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Abstract. It has long been known that rotation can have an appreciable impact on stellar
pulsation — by modifying the usual p and g modes found in the non-rotating case, and by
introducing new classes of modes. However, it’s only relatively recently that advances in nu-
merical simulations and complementary theoretical treatments have enabled us to model these
phenomena in any great detail. In this talk I’ll review highlights in this area (the ‘Greatest
Hits’), before considering the flip side (or the ‘B-side’, for those of us old enough to remember
vinyl records) of the pulsation-rotation interaction: how pulsation can itself influence internal
rotation profiles.
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1. Introduction
Back at the dawn of civilization, the principal medium for distributing music was the

vinyl gramophone record. Those who grew up in the vinyl era will recall that a record had
two sides — the ‘A’ side featuring the hit(s) that usually motivated the initial purchase
of the record, and the ‘B’ side which contained somewhat more esoteric material often
destined to languish in obscurity.†

I bring up these facts to draw a strained analogy to the pulsation-rotation interaction
in stellar astrophysics. The ‘A’ side with which we’re all familiar comprises the effects
of rotation on pulsation; but there’s also an accompanying ‘B’ side which considers the
influence that pulsation might have on rotation, and indeed the host star’s overall evolu-
tion. In this contribution I first review the ‘greatest hits’ on the ‘A’ side (Sections 2–6),
before highlighting some important developments from the ‘B’ side (Section 7).

2. Perturbative approaches
Ledoux (1949) and Cowling & Newcomb (1949) first considered the effects of slow

rotation on the oscillation frequencies of a star. As seen from an inertial frame, these can
be expressed as

ω = ω0 + mΩ(1 − Cn,l), (2.1)

where ω0 is the frequency the mode would have in the absence of rotation, Ω is the rota-
tion angular frequency (for now, assumed uniform), Cn,l the Ledoux constant and n, l,m
are the usual mode radial order, harmonic degree and azimuthal order, respectively. The
Ledoux constant accounts for the effects of the Coriolis force on the mode. It is usually
positive, because the Coriolis force tends to counteract the restoring force on displaced
fluid elements for prograde modes (m > 0), leading to smaller frequencies (vice-versa for

† There are, of course, exceptions: Rock Around the Clock was first released by Bill Haley &
His Comets (a very astronomical band!) on the B-side.
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retrograde modes with m < 0). (Sometimes, however, phenomena such as mode coupling
can produce negative Cn,l ; Takata & Saio, these proceedings, present an example of this).
The other term in the parentheses accounts for the Doppler shift in transforming from
the co-rotating frame to the inertial frame.

The frequency splitting described by eqn. (2.1) is linear in m. This is entirely analogous
to the Zeeman splitting of atomic energy levels in a weak magnetic field, and the same
first-order perturbation expansion approach underpins the analysis of both phenomena.
Moving to more rapid rotation requires a higher-order perturbation expansion. Simon
(1969) and a number of subsequent authors extended the formalism to second order in
Ω, and Soufi et al. (1998) took it to third order; however, these treatments are significantly
more complicated than eqn. (2.1). The value of going to even high orders is moot, because
the complexity of the problem becomes unmanageable; equally importantly, there’s a
point where the effects of rotation can no longer be considered a small perturbation to
the non-rotating pulsation equations. Then, so-called ‘non-perturbative’ approaches are
required.

3. Non-perturbative approaches
The pulsation equations in a rotating star comprise a 2-dimensional boundary value

problem (BVP), with radius r and co-latitude θ as the independent variables, and the
frequency ω serving as an eigenvalue. Non-perturbative approaches to solving these equa-
tions fall into four main groups.

3.1. Direct methods
Conceptually, the simplest non-perturbative approach is to approximate the pulsation
equations using finite differences on a 2-D (r, θ) grid. This leads to a large set of algebraic
equations, which can be solved using sparse-matrix algorithms. Clement (1998, plus a
number of earlier papers) and Savonije et al. (1995) use direct methods, but they have not
been more widely adopted for reasons which aren’t immediately obvious. (My personal
perspective is that the numerical aspects of direct methods are rather daunting).

3.2. Spectral methods
Spectral methods expand the angular dependence of solutions as (typically large, but
finite) sums of spherical harmonics Y m

l (θ, φ), with the same azimuthal orders but har-
monic degrees l = |m|, |m| + 2, |m| + 4, . . . for even-parity modes, and l = |m| + 1, |m| +
3, |m|+ 5, . . . for odd-parity modes. This reduces the pulsation equations to a 1-D BVP,
with the expansion coefficients being the unknowns. This BVP is solved using the same
general techniques as in the non-rotating case (see, e.g., Townsend & Teitler 2013, and
references therein), although the computational cost is much higher.

Spectral methods are the oldest of the approaches described here, dating back to the
pioneering work on the oscillations of rotating polytropes by Durney & Skumanich (1968).
They have become increasingly popular in recent years (e.g., Lee & Baraffe 1995; Reese
et al. 2006; Ouazzani et al. 2012), perhaps driven by the advent of inexpensive high-
performance computing hardware. One criticism leveled at spectral methods is that the
truncation of the spherical-harmonic expansion necessarily makes them approximate.
This is technically true, but only inasmuch as any numerical solution of a system of
differential equations is an approximation. The number of spherical harmonics can always
be made sufficiently large to achieve the desired level of accuracy — much as the grid
spacing in a finite-difference method can always be made sufficiently small.
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3.3. Ray-tracing methods

Ray-tracing methods treat the pulsation equations in an asymptotic limit analogous
to the geometric limit of optics. The resulting eikonal equation is integrated using the
method of characteristics (at a computational cost much smaller than the direct or spec-
tral methods described above), to find the ray paths followed by short-wavelength acous-
tic waves through a rotating model star. The properties of these rays can be studied
using Poincaré surface sections, which mark each passage of a ray through a fixed-radius
surface with a point plotted in the θ-kθ (polar wavenumber) plane.

Lignières & Georgeot (2008) use ray tracing to show that the acoustic properties of
rapidly rotating polytropes fall into three main groups: rays bouncing internally between
mid-latitude surface regions in the northern and southern hemispheres, rays confined to a
surface layer at all latitudes, and rays completely filling the interior. These groups corre-
spond, respectively, to the three classes of global p mode explored by Reese et al. (2009)
using a spectral method: island modes (small l − |m|), whispering gallery modes (large
l − |m|), and chaotic modes (intermediate l − |m|).

3.4. Traditional approximation

The traditional approximation neglects the horizontal component of the angular velocity
vector when evaluating the Coriolis force. Originating in the geophysical literature (see
Eckart 1960), it is a reasonable approximation in radiative regions when both the oscilla-
tion frequency and the rotation frequency are much smaller than the local Brunt-Väisälä
frequency N — that is, for intermediate- and high-order g-modes.

If the centrifugal force and the gravitational potential perturbations are also neglected,
the traditional approximation brings a huge simplification to the pulsation equations: it
allows them to be separated in r and θ. Solution then proceeds as in the non-rotating
case, with only two substantive changes: spherical harmonics Y m

l (θ, φ) are replaced by
so-called Hough functions Θ(θ) exp(imφ) (Hough 1897; see also Townsend 2003a), which
are the eigenfunctions of Laplace’s tidal equation, and l(l + 1) terms are replaced by the
corresponding eigenvalues λ of the tidal equation.

These eigenvalues depend on the ‘spin parameter’ ν = 2Ω/ωc , where

ωc ≡ ω − mΩ (3.1)

is the oscillation frequency in the co-rotating frame. In the limit ν → 0, λ → l(l + 1);
but for ν � 1, λ departs markedly from its non-rotating value. It is this ‘inertial regime’
which remains inaccessible to perturbative approaches. (As an aside: the significance of
ν is that it measures by how much the star turns during one oscillation cycle — and thus
to what extent a given mode is ‘aware’ its frame of reference is rotating).

There’s an important caveat to the traditional approximation: it neglects the possi-
bility of resonant coupling between pairs of modes with the same m. Lee & Saio (1989)
demonstrated that these resonances are manifested in avoided crossings between the
mode frequencies; but in the traditional approximation the avoided crossings are trans-
formed into ordinary crossings, because the resonances are suppressed. This explains why
the traditional approximation is unable to reproduce the properties of the rosette modes
found in rapidly rotating polytropes by Ballot et al. (2012); as Takata & Saio (these pro-
ceedings) demonstrate, these modes result from near-degeneracies in the non-rotating
frequency spectrum, which are then pushed into resonance by the Coriolis force.
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4. The rapidly rotating limit
The complexity of the higher-order perturbative approaches (Section 2) might make

us concerned that understanding oscillations in rapidly rotating stars is going to be
extremely difficult. Fortunately, however, this often turns out not to be the case; new
regularities appear in the frequency spectra, in just the same way that atomic energy
levels become regular again in the strong-field limit (the Paschen-Back effect).

4.1. Regularities in p-mode spectra
Based on fitting to spectral-method calculations, but also guided by insights from ray
tracing, Reese et al. (2009) propose an empirical formula for the regularities seen in the
frequency spectra of island acoustic modes:

ωc ≈ ñΔ̃ñ + l̃Δ̃l̃ + m2Δ̃m̃ + α̃. (4.1)

Here, the various Δ̃ terms together with α̃ are obtained from least-squares fitting to the
calculated frequency spectra, while ñ and l̃ are new mode indices which correspond to the
number of eigenfunction nodes along and parallel to the ray paths stretching between the
two mid-latitude surface endpoints of island modes (see Fig. 3 of Reese et al. 2009). These
indices can be related to the radial order and harmonic degree of the modes’ non-rotating
counterparts via

ñ = 2n, l̃ =
l − |m|

2
for even-parity modes, and by

ñ = 2n + 1, l̃ =
l − |m| − 1

2
for odd-parity modes.

A hand-waving narrative can be used explain the form of eqn. (4.1). The terms pro-
portional to ñ and l̃ appear by direct analogy to the standard asymptotic expression
for p-mode frequencies in a non-rotating star (e.g., Aerts et al. 2010, their eqn. 3.216),
which contains terms linear in n and l. The term proportional to m2 accounts for the
bulk effects of the centrifugal force, which do not depend on the sign of m. Finally, the
α̃ term accounts for the phase of waves at the stellar surface.

4.2. Regularities in g-mode spectra
Ballot et al. (2010) explore g modes in rotating stars using a spectral method. Although
these authors’ focus is primarily on the inadequacies of perturbative approaches in the
inertial regime (ν > 1), their Figs. 4 and 5 illustrate quite strikingly that, as with the p
modes above, new regularities appear in the g-mode frequency spectrum at rapid rotation
rates.

These are a consequence of mode trapping in an equatorial waveguide. When ν > 1 the
Coriolis force prevents g modes from propagating outside of the region | cos θ| � ν−1 . In
the limit ν � 1, the trapping can be modeled using an asymptotic treatment of Laplace’s
tidal equation first developed by Matsuno (1966). The eigenvalue λ (cf. Section 3.4) is
found as

λ ≈
{

ν2(2lμ − 1)2 lμ � 1,

m2 lμ = 0
(4.2)

(e.g., Bildsten et al. 1996), where the mode index lμ counts the number of zonal nodes in
the radial displacement eigenfunction. This index is related to the harmonic degree and
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azimuthal order of the modes’ non-rotating counterparts via

lμ = l − |m|
for prograde and axisymmetric (m = 0) modes, and

lμ = l − |m| + 2

for retrograde modes.
The co-rotating frequencies of high-order g modes depend on λ via

ωc ≈
√

λ

π(n + α)

∫
N

r
dr.

This is just the usual asymptotic expression (e.g., eqn. 3.235 of Aerts et al. 2010) with√
l(l + 1) replaced by

√
λ. Combining this with eqn. (4.2) and solving for ωc yields

ωc ≈
[
2Ω(2lμ − 1)
π(n + α)

∫
N

r
dr

]1/2

(4.3)

for modes with lμ � 1, and

ωc ≈ m

π(n + α)

∫
N

r
dr (4.4)

for the lμ = 0 modes, which are sometimes labeled equatorial Kelvin modes (Townsend
2003a). These Kelvin modes have an azimuthal phase velocity ωc/m that doesn’t depend
on m; they may therefore be able to explain the unusual uniformly spaced low-frequency
modes seen in some δ Scuti stars (e.g., KIC 8054146; see Breger, these proceedings).

These expressions indicate that a mode multiplet with a given n, l and −l � m � l will
reorganize itself into l + 2 distinct frequencies, corresponding to the permitted indices
0 � lμ � l+1. One corresponds to the Kelvin mode m = l. Of the remaining l+1 distinct
frequencies, the lowest corresponds to the m = l− 1 mode, the next l− 1 are made from
pairings between prograde and retrograde modes with the same lμ , and the final, highest
frequency corresponds to the m = −1 mode. This is exactly the pattern seen in Figs. 4
and 5 of Ballot et al. (2010) in the rapidly rotating limit (note that these authors’ sign
convention for m is reversed), confirming the analysis here.

4.3. Inertial modes
The foregoing discussion focuses on pulsation modes of rapidly rotating stars that have
oscillatory counterparts in the non-rotating limit (in other words, ω2

c remains greater
than zero and deforms continuously as Ω is varied between the two limits). However, the
Coriolis force introduces additional classes of ‘inertial’ mode whose non-rotating coun-
terparts have ω2 � 0. Regions with negative N 2 can be stabilized against perturbations
with wavenumber k if

N 2k2
⊥ > −(2Ω · k)2

(here, k⊥ is the horizontal component of k). Convective fluid motions are then trans-
formed into oscillatory motions, with the Coriolis force serving as the restoring force.

The Coriolis force likewise transforms the trivial toroidal modes having ω2 = 0 in the
non-rotating limit into r (Rossby) modes with ω2

c > 0. The restoring force for r modes
does not depend on the stellar structure, but instead comes from conservation of total
vorticity (see Saio 1982 for an illuminating discussion). In the slowly rotating limit their
frequencies are given by

ωc = − 2mΩ
l(l + 1)

.
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The opposite signs of ωc and m in this expression tell us that r modes are always ret-
rograde in the co-rotating frame. Toward more rapid rotation the frequencies depart
from this formula, acquiring a dependence on the underlying stellar structure. The de-
partures are especially pronounced for the m = −l modes, which behave more like g
modes and indeed follow the equatorial waveguide expression (4.3) with lμ = 1. These
‘mixed gravity-Rossby’ modes pair up with the m = l− 1 modes of frequency multiplets,
so the number of distinct frequencies in the multiplets remains unchanged. Due to their
g-mode character they can be excited by the κ mechanism, as demonstrated for instance
in Townsend (2005).

5. Mode visibilities
Rapid rotation tends to reduce the photometric visibility of oscillations. For p modes

with small l− |m| this is a consequence of their transformation into island modes, whose
surface amplitudes are appreciable only at mid-latitudes; for g modes, this results from
confinement in the equatorial waveguide. As a result, it becomes challenging to detect
modes photometrically in rapidly rotating stars — and even if modes can be seen, they
are subject to strong selection effects (which at low frequencies strongly favor equatorial
Kelvin modes; see Townsend 2003b). For an overview of recent developments in this area,
see Daszyńska-Daszkiewicz et al. (2007) and Reese et al. (2013).

6. Differential rotation
So far I’ve focused on the simple case of uniform rotation. However, there’s evidence

from a multitude of sources that the internal rotation of stars is differential in r and/or θ
(the most well-known example is the Sun; see Thompson et al. 2003). Both perturbative
and non-perturbative approaches can readily be adapted to handle differential rotation;
but here, let’s focus on an even simpler analysis.

If the Coriolis and centrifugal forces are neglected, then the only effect of rotation is
the Doppler shift in transforming between co-rotating and inertial frames. However, in a
differentially rotating star the notion of a global co-rotating frame must be replaced by
a continuous sequence of local frames which rotate with angular frequency Ω(r, θ). Via
equation (3.1), the co-rotating frequency is thus a function of position in the star, and in
principle can vanish wherever mΩ = ω. At these locations, known as ‘critical layers’ (see
Mathis et al., these proceedings), the dispersion relation for low-frequency gravity waves

k2
r ≈ k2

⊥
N 2

ω2
c

suggests that the radial component kr of the wavenumber should diverge. In reality, what
will happen is that the wavelength near a critical layer becomes so short that significant
radiative dissipation occurs. Thus, critical layers in a differentially rotating star can play
a pivotal role in governing mode excitation and damping.

7. Wave transport of angular momentum
Let’s now flip the record to the ‘B’ side, and discuss what impact stellar pulsations

might have on their host star. Just as waves transport energy, they also transport mo-
mentum. A series of papers by Ando (1981, 1982, 1983) first considered how the angular
momentum transported by non-axisymmetric waves alters the internal rotation profile of
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a star. To model this process we can perform a Reynolds decomposition of the azimuthal
momentum equation to find the angle-averaged volumetric torque as

∂

∂t
〈�ρvφ〉 = − 1

4πr2

∂

∂r
LJ − ∂

∂t

〈
�ρ′v′

φ

〉
−

〈
ρ′

∂Φ′

∂φ

〉
.

Here � ≡ sin θ, while the overline denotes the average over azimuth and the angled
brackets the average over co-latitude. The bracketed term on the left-hand side represents
the angular momentum in a spherical shell of unit thickness. The first term on the
right-hand side is the torque arising from the gradient of the wave angular momentum
luminosity LJ ; the second term is the rate-of-change of the angular momentum stored in
wave motions; and the third term is the gravitational torque.

Focusing on the first term, the angular momentum luminosity (that is, the net amount
of angular momentum flowing through a spherical surface in unit time) is given by

LJ = 4πr2
〈
�

(
ρv′

r v
′
φ + vφρ′v′

r

)〉
, (7.1)

to second order in the pulsation amplitude (e.g., Lee & Saio 1993). The first term in the
parentheses is the Reynolds stress generated by the radial and azimuthal fluid motions. It
vanishes in the case of pure standing waves, because v′

r and v′
φ are exactly 90 degrees out

of phase. However, departures from this strict phase relation arise when waves acquire a
propagative component — either due to non-adiabatic effects, or from wave leakage at the
outer boundary. In the non-adiabatic case, the Reynolds stress term for prograde modes
transports angular momentum from excitation regions to dissipation regions (vice-versa
for retrograde modes; see Ando 1986).

The second term in the parentheses of eqn. (7.1) is the eddy mass flux. Again, this term
vanishes for pure standing waves, but becomes non-zero when waves acquire a propaga-
tive component. Shibahashi (these proceedings) proposes the intriguing hypothesis that
the eddy mass flux of g modes, leaking through the surface layers of Be stars, can trans-
port the angular momentum necessary to build a quasi-Keplerian disk. The transport is
particularly effective in the outer layers because the Eulerian pressure perturbation ρ′ is
large due to the steep density gradient there.

Stellar evolution calculations which include wave transport of angular momentum have
so far focused primarily on stochastically excited modes (see, e.g., Talon 2008 and refer-
ences therein). However, simple estimates of transport by overstable global modes suggest
that they can have a significant impact on rotation profiles over timescales which are evo-
lutionarily short (Townsend 2009). Interest in this topic is steadily growing; just this year
a number of new papers have appeared exploring topics such as wave transport in mas-
sive stars (Rogers et al. 2013) and pre-main sequence stars (Charbonnel et al. 2013), and
the interaction between wave transport and critical layers (Alvan et al. 2013).

8. Summary
To summarize this review, I’d like to highlight an encouraging trend. Much of the recent

progress in understanding the pulsation-rotation interaction has been driven by numerical
simulations. However there have been multiple parallel efforts to develop complementary
theoretical narratives for the interaction. These have allowed us to retain a firm grasp
on what’s really going on in the simulations, and also reassured us that the rapidly
rotating limit might not be as difficult to understand as we once thought. Let’s ensure
this trend does not disappear in the future, by always remembering the wonderful adage
by Hamming (1987): ‘the purpose of computing is insight, not numbers’.
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