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1. Imntroduction

Consider a Galton-Watson process in which each individual reproduces in-
dependently of all others and has probability a; (j = 0, 1, - - *) of giving rise to j
progeny in the following generation and in which there is an independent immigra-
tion component where b; (j = 0, 1, - - -) is the probability that j individuals enter
the population at each generation. Then letting X,, (n = 0, 1, - - -) be the popula-
tion size of the n-th generation, it is known (Heathcote [4], [5]) that {X,} defines
a Markov chain on the non-negative integers. Unless otherwise stated, we shall
consider only those offspring and immigration distributions that make the Markov
chain {X,} irreducible and aperiodic.

Heathcote [5] has shown that in the case « = ) ;ja; < 1, a necessary and
sufficient condition for {X,} to be positive-recurrent is that } 72, 6;log; < co.
Seneta [7] has shown that if « = 1 and if 2y = Y ; j(j—1)a; = o then it is pos-
sible for {X,} to be positive-recurrent.

In this paper we consider the case « = 1 and B,y < oo where f =) ;jb;
is the mean of the immigration distribution. We shall show that the Markov chain
{X,} may be either null-recurrent or transient. In the case of null-recurrence we
obtain some information on the occupation times of the zero state. Finally, in the
last section we show that X,/n tends in distribution to a random variable having

a gamma distribution.

2. Classification of the Markov chain (X,)

Let p{? (i,j,n = 0, 1, - - *) be the n-step transition probability from state i to j

and let P{"(x) = Y7o pPx’ (|x|] < 1). Then letting A(x) = Y 2o a;x’ and
B(x) = Y720 b;x’ (Ix| < 1) be the probability generating functions of the off-
spring and immigration distributions respectively, it is not difficult to show that

0 () = (4,01 TT BLAL)]
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where Ag(x) = x and A,.,(x) = A(A4,(x)) (n =0, 1,-- ), so that in particular
we have

) poo = B(0) H B(4,(0))

and it is clear that p{J3 is a non increasing sequence.
Before stating theorem 1, we shall state a theorem which will play a key role

in our work. .
THEOREM A. (Kesten, Ney and Spitzer [6]). If « =1 and 0 < y < «© and
VA =x)+ny=1/[1-4,x)] =h(x) (O=x<1)

then lim,,, hy(x)/n =0 uniformly in O < x < 1. Furthermore, 'h,(x) =
Yl 0(An(x)) where 5(x) satisfies the inequality

3) D) sy ey @sx<1)
1—a,

where 0 £ g(x) = y—[4(x)—x)/(1—x)* £ y and &(x) is non-increasing in x and
e(x) 10 (x11).

Observe that our assumption of irreducibility implies that y > 0.

THEOREM 1. Let « = 1 and B,y < oo, then the Markov chain {X,} is not
positive-recurrent. Further, let ¢ = B[y, then {X,} is null-recurrent if ¢ < 1 and
transient if ¢ > 1. Define e(x) as in theorem A and let ¢(x) = O[(1—x)°] (x 1 1)
for some 8 > 0. If B"(1—) < o then pijg ~ Cn™° as n — oo where C is a finite,
positive constant, and in particular, if ¢ = 1 then {X,} is null-recurrent.

Proor. By irreducibility and aperiodicity, the Markov chain {X,} is not
positive-recurrent if lim,_, , p9 = 0, that is if the infinite product [5 - ; B(4,,(0))
diverges to zero. (Observe that irreducibility implies that B(0) > 0.) It is known
(Seneta [7]) that if f < oo then a necessary and sufficient condition for this is the
divergence of the integral {3 [(1—x)/(A(x)—x)]dx. By Taylor’s theorem, A(x)
=1-(1-x)+(1-x)*4"(0)2 (x <0 < 1)and so if 0 < A”"(1—) < 0, we see
that the integrand is bounded below by [(1—x)y]~! and so the integral diverges.

Thus the Markov chain will be transient or null-recurrent according as the
series Y oo poy converges or diverges, and by Raabe’s test (Ferrar [2]) the first
alternative will occur if lim,_ o n(1—p§e /p4s) = lim,.,, n[l1—B(4,(0))] > 1
and the second alternative occurs if this limit < 1; the equality in the last expres-
sion follows from equation (2). The hypotheses and Taylor’s theorem show that
for0 < x < 1,B(x) = 1-p(1—x)+0o(1—x) (x 1 1) and since 4,(0) 1t 1 (n - o)
(Harris [3]) we have

4) n[l—B(4,(0))] = pn(1~A4,(0))+no(1—4,(0)) (n— )
Theorem A, with x = 0, shows that as n — oo the right hand side of expression (4)
tends to o.
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We shall now show that under all the conditions stated in the theorem,
0 < lim,, , n°p§3 < co. From equation (2) we have

n—1

nop) = MMIW“pmm»w@HD

where D,, = (1+1/m)°B(A4,(0)). A necessary and sufficient condition for the re-

quired limit to exist and be finite and positive is that —c0 < Y w_, (D,,—1) < c0.

Theorem A shows that 1—4,,(0) = 1/(1—h,+my) where h,, = o(m) (m - o).

Using this fact, a three term Taylor expansion of B(x) to the left of x = 1, and the
- fact that (141/m)° = 1+06/m+ O(1/m?) enables us to write

Do-1=2—_— P Loam
m my+1-—h,
U(I—hm)/? +0(1/m2)

- m?+m(1—h,)[y

It is clear that ) *_, (D,,—1) will converge to a finite limit if Y 2_, A,/m? does so.
In fact Harris [3] shows that if 4”’(1~) < oo, thatis § = 1, [h,] = O(log m) so
in this case the series converges. We now consider the case 0 < 6 < 1.
Using expression (3), the non-increasing nature of &(x) and the fact that 4,(0) 1 1
(n = o0), we obtain

2 © 1 m—1

6 Ly STu-amsy oy

1 m—1
_—2
1—a0m 1

T (Ad0)

For sufficiently large n there exist positive constants a, b such that a/n < 1—4,(0)
< b/n and so we see that the terms of the series on the left of equation (5) are
O|(log m)/m?] for large m. Using the condition on &(x) given in the statement of
the theorem and also that 0 < g(x) < y (0 < x < 1), it is not difficult to show
that the terms on the right hand of equation (5) are O(m~'~?) for large m. The
proof is now complete.

REMARKS

1. By an argument very similar to that used in the first part of the proof of
lemma 8 of Kesten et al. (1966), it follows that the condition on &(x) given in theo-
rem 1 above may be replaced by ) %, a;j logj < .

2. In obtaining the asymptotic form of p{y we have not made use of irre-
ducibility; we only require A(0), y > 0 and that 0 < B(0) < 1, that is, there is
positive probability of no immigrants in any generation.

3. By way of example, let A(x) = 1/(2—x) and B(x) = [1/2—x)T" (v > 0).
Using the fractional linear generating function in Harris [3] p. 9, we see that
Sy ~n" (n—> ). If instead we have a Poisson immigration component, that
is B(x) = e7# =) then p{y ~ e~"n#, where y is Euler’s constant.
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Since the Markov chain is transient when ¢ > 1, the zero state is entered only
finitely often with probability one, that is, with probability one, after a finite
number of generations have passed the population size will always be positive. The
situation when o < 1 is of course different, and the following theorem gives some
information on this matter.

THEOREM 2. Let « = 1, 0 < B(0), B, y < o0, B(0) < 1 and either let &(x) =
O[(1-xp] 6>0, 0<x<1) or Y7, a;j?logj < o, so that pjy ~ Cn™°
(0 < C < ) and let 0 < 1. Define the sequence {U,} (n =1,2,---) by U, =
Cr(l—o)n'~®ifo < land U, = Clognifo = 1. Finally let V(-) be the indicator
function of the zero state, that is V(j) = 1 if j = 0, and V(j) = O otherwise. Then
if 0 < 6 £ 1, we have

lim Pr {%,. i V(X,) < x} = Gl_,(x)

n— o m=0

where G«(x) is the Mittag-Leffler distribution function given by

j=-1
Ge(x) = — Z (-~ ) sin (n&f)L(¢j+1)y’ " 'dy
if1>¢z0.
Proor. Use of the inequality

nt+1 n n
f x7%dx <y m~° <f x " %dx

v m=y v—1

where v, n are positive integers and n > v shows that

2 Cn'~°l(1-0) ifo<1
(m) _,
X pos {Clogn fo=1 )

An Abelian theorem then shows that

o n) .n Cr(l 0')(1 x)—1+d 1f0'<1
pr)gx { —Clog(1—x) if o = (xT1)

n=0

The conditions of the occupation time theorem of Darling and Kac [1] are seen
to be fulfilled and the theorem follows.

3. A limit theorem

It is easy to show from (1) that when « = 1,
E(X,,IXO =1i)=nf+i

and so it seems appropriate to investigate the limit in some sense of X./nasn — co.
1w consider cunvergence in disirioution, the following theorem shows that we
get a non-trivial result.

https://doi.org/10.1017/51446788700010375 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700010375

430 A. G. Pakes 151

THEOREM 3. Let « = 1 and 0 < y, B, 6 < 0. Then the sequence {X,/n} (n =
1,2, - ) tends in distribution to the gamma variate having the density function

1 t o—1

1= (5 e @>0
PL(e) \B

Proor. It follows from equation (1) that (6 > 0),

HOO) = B0 = i) = (AL TT BLAE")

Since 4,(x) 11 (n > o), we see that the first term on the right tends to unity.
Writing b,.,(0) = B[4.(e~%™)], and using log (1—x) = —x—x%/(1-x) (0 < x
< 1), we have

©)  #7(6) = 1og ¥0) = 3. log [1 (1~ (@)

= =Y (1= b(8) + RPO)

where
n—1

0 g R(ln)(e) .2_. - Z [l—bmn(e)]zlbmn(g)

m=

v

11~ b0i0)/b0n(0)] 5, (1~ o)

since b,,,(0) is non-decreasing in m for fixed n and . Since 1 —b,(6) = 0 (n - )
it is clear that R(l")(()) — 0 if the first expression on the right hand side of equation
(6) has a finite limit as n — co.

For 0 £ x < 1, we have 1 — B(x) = B(1—x)—(1—x)f(x) where 0 < f(x) =
(1-x)B"(£)/2 and x < £ < 1 and f(x) = o(1) as x 1 1. Then letting a,,(6) =
A,(e”"), equation (6) becomes

96) = =BT, (1-am(0)+RV(0) + RY(0)

where

05 RY(0) = 3. (1-0,u(0))f [0}
< (1=¢")'3 {aw(8)

since f(x) is non-increasing. The last expression approaches zero (n — ) since
1—e %" ~ 0/n and fla,,(0)] = o(1) (n - ).
Theorem A shows that we can write
1—-x

1 —A,,,(x) = m [1 +gm(x)]
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where g,,(x) = 0 uniformly in0 < x < 1 (m — o) and g,,(1) = 0. Thus we have

gy — gy _ 1—e" ™ ™ 5
¢'"(0) ﬂmZol o= +RP(O)+R(O)+0(1)  (n— o)
where
(m _ 1—e™'" —6/n
R3 (6) ﬂmzo 1+ _e._o/n) gM(e ) (7)

It follows from the uniform convergence of the g,,(-) that there exists M(e) such
that |g,(e” ") < e (n = 1,2,---)if m > M(e). Breaking the summation in ex-
pression (7) into the form ZM(‘ + Y m=m(+1 and using the fact that

[1—e"1+ym(l—e")] £ 1—-e" "~ 8/n (n— x)

shows that R{(8) = o(1) (n —» o).
It is easily seen that
_,—0/m 2
< 6n 1—e < L
1+yml/n  1+ym(1—e ™) = 2n?

so that finally we have

n—1

$90) = ~BY —L"_ L ROO)+o(1)  (n > o0)
m=0 1+ymb/n

The sum in this expression can be recognized as an upper Darboux sum of the

Riemann integral

1
Bf (1+7y6x)~ 'dx,
]

so that we obtain
¢™(0) = —olog(1+78)+o(1) (n - o)

and thus lim,_, , Y{"(6) = (1+78)~° which is the Laplace transform of the density
function given in the statement of the theorem. The convergence in distribution
assertion follows from the continuity theorem for Laplace-Stieltjes transforms.

It is clear that the theorem is true under the conditions given in remark 2
following theorem 1.

Added in proof. Since submitting this paper, the author has learned that
theorem 3 was obtained independently by E. Seneta in J. Roy. Stat. Soc. 32B
(1970), 149-52.
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