12
k22,d) |54 63 39 54 9 O
k(23,d) |54 63 138 54 0 O
k(24,d) | 81 144 114 54 36 O

SO O O O o o o o
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Suppose that C € R° with d(N(C)) = 12, so that C =g C(i) for 5 < i < 8 or
29 < i < 36. The values k(i, d) are given in Table 10.

It follows that
ifd =17,
otherwise.

> (=DCKW(C), By, d) =

d(N(C)=12

Suppose that C € R? with d(N(C)) = 13,50 C =g C(i) for 1 <i <4or9 <i < 12.
The values k(i, d) are given in Table 11.

Table 10: Values of k(i, d) when p = 3 and d(N(C(i))) = 12.

Defectd | 12 11 10 9 8 7 6 otherwise
k(5, d) 81 27 72 81 2 0 O 0
k(6, d) 81 27 36 24 2 0 O 0
k(7,d) 81 72 36 24 36 9 0 0
k(8, d) 8 72 72 81 36 0 O 0
k(29,d) |8 27 36 18 1 0 O 0
k30,d) | 81 27 8 69 1 0 O 0
k@31,d) | 81 87 81 69 30 0 O 0
k32,d) | 81 87 36 18 30 9 0 0
k(33,d) |8 72 45 31 36 9 9 0
k(34,d) |8 27 45 31 2 0 9 0
k35,d) |81 27 72 81 2 0 O 0
k36,d) | 81 72 72 81 36 0 O 0

Table 11: Values of k(i, d) when p = 3 and d(N(C(i))) = 13.

Defectd | 13 12 11 10 9 8 7 6 5 otherwise
k1, d) 27 39 13 30 16 0 1 9 7 0
k2, d) 27 39 38 30 34 16 13 9 7 0
k@3, d) 27 48 38 90 51 16 O O O 0
k4, d) 27 48 13 9 36 0 O 0 O 0
kO, d) 27 33 8 9 60 2 0 0 O 0
k(10,d) |27 24 8 48 18 2 1 0 O 0
k(11,d) [ 27 24 41 48 36 26 4 0 O 0
k(12,d) |27 33 41 90 75 26 0 0 0
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Theorem 7.2 follows for By.

(—D!Ik(N(C), By, d) = !

-9 ifd=17,
0 otherwise.

O

THEOREM 7.3. Let B be a p-block of the covering group G=2B of the Baby Monster B
with a positive defect. If p is odd, then B satisfies Uno’s projective conjecture.

Proof. We may suppose that D(B) is non-cyclic, and that Irr(B) € Irr(B), so that B = B.

Case (1) If p = 7, then Nog(D(B)) = 2.(2% x 7%:(3 x 2A4)):2. The values of
k(2.B, B, d, &, [r]) and k(N> g(D(B)), B, d, &, [r]) are the same, and are given by (7.3).

Case (2) Suppose that p = 5, so that No g(C(i)) has a unique block l;(i) such that
b(i)N25(€®) = B By Lemma 7.1, equation (7.1) holds for b = 5(10) and b(3) (with
p = &). Setk(i,d,r) = k(N (C(i)), l§, d, &, [r]) for integers i, d and r. The values
k(i, d, r) are given in Table 12.

Table 12: Values of k(i, d, 7) when p = 5and B = B.

Defect d 6 5 5 4 4 3 3 otherwise
Value r 2 1 2 1 2 1 2 otherwise
k(,d,r) 25 5 12 0 1 5 1 0
k2,d,ry=k(5,d,r) | 0 0 0 11 26 4 9 0
k(6,d,r) 25 4 8 0 1 0 1 0
k(7,d,r) 25 4 8 4 4 0 1 0
k(®8,d,r) 25 5 12 4 4 5 1 0

Table 13: Values of k(i, d) when p = 3 and d(N> g(C(i))) = 8.

Defectd | 8 7 6 5 otherwise
k(13,d) | 87 18 27 12 0
k(14,d) | 87 18 63 12 0
k(15,d) | 87 42 63 O 0
k(e6,d) | 87 42 27 0 0
k25,d) | 57 18 18 O 0
k26,d) | 57 18 30 O 0
k@27,d) | 57 12 30 6 0
k28,d) | 57 12 18 6 0
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It follows that 10

D (=DICOIK(N B (C(0)), B.d. &, [r]) =0.

i=1

Case (3) Suppose that p = 3, so that Uno’s projective conjecture is equivalent to Dade’s

projective conjecture. Set k(i, d) = k(N2 g(C(i)), B, d,§).
Suppose that C = C(i) is a chain with d(N,g(C)) = 8. Then 13 < i

25 <i < 28, and the values k(i, d) are given in Table 13.

It follows that

2

(—D/€Ik(N25(C), B, d, &) = 0.

d(N2B(C))=8
Suppose that C = C(i) is a chain with d(N>5(C)) = 10. Then 17 < i < 24 and the

values k(i, d) are given in Table 14.

It follows that

2

(—DICK(N2B(C), B, d, &) = 0.

d(No g (C))=10

Suppose that C = C (i) is a chain with d(Nog(C)) = 12. Then 5 <i < 8o0r29 <i <
36, and the values k(i, d) are given in Table 15.

It follows that

Y. =DKkN2p(C), B.d, £) = {

d(N2(C))=12

6 ifd=717,
0 otherwise.

<

X

16 or

Suppose that C = C (i) is achain withd(No 3(C)) = 13.Then1 <i <4o0r9 <i < 12,

and the values k(i, d) are given in Table 16.

It follows that

> (=D p(C), B.d. &) = !

d(No B (C))=13

Theorem 7.3 follows for B.

Table 14: Values of k(i, d) when p = 3 and d(N>(C(i))) = 10.

—6 ifd=17,

0

otherwise.

Defect d 10 9 8 7 6 otherwise
k(17,d,r) {33 36 48 6 9 0
k(18,d,r) | 33 36 36 9 0
k(19,d,r) | 54 36 39 9 O 0
k(20,d,r) | 54 36 138 9 O 0
k21,d,r) | 33 51 3 27 18 0
k(22,d,r) | 54 63 39 54 9 0
k23,d,r) | 54 63 138 54 O 0
k(24,d,r) | 33 51 48 27 9 0
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Table 15: Values of k(i, d) when p = 3 and d(N>g(C(i))) = 12.

Defect d 12 11 10 9 8 6 otherwise

k(5,d,r) |36 12 36 54 2
k6,d,r) |36 12 18 18 2

)

k(7,d,r) |36 36 18 18 24
k@8.d,r) |36 36 36 54 24
k9,d,r) [36 12 27 12 1
k30,d,r) |36 12 54 51 1
k3l,d,r) | 36 51 54 51 24
k(32.d,r) | 36 51 27 12 24
k(33.d,r) | 36 36 18 10 24
k(34,d,r) |36 12 18 10 2
k(35.d,r) | 36 12 36 54 2
k(36,d,r) | 36 36 36 54 24

S O O o o ©oO O o o o o <o |2
S O W W O O O o o o o o
SO O O O o o o o o o o

Table 16: Values of k(i, d) when p = 3 and d(N> g(C(i))) = 13.

Defectd | 13 12 11 10 9 8 7 6 5 otherwise
k{1, d) 279 3 12 1 O 1 3 2 0
k2, d) 279 14 12 19 6 10 3 2 0
k@3, d) 27 18 14 63 30 6 0 0 O 0
k4, d) 27 18 3 63 15 0 O 0 O 0
k(9, d) 27 33 8 9 60 2 0 0 O 0
k(10,d) |27 24 8 48 18 2 1 0 O 0
k(11,d) [ 27 24 41 48 36 26 4 0 O 0
k(12,d) |27 33 41 9 75 26 0 0 O 0
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Appendix A. Degrees of character tables for chain normalisers of B and 2B

Let & be the faithful linear character of Z(2.8),let Z(2.B) < H < 2.B,andletIrr(H | §)
be the character of Irr(H) covering &.

Table A.1: The degrees of characters in Irr(31+8.21_+6.U4(2).2).

Degree 1 6 8 10 15 20 24 27 30
Number 2 2 2 1 4 3 2 2 2
Degree 36 48 60 64 80 81 90 108 120
Number 4 2 3 2 2 2 1 2 4
Degree 135 160 162 180 192 240 270 324 360
Number 4 3 2 8 2 2 5 4 4
Degree 405 480 512 540 576 640 648 720 810
Number 2 3 2 2 2 1 2 1 2
Degree 972 1296 1440 1620 2430 2880 3240 3888 4374
Number 1 1 4 2 2 4 1 1 1
Degree 4860 5120 5760 5832 6480 7290 7776 8640 9720
Number 3 4 5 2 4 2 1 6 1
Degree | 10240 10368 11520 12960 13122 15360 17280 17496 19440
Number 2 1 4 6 3 4 7 1 2
Degree | 21870 23040 25920 29160 30720 31104 34560 38880 40960
Number 4 1 1 4 4 1 2 3 2
Degree | 43740 51840 52488 58320 61440 65610 77760 81920 82944
Number 2 3 2 4 5 1 1 1 1
Degree | 87480 93312 104976

Number 1 1 1

Table A.2: The degrees of characters in Irr(2.31+8.21_+6.U4(2).2 | £).

Degree 8 20 40 60 64 72 80 108 120
Number 1 2 2 2 3 1 2 2 1
Degree 160 288 320 432 480 512 540 576 640
Number 2 2 2 2 2 2 2 3 2
Degree 648 720 960 3240 5184 5760 5832 9720 10240
Number 3 2 1 5 2 2 2 3 4
Degree | 10368 11520 12960 17280 17496 20480 23328 25920 34560
Number 1 4 1 2 1 2 4 5 3
Degree | 40960 46656 52488 61440 69120 69984 77760 81920 82944
Number 2 2 2 2 1 1 3 1 1
Degree | 87480 93312 103680 116640 122880

Number 1 1 1 1 1
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Table A.3: The degrees of characters in Irr(3'18.33 .24 53).

Degree 1 2 3 4 6 8 12 16 18 24 32 36 48 54
Number | 8 8 8 2 12 4 14 4 8 9 1 10 4 12
Degree |72 96 108 144 162 216 324 432 486 648 864 972 1296 1944
Number [ 16 1 26 4 8 34 16 16 4 21 2 8 6 4
Table A.4: The degrees of characters in Irr(2.3118.33.24 83| £).
Degree 2 4 8 12 16 24 32 36 48 72
Number | 8 8 6 4 4 8 1 4 5 2
Degree | 96 108 144 216 324 432 648 864 1296 1944
Number | 1 8 8 34 4 19 18 2 8 6
Table A.5: The degrees of characters in Irr(32.33.30(S4 x 284)).
Degree 1 2 3 4 6 8 9 12 24 32 48
Number 4 8 8 5 8 1 4 2 8 4 14
Degree 54 64 96 108 128 144 162 192 216 288 324
Number 4 4 5 13 1 4 4 2 21 5 5
Degree | 384 432 648 864 1296 1728 2592 3456 5184
Number 1 19 6 21 11 10 8 2 2

Table A.6: The degrees of characters in Irr(2.32.33.30(8, x 284) | £).

Degree 2 4 6 8 12 16 32 48 64
Number 4 8 4 5 2 1 4 4 4
Degree 96 108 128 192 216 288 324 384 432
Number 4 2 1 3 12 2 2 1 17
Degree | 576 648 864 1296 1728 2592 3456 5184
Number 1 3 17 1 13 6 2 3
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Table A.7: The degrees of characters in Irr(33.3%.32.(Dg x 284)).

Degree 1 2 3 4 6 8 16 18 32
Number 8 14 8 7 2 9 22 4 17
Degree 36 48 54 64 72 96 108 144 192
Number | 17 4 4 4 19 9 9 11 4
Degree | 216 288 432 576 648 864 1152 1728 3456
Number | 16 14 20 6 2 21 1 10 1

Table A.8: The degrees of characters in Irr(2.33.39.32.(Dg x 284) | £).

Degree 2 4 6 8 16 32 36 64 72 9% 108
Number 4 6 4 2 4 14 2 6 11 2 2
Degree | 144 192 216 288 432 576 648 864 1152 1728 3456
Number | 10 6 10 3 10 9 2 20 1 11 1
Table A.9: The degrees of characters in Irr(33.3.(L3(3) x Dg)).
Degree 1 2 12 13 16 24 26 27 32
Number 4 1 4 4 16 1 13 4 4
Degree 39 52 54 78 104 156 208 234 416
Number 4 11 1 1 12 8 4 4 8
Degree 468 624 702 832 936 1248 1404 1872 2496
Number 9 4 4 4 7 1 1 7 4
Degree | 2808 3744 5616 7488 8424 14976
Number 8 6 6 2 2 1
Table A.10: The degrees of characters in Irr(2.33.39.(L3(3) x Dg) | &).
Degree 2 24 26 32 52 54 78 104 208 312 468 832
Number | 2 2 2 8 6 2 2 6 6 2 2 6
Degree [936 1248 1404 1872 2496 2808 3744 5616 7488 8424 14976
Number | 5 2 2 4 4 8 3 6 3 2 1
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Table A.11: The degrees of characters in Irr(3'18.32.(28, x Dgy)).

Degree 1 2 3 4 6 8 12 16 32 48
Number 8§ 14 8 15 2 21 8 10 9 16
Degree 64 72 96 144 162 192 288 324 384 432
Number 4 8 24 14 4 12 9 9 2 8
Degree | 486 576 648 864 972 1152 1296 1728 1944 2592
Number 4 4 13 14 1 1 9 2 4 1
Table A.12: The degrees of characters in Irr(2.3148.32.(28, x Dg) | &).
Degree 2 4 6 8 16 24 32 64 96 144 192 288
Number 4 6 4 8 10 2 2 6 12 4 16 8
Degree | 324 384 576 648 864 972 1152 1296 1728 1944 2592
Number 2 2 5 11 16 2 1 10 2 4 1
Table A.13: The degrees of characters in Irr(31+8.32.3.(22 x Dg)).
Degree 1 2 4 6 8 12 16 18 24 36 48 54
Number | 16 20 24 8 17 18 4 8 32 30 12 8
Degree |72 96 108 144 162 216 288 324 432 648 864 1296
Number | 25 2 18 8 8 42 1 10 12 16 1 2
Table A.14: The degrees of characters in Irr(2.3'78.32.3.(22 x Dg) | £).
Degree 2 4 8 12 16 24 36 48 72 96
Number 8 8 14 4 6 12 4 18 20 2
Degree | 108 144 216 288 324 432 648 864 1296
Number 4 11 34 1 4 15 18 1 2
Table A.15: The degrees of characters in Irr(32.33.3%.3.(2 x 254)).
Degree 1 2 3 4 6 8 16 24 32 48 54 96
Number 4 8 4 5 2 5 4 16 1 10 20 1
Degree | 108 144 162 216 324 432 486 648 864 1296 2592
Number | 24 8 14 16 7 26 2 24 4 14 1
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Table A.16: The degrees of characters in Irr(2 x 32.33.36.3.(2 X 284) | €).

Degree 1 2 3 4 6 8§ 16 24 32 48 54 96
Number 4 8 4 5 2 5 4 16 10 20 1
Degree | 108 144 162 216 324 432 486 648 864 1296 2592
Number | 24 8§ 14 16 7 26 2 24 4 14 1

Table A.17: The degrees of characters in Irr(33.3.33.33.(L3(3) x 2)).

Degree 1 12 13 16 26 27 39 52 54
Number 2 2 2 8 8 2 2 3 1
Degree 78 104 156 208 234 416 468 624 648
Number 8 1 6 2 2 1 3 6 1
Degree | 702 864 936 1404 1458 2106 4212 5616 6318
Number | 13 4 3 16 1 11 6 12 2
Table A.18: The degrees of characters in Irr(2 x 33.3.33.33.(L3(3) x 2) | &).
Degree 1 12 13 16 26 27 39 52 54
Number 2 2 2 8 8 2 2 3 1
Degree 78 104 156 208 234 416 468 624 648
Number 8 1 6 2 2 1 3 6 1
Degree | 702 864 936 1404 1458 2106 4212 5616 6318
Number | 13 4 3 16 1 11 6 12 2
Table A.19: The degrees of characters in Irr(3'+8.31+2 (25, x 2)).
Degree 1 2 3 4 6 8 12 16 18 32 36 48 54 72
Number| 4 6 4 2 6 8 6 6 4 1 6 8 4 16
Degree | 108 144 162 216 288 324 432 486 648 864 972 1296 1458
Number| 4 12 8 25 3 6 14 14 12 1 12 10 4
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Table A.20: The degrees of characters in Irr(2 x 3'+8.3142 (25, x 2) | £).

Degree 1 2 3 4 6 8 12 16 18 32 36 48 54 72
Number 4 6 4 2 6 8 6 6 4 1 6 8 4 16
Degree | 108 144 162 216 288 324 432 486 648 864 972 1296 1458
Number 4 12 8 25 3 6 14 14 12 1 12 10 4

Table A.21: The degrees of characters in Irr(3'+8.31+2 3 23),

Degree 1 2 4 6 8 12 18 24 36

Number | 8 12 6 20 1 12 16 1 22

Degree |54 72 108 162 216 324 486 648 972

Number | 52 3 34 48 4 26 24 1 2

Table A.22: The degrees of characters in Irr(2 x 31133142323 | &),

Degree 1 2 4 6 8 12 18 24 36

Number | 8 12 6 20 1 12 16 1 22

Degree |54 72 108 162 216 324 486 648 972

Number | 52 3 34 48 4 26 24 1 2

Table A.23: The degrees of characters in Irr(S3 x (S3 x Us(3):2).2).

Degree 1 2 4 21 35 42 70 84 90 140 180 189
Number 16 16 4 16 32 16 32 4 16 24 16 16
Degree | 210 280 315 360 378 420 560 630 729 756 840 896
Number 16 16 32 4 16 32 20 32 16 4 20 16
Degree | 1120 1260 1280 1458 1680 1792 2240 2560 2916 3584 4480 5120
Number 20 8 8 16 4 16 8 8 4 4 1 2
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Table A.24: The degrees of characters in Irr(2.(53 x (S3 x U4(3):2).2 | §).

Degree 40 80 112 140 224 240 280 448 480 560
Number 4 8 8 12 8 4 14 2 8 7

Degree 840 1008 1080 1120 1260 1680 1792 2016 2160 2240
Number 2 8 4 4 4 4 4 8 8 4

Degree | 2520 2560 3584 4032 4480 5040 5120 7168
Number 4 2 4 2 1 1 4 1

Table A.25: The degrees of characters in Irr(S3 x S3 X 31+421,+4.S3).

Degree 1 2 3 4 6 8§ 12 16 18 32 36
Number | 32 48 32 32 32 16 8 38 48 49 48
Degree |48 54 64 72 96 108 128 144 192 216 288
Number | 16 16 24 24 16 16 4 12 4 4 3

Table A.26: The degrees of characters in Irr(2.(S3 x S3 x 31+42£+4.S3) | &).

Degree 4 8 12 16 24 32 36 64
Number | 14 24 2 6 4 17 12 18
Degree |72 96 108 128 144 192 216 288
Number | 36 4 4 g8 12 8 8 3

Table A.27: The degrees of characters in Irr(S3 x 3232332322,

Degree 1 2 4 8 12 16 18 24 32 36 48 72 96 144
Number |32 56 68 58 32 25 48 48 4 60 24 24 4 3

Table A.28: The degrees of characters in Irr(2.(S3 x 3232332322 | £).

Degree |2 4 8 16 24 32 36 48 72 96 144
Number | 8 18 34 19 16 8 24 18 36 8 3
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Table A.29: The degrees of characters in Irr(S3 x S3 x 34:25%).

Degree 1 2 4 5 9 10 16 18 20 30 32 36
Number | 16 16 4 32 16 48 8 16 40 32 8 4
Degree |40 60 64 80 90 120 160 180 240 320 360
Number | 24 48 2 24 32 24 17 32 4 4 8
Table A.30: The degrees of characters in Irr(2.(S3 x S3 x 34:286) | £).
Degree 2 4 8 10 18 20 32 36 40 60
Number | 4 4 1 8 4 12 2 4 14 16
Degree | 64 80 120 160 180 240 320 360 720
Number | 4 1 18 11 8 8 6 8 2

Table A.31: The degrees of characters in Irr(S3 x 35:(2 x Us(2):2)).

Degree 2 6 10 12 15 20 24 30 40 48
Number 8 4 8 4 4 16 14 8 16 6 4
Degree 60 64 72 80 81 90 120 128 144 160 162
Number 16 8 8 12 8 12 6 4 4 10 4
Degree 180 240 320 360 480 540 640 648 720 810 960
Number 14 8 2 30 12 4 4 8 29 8 14
Degree | 1080 1152 1280 1296 1440 1620 1920 2160 2304 2560 2880
Number 4 4 4 4 10 4 5 1 2 1 1
Table A.32: The degrees of characters in Irr(2.(S3 x 3%:(2 x Us(2):2)) | &).
Degree 2 4 12 20 24 30 40 48 60 80
Number 2 1 2 3 1 4 5 2 4 1
Degree 96 120 128 144 160 162 180 240 256 288
Number 1 6 2 2 9 2 9 1 1 1
Degree 320 324 360 480 720 960 1080 1280 1296 1440
Number 3 1 8 2 11 9 5 5 2 12
Degree | 1620 1920 2160 2304 2560 2592 2880 3240 3840
Number 2 3 1 3 1 1 2 1 1
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Table A.33: The degrees of characters in Irr(S3 x Fiz:2).

Degree 1 2 78 156 429 858 1001
Number 4 2 4 2 4 2 4
Degree 1430 2002 2860 3003 3080 6006 6160
Number 4 2 2 4 4 2 2
Degree 10725 13650 21450 27300 30030 32032 43680
Number 4 4 2 2 4 4 4
Degree 45045 48048 50050 60060 64064 75075 81081
Number 4 4 8 2 2 12 4
Degree 87360 90090 96096 100100 114400 150150 162162
Number 2 2 2 4 4 10 2
Degree 205920 228800 277200 289575 300300 320320 360855
Number 4 2 2 4 6 4 4
Degree 370656 411840 450450 554400 576576 577368 579150
Number 4 2 8 1 4 4 6
Degree 600600 640640 675675 720720 721710 741312 800800
Number 6 2 4 4 2 2 8
Degree 852930 900900 938223 972972 1153152 1154736 1158300
Number 4 4 4 4 2 2 2
Degree | 1164800 1201200 1351350 1360800 1372800 1441440 1441792
Number 2 8 2 4 4 2 4
Degree | 1601600 1705860 1791153 1876446 1945944 1965600 2027025
Number 4 2 4 6 2 2 4
Degree | 2050048 2316600 2329600 2402400 2555904 2721600 2729376
Number 4 4 1 7 8 2 4
Degree | 2745600 2883584 3582306 3752892 3931200 4054050 4100096
Number 2 2 2 2 1 2 2
Degree | 4633200 4804800 5111808 5458752

Number 2 2 4 2
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Table A.34: The degrees of characters in Irr((S3 x 2.Fiz2):2) | £).

Degree 704 4160 8320 11648 23296 27456 54912
Number 3 2 1 4 2 2 4
Degree 96096 192192 211200 246400 266112 292864 457600
Number 2 1 6 3 3 2 3
Degree 471744 585728 640640 800800 873600 943488 960960
Number 2 1 2 2 2 1 2
Degree | 1281280 1372800 1601600 1747200 1830400 1921920 2059200
Number 1 2 1 1 2 1 3
Degree | 2402400 2594592 2745600 2883584 3326400 3660800 4392960
Number 2 2 1 3 2 1 2
Degree | 4717440 4804800 5111808 5189184 6652800 8785920 9434880
Number 2 3 2 1 1 1 1
Degree | 9609600 10223616

Number 1 1

Table A.35: The degrees of characters in Irr(S3 x 333:13(3)).

Degree 1 2 12 13 16 24 26 27 32
Number 2 1 2 2 8 1 13 2 4
Degree 39 52 54 78 104 156 208 234 312
Number 2 12 1 9 3 10 6 14 3
Degree | 416 468 624 702 936 1248 1404
Number 3 19 6 4 6 3 2

Table A.36: The degrees of characters in Irr(2 x S3 x 333:1L1(3) | £).

Degree 1 2 12 13 16 24 26 27 32
Number 2 1 2 2 8 1 13 2 4
Degree 39 52 54 78 104 156 208 234 312
Number 2 12 1 9 3 10 6 14 3
Degree | 416 468 624 702 936 1248 1404
Number 3 19 6 4 6 3 2
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Table A.37: The degrees of characters in Irr(S3 x 3°.314228,).

Degree 1 2 3 4 6 8 12 16 18 24
Number | 4 8 4 5 8 17 9 16 20 3
Degree |32 36 48 54 72 96 108 144 288
Number | 4 28 8 6 45 4 3 36 9

Table A.38: The degrees of characters in Irr(2.(S3 x 32314228, | £).

Degree 1 2 3 4 6 8 12 16 18 24
Number | 4 8 4 5 8 17 9 16 20 3
Degree |32 36 48 54 72 96 108 144 288
Number | 4 28 8 6 45 4 3 36 9

Table A.39: The degrees of characters in Irr(S3 x 317623432 22

Degree 1 2 4 6 8 9 12 16 18
Number 8 12 14 12 13 8 20 6 4
Degree 24 32 36 48 54 72 9 108 128
Number | 27 1 2 18 12 17 8 12 8
Degree | 144 192 216 256 324 384 432 486 512
Number 8 20 15 12 18 25 12 4 6
Degree | 648 768 864 972 1024 1296 1536 1944

Number | 21 12 3 6 1 6 2 2

Table A.40: The degrees of characters in Irr(2.(S3 x 3!70234:32 22) | £).

Degree 4 8 12 16 24 48 9% 192 216 256
Number 4 10 4 4 8 5 14 4 18 6
Degree | 288 384 432 512 648 768 1024 1296 1536 2592
Number 3 5 9 8 6 6 1 9 5 3

Table A.41: The degrees of characters in Irr(S3 x 31+6.3:2S4).

Degree 1 2 3 4 6 8 12 16 24 32
Number | 4 14 4 14 4 8 1 10 24 4
Degree |48 54 72 96 108 144 162 216 288 324
Number |24 18 24 6 27 14 6 9 1 3
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Table A.42: The degrees of characters in Irr(2.(S3 x 3146.3:28,) | £).

Degree 1 2 3 4 6 8 12 16 24 32
Number | 4 14 4 14 4 8 1 10 24 4

Degree |48 54 72 96 108 144 162 216 288 324
Number |24 18 24 6 27 14 6 9 1 3

Table A.43: The degrees of characters in Irr(S3 x 31+6.32.22).

Degree |1 2 4 6 8 12 18 24 36 54 72 108
Number | 8 24 18 28 4 28 72 7 56 36 10 18

Table A.44: The degrees of characters in Irr(2.(S3 x 314632 22y | ).

Degree |1 2 4 6 8 12 18 24 36 54 72 108
Number | 8 24 18 28 4 28 72 7 56 36 10 18

Table A.45: The degrees of characters in Irr(S3 x 3°.33.(2 x 54).2).

Degree 1 2 3 4 6 8 12 16
Number | 16 24 16 12 32 10 40 12
Degree | 18 24 32 36 48 54 64 72
Number | 16 32 6 28 17 24 1 42
Degree | 96 108 144 162 192 216 288 324
Number | 6 24 24 24 1 6 4 12

Table A.46: The degrees of characters in Irr(2.(S3 x 33.33.(2 x 84).2) | §).

Degree 2 4 6 8§ 12 16 24 32 36 48
Number | 4 10 4 4 8 6 18 8 4 11
Degree | 64 72 96 108 144 192 216 288 324 648
Number | 1 17 9 18 20 1 9 7 6 3
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Table A.47: The degrees of characters in Irr((3%:Dg x 3*:A6:22).2).

Degree 1 2 4 8 9 10 16 18 20
Number 8 10 1 8 8 24 g8 10 22
Degree 32 36 40 60 72 80 120 128 160
Number 6 1 31 16 8§ 12 12 4 16
Degree | 180 240 320 360 480 640 720
Number | 16 18 4 4 8 8 16

Table A.48: The degrees of characters in Irr(2.((3%:Dg x 3*:46:2%).2) | £).

Degree 2 4 16 18 20 32 36 40 o4 80 120 144
Number 4 3 2 4 8 4 3 8 1 11 4 2

Degree | 160 240 256 320 360 480 640 720 960 1280 1440
Number 2 5 1 8 4 8 4 1 1 1 4

Table A.49: The degrees of characters in Irr(33.32.33.23.22.23).

Degree 1 2 4 8 16 18 24 32
Number | 16 36 22 36 24 8 16 20
Degree |36 48 64 72 96 144 192 288
Number | 30 12 8 12 18 25 8 6

Table A.50: The degrees of characters in Irr(2.(33.32.33.23.22.2%) | ).

Degree |2 4 8 16 32 36 48 64 72 96 128 144 192 288 384
Number {8 14 8 8 10 4 4 & 11 5 1 3 8 12 1

Table A.51: The degrees of characters in Irr((32:Dg X 31+4:2S4:22.).2).

Degree 1 2 3 4 6 8 12 16 18
Number | 16 28 16 20 20 27 2 11 8
Degree 24 32 36 48 54 64 72 96 108
Number | 16 20 26 8 8 14 9 10 10
Degree | 128 144 192 216 256 288 384 432 576
Number | 18 31 1 1 8 1 8 8 6
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Table A.52: The degrees of characters in Irr (2.((3%:Dg x 3174:284:22.).2) | £).

Degree 4 8 12 16 24 32 64 72 96 128
Number | 12 15 4 3 1 7 6 8 1 5
Degree | 144 192 216 256 288 512 576 768 864
Number 9 4 4 8 7 1 6 2 2

Table A.53: The degrees of characters in Irr((3%:Dg x Us(3):22.).2).

Degree 1 2 4 8 21 42 70 84 90
Number 8 10 1 8 8 10 16 1 8
Degree 140 168 180 189 210 280 360 378 420

Number 12 8 10 8 8 26 1 10 18
Degree 560 630 720 729 756 840 896 1120 1260
Number 1 16 8 8 1 11 8 20 4

Degree | 1280 1458 1512 1680 1792 2240 2520 2560 2916
Number 8 10 8 9 10 5 16 6 1
Degree | 3360 3584 4480 5832 7168 8960 10240
Number 8 1 8 8 8 2 4

Table A.54: The degrees of characters in Irr (2.((3%:Dg x U4(3):22.).2) | £).

Degree 80 140 224 280 320 448 480 560 840 896
Number 4 4 4 3 2 1 4 4 4 4
Degree | 1120 1260 1680 1792 1920 2016 2160 2240 2520 2560
Number 10 4 1 4 2 4 4 4 3 4
Degree | 3584 4032 5120 6720 8064 8640 8960 10080 14336 20480
Number 3 1 1 1 4 2 2 2 2 1

Table A.55: The degrees of characters in Irr (33%6.(2% x L3(3))).

Degree 1 12 13 16 26 27 39 52 78 104
Number 4 4 4 16 20 4 4 14 8 7
Degree 156 208 234 416 468 624 702 832 936 1248
Number 2 9 4 6 10 4 4 1 8 4
Degree | 1404 1872 2496 2808 3744 5616 7488 8424
Number 4 6 1 3 6 3 2 1
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Table A.56: The degrees of characters in Irr(2.33%6.(22 x L3(3)) | £).

Degree 2 24 26 32 52 54 78 104 156 208 416 468
Number | 1 1 1 4 11 1 1 9 4 1 8 7
Degree | 832 936 1248 1404 1872 2496 2808 3744 5616 7488 8424
Number| 1 9 5 5 2 1 3 7 3 2 1
Table A.57: The degrees of characters in Irr(32.33.3%.(22 x 254)).
Degree | 1 2 3 4 8 16 18 32 36 48 54 64
Number | 8 12 8 4 24 24 12 8 24 12 12 1
Degree |72 96 108 144 192 216 288 432 576 648 864 1728
Number [15 6 6 15 1 11 12 19 3 1 16 5

Table A.58: The degrees of characters in Irr(2.3%2.33.36.(2% x 284)) | §).

Degree 2 4 6 8§ 16 32 36 64 72 96
Number 2 3 2 1 18 11 15 1 18 9
Degree | 108 144 192 216 288 432 576 648 864 1728
Number 9 3 1 3 15 17 3 1 17 5
Table A.59: The degrees of characters in Irr(3370.3172 24).
Degree 1 2 4 6 8 12 16 18 24 36
Number | 16 32 24 24 8 36 1 24 20 36
Degree | 48 54 72 108 144 162 216 324 432 648
Number | 7 8 18 28 3 8 28 12 5 10

Table A.60: The degrees of characters in Irr(2.3316.31+2 2%) | £),

2 4
4 20

Degree

Number

8
11

12
18

16 24 36 48 72
1 26 30 7 21

108
14

144 216 324 432 648
3 32 14 5 10
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Table A.61: The degrees of characters in Irr(30.3213 (22 x 284)).

Degree 1 2 3 4 6 8 12 16 24
Number 8 20 18 15 2 13 16
Degree 32 48 64 72 96 144 162 192 288
Number 6 28 1 8 18 16 4 7 10
Degree | 324 432 486 576 648 864 972 1296 1944
Number | 10 8 4 2 11 10 4 5 1

Table A.62: The degrees of characters in Irr(2.36.3213 (22 x 284)) | &).

Degree 2 4 6 8 12 16 32 48 64 96
Number 2 11 2 10 4 3 9 16 1 22
Degree | 144 192 288 324 576 648 864 972 1296 1944
Number | 14 7 11 7 2 12 12 5 5 1
Table A.63: The degrees of characters in IH(31+8.3.22.24.32.D8).
Degree 1 4 8 9 12 16 18 24
Number 8 17 10 8 8 9 6 2
Degree 32 36 48 64 96 128 144 162 192 256
Number 12 1 8 6 16 9 16 4 4 4
Degree 288 324 384 432 648 768 864 972 1152 1296
Number 8 5 16 8 12 8 8 4 4 6
Degree | 1458 1536 1728 1944 2304 2592 2916 3456 3888 5184
Number 4 2 14 4 2 8 5 1 1 1
Table A.64: The degrees of characters in Irr(2.3118.3.22 24 32 Dy) | £).
Degree 2 4 8 12 16 18 24 32 36 64 96
Number 4 2 10 2 2 4 4 6 2 4 2
Degree 128 192 256 288 324 384 576 648 768 864 1152
Number 2 8 6 4 2 8 2 9 10 2 4
Degree | 1296 1536 1728 1944 2304 2592 2916 3456 3888 5184 5832
Number 3 2 4 5 2 9 2 4 1 1 1
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Table A.65: The degrees of characters in Irr(3%:(2 x L4(3):2):2).

Degree 1 2 39 52 78 90 104 130 180
Number 4 1 4 8 1 4 1 4 1
Degree 260 351 390 416 468 520 702 729 780
Number 8 4 4 8 12 6 1 4 5
Degree 832 936 1040 1170 1280 1458 1560 2080 2340
Number 6 1 12 4 8 1 5 2 4
Degree 2808 3120 4160 4680 7020 8320 9360 11232 12480
Number 4 2 4 3 8 4 6 4 4
Degree | 14040 16640 24960 28080 29952 33280 37440 37908 42120
Number 4 1 2 6 4 4 6 4 2
Table A.66: The degrees of characters in Irr(36:(2 x L4(3):2):2) | &).
Degree 2 78 104 180 260 520 702 780 832
Number 2 2 3 2 1 4 2 2 4
Degree 936 1040 1458 1560 1664 2080 2340 2560 3120
Number 4 5 2 2 1 4 1 2 3
Degree 4160 4680 5616 9360 14040 16640 18720 22464 24960
Number 4 4 1 2 2 2 1 1 3
Degree | 28080 33280 37440 42120 56160 59904 74880 75816
Number 3 4 2 2 1 1 1 1
Table A.67: The degrees of characters in Irr(36.31+4.(2 X 284:2).2).
Degree 1 2 3 4 6 8 16 18 32
Number 8 14 8 7 2 9 22 4 17
Degree 36 48 54 64 72 96 108 144 192
Number | 17 4 4 4 19 9 9 11 4
Degree | 216 288 432 576 648 864 1152 1728 3456
Number | 16 14 20 6 2 21 1 10 1
Table A.68: The degrees of characters in Irr(2.36.3174 (2 x 284:2).2) | £).
Degree 2 4 6 8 16 32 36 64 72 9% 108
Number 4 6 4 2 4 14 2 6 11 2 2
Degree | 144 192 216 288 432 576 648 864 1152 1728 3456
Number | 10 6 10 3 10 9 2 20 1 11 1
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Table A.69: The degrees of characters in Irr(3316.3112 23 22),

Degree 1 2 4 6 8§ 12 16 18 24 36 48 54
Number | 16 20 24 8 17 18 4 8 32 30 12 8
Degree |72 96 108 144 162 216 288 324 432 648 864 1296
Number | 25 2 18 8 8 42 1 10 12 16 1 2
Table A.70: The degrees of characters in Irr(2.3376.31%2 23 32) | &),
Degree 2 4 8 12 16 24 36 48 72 96
Number 8 8§ 14 4 6 12 4 18 20 2
Degree | 108 144 216 288 324 432 648 864 1296
Number 4 11 34 1 4 15 18 1 2
Table A.71: The degrees of characters in Irr(5:4 x HS:2).
Degree 1 4 22 77 88 154 175 231 308 616
Number 8 2 8 8 2 8 8 8 6
Degree 693 700 770 825 924 1056 1232 1386 1408 1540
Number 8 2 8 8 2 8 1 8 8
Degree | 1750 1792 1925 2520 2750 2772 3080 3200 3300 4224
Number 8 4 16 8 8 2 2 8 2
Degree | 5544 5632 6160 7000 7168 7700 10080 11000 12800
Number 2 2 1 2 1 4 2 2 2
Table A.72: The degrees of characters in Irr((5:4 x 2.HS).2 | §).
Degree 112 224 352 1232 1408 1848 2000 2464 3584 3696 3960
Number 2 2 4 4 1 4 2 4 2 2
Degree | 4000 4608 4928 5040 7168 7392 9856 10080 15840 18432
Number 2 4 1 4 2 3 1 4 1 1

Table A.73: The degrees of characters in Irr(5:4 x 5:4 x Ss).

Degree

Number

1

32 48 32

4

5

6
16

16 20 24 64 80 96
18 16 8 2 2 1
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Table A.74: The degrees of characters in Irr(2.(5:4 x 5:4 x S5) | §).

Degree 4 8 12 16 32 48 64 96
Number |16 8 8 8 4 4 3 2

Table A.75: The degrees of characters in Irr(5:4 x 5:4 x 5:4).

Degree 1 4 16 64
Number | 64 48 12 1

Table A.76: The degrees of characters in Irr(2.(5:4 x 5:4 x 5:4) | €).

Degree 2 4 8 16 o4
Number | 16 16 8 12 1

Table A.77: The degrees of characters in Irr(5:4 x 5142 4. Dy).

Degree 1 2 4 8 16 20 32 40 64 80 160
Number |32 24 8 22 8 16 4 4 2 4 1

Table A.78: The degrees of characters in Irr(2.(5:4 x 5142 4.Dg) | £).

Degree 2 4 8 16 32 40 64 80 160
Number |16 4 4 5 6 8 2 4 1

Table A.79: The degrees of characters in Irr(53- L3(5)).

Degree |1 30 31 96 124 125 155 186 620 1240 1860 2480 3100 3720
Number |1 1 3 10 10 1 3 1 1 2 2 2 1 1

Table A.80: The degrees of characters in Irr(2 x 53-L3(5) | £).

Degree |1 30 31 96 124 125 155 186 620 1240 1860 2480 3100 3720
Number |1 1 3 10 10 1 3 1 1 2 2 2 1 1
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Table A.81: The degrees of characters in Irr(5i_+4.GL2 5)).

Degree

1 4 5 6 24 96 100 120 200 240 300 400 500 600

Number |4 10 4 6 4 1 1 4 2 4 2 2 1 1

Table A.82: The degrees of characters in Irr(2 x 5 fr+4.GL2(5) | £).

Degree

I 4 5 6 24 9 100 120 200 240 300 400 500 600

Number |4 10 4 6 4 1 1 4 2 4 2 2 1 1

Table A.83: The degrees of characters in Irr(53r+4.21_+4.A5.4).

Degree

1 4 5 6 10 15 16 20 24 100 240

Number 4 8 8 2 10 4 4 8 2 1 8

Degree

300 384 400 480 500 1000 1200 1500 1536 1600 2000

Number 2 4 2 6 4 2 2 1 1 1 2

Table A.84: The degrees of characters in IH(2.(5L+4.21_+4.A5.4) | &).

Degree 4 6 10 16 20 24 200 384 400
Number 6 4 4 6 8 4 2 4 1

Degree | 480 600 800 960 1000 1536 1600 2000 2400
Number 4 1 2 1 5 1 1 1 1

Table A.85: The degrees of characters in Irr(5%:484 x Ss).

Degree

Number

1 23 456 8 10 12 15 16 18 20 24 96 120 144
8 12 8 12 8 4 12 12 14 8 4 4 4 10 8 8 4

Table A.86: The degrees of characters in Irr(2.(5%:484 x Ss) | €).

Degree |4 8 12 16 24 36 96 192 288
Number |4 12 10 8 8 2 4 2 2
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Table A.87: The degrees of characters in Irr (5%:484 x 5:4).

Degree 1 2 3 4 8 12 16 24 96
Number | 16 24 16 12 6 4 2 16 4

Table A.88: The degrees of characters in Irr(2.(5%:484 x 5:4) | £).

Degree 2 4 6 8 12 16 48 96
Number | 12 16 4 6 4 2 4 4

Table A.89: The degrees of characters in Irr((2% x 72:(3 x 2A44)):2).

Degree 1 2 3 4 6 48
Number | 12 27 12 15 3 12

Table A.90: The degrees of characters in Irr(2.(2% x 7%:(3 x 244)):2 | £).

Degree |2 4 6 8 96
Number |6 9 6 3 3
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