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A b s t r a c t : We investigate convective overshoot in a layer of electrically conducting fluid. 
The radiative conductivity is assumed to be larger in the lower part of the layer which 
makes it stable to convective motions, yet penetrative convection from the upper layer 
can occur. The numerical resolution is 633 gridpoints. We observe a dynamo effect for 
magnetic Reynolds numbers around one thousand when a magnetic seed field is rapidly 
concentrated to form flux tubes. Later the average magnetic field is expelled from the 
convectively unstable regions, but it accumulates in the interface between the convection 
zone and the radiative interior. 

1. Introduction 

The na tu re of the solar dynamo is unclear. Does the dynamo operate in the en
tire convection zone, or in the overshoot layer beneath? Is magnetic buoyancy a 
"problem" for the dynamo? Is the solar dynamo fast or slow? 

We investigate these questions using a direct simulation of turbulent hydromag-
netic convection. The presence of a stably stratified overshoot layer is modelled by 
assuming the radiative diffusivity in the lower half of the simulated domain to be 
larger t han tha t in the upper unstably stratified par t (cf. Hurlburt et al., 1986). 
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2. The basic equations 

We solve the induction equation and the equations for conservation of momentum, 
energy, and mass 

dB 
— = curl (u xB) + rjV2B, 

1„ n n 1 T „ 1̂ . 
- Vp + g-2f2xu+-JxB + -Div r , 
P P P 

- - divw + -V(ACVe) + Tj.-u,-/+ - J 2 , 
P P P 

Dlnp 
_ = - d i v « , 

For details of the notation see Paper I (Brandenburg et aJ., 1990). We assume the 
upper and lower boundary to be a stress-free perfect conductor. A constant radia
tive flux is imposed at the bottom and the surface temperature is kept constant. 
In the current implementation of the code one time step takes for 633 grid points 
about 3.4 sec of CPU time. With the four processors on the Cray-XMP/432 the 
real system time can be of the order of only one second per time step. 

The governing nondimensional parameters in our simulation are a Taylor num
ber of 105 (based on the thickness of the unstable layer), a Rayleigh number of 
106 (approx. 50 times supercritical), a Prandtl number of 0.2, and a magnetic 
Prandtl number vjt] = 4. The density contrast is approximately 1:10. The re
sulting Reynolds number is around 300 (based on rms-velocity) and the Chan-
drasekhar number 3 x 103. The Rossby number is approximately unity and the 
Elsasser number about ten. 

3. Results 

We find large scale coherent magnetic structures similar to vorticity tubes seen 
in homogeneous turbulence (She et al., 1990; Vincent and Meneguzzi, 1990). In a 
video animation we observed that magnetic flux tubes are pulled downwards and 
wounded up close to the interface between the convection zone and the radiative 
interior. A dynamo effect is found for magnetic Prandtl numbers larger than unity. 
The magnetic Reynolds numbers are in our case much higher than those for dy
namo action in Bousinesq convection (Meneguzzi and Pouquet, 1989). The initial 
growth rate of magnetic energy is comparable with the convective turnover time 
and we can therefore speak of a fast dynamo. 

The magnetic energy has a maximum at the interface. This is also the loca
tion where both induction effects and Ohmic dissipation are largest. The fact that 
there is no accumulation of magnetic flux in the upper layers leads us to believe 
that the perfectly conducting upper boundary is not artificially suppressing mag
netic buoyancy, as suggested by Petrovay (1991) during the conference. However, 
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we often observe tha t tubes organize themselves vertically in the upper unstably 
stratified par t and thus escape the buoyancy mechanism to work efficiently. 

We have plot ted in Fig. 1 vectors of vorticity u = curl u, electric current J , 
and magnet ic field B. Vectors are plot ted only where their magni tude exceeds a 
certain threshold. 

0 t= 384.09 

0 t= 384.09 

Fig. 1. Formation of tubes, sheets and 
current sheets: the vorticity vectors are 
organized into tubes whilst the electric 
current forms sheets around these vor
ticity tubes. The magnetic field forms 
tubes too and resembles fox tails swish
ing above the interface! Note that the 
magnetic field vectors are, in some cases, 
aligned with the vorticity vectors. 
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