A STABILITY PROPERTY OF A CLASS OF BANACH SPACES NOT CONTAINING c_0

PATRICK N. DOWLING

ABSTRACT. Let *E* be a Banach ideal space and *X* be a Banach space. The Banach function space E(X) does not contain a copy of c_0 if and only if neither *E* nor *X* contains a copy of c_0 . Some extensions of this result are also noted.

1. **Introduction.** A Banach ideal space on a σ -finite measure space (Ω, Σ, μ) is a Banach space *E* of complex measurable functions on (Ω, Σ, μ) satisfying the following: If $f \in E$ and $g: \Omega \to \mathbb{C}$ is a μ -measurable function with $|g| \leq |f|$, then $g \in E$ and $||g||_E \leq ||f||_{E}$.

For a Banach space *X*, we denote by E(X) the Banach space of all measurable functions $F: \Omega \to X$ such that $||F(\cdot)||_X \in E$ and with the norm

$$||F||_{E(X)} = |||F(\cdot)||_X|_E.$$

The purpose of this note is to show that E(X) does not contain a subspace isomorphic to c_0 if and only if neither E nor X contain a subspace isomorphic to c_0 . This result generalizes results of Kwapien [8] and Bukhvalov [2]. The method of proof is quite different from the usual proofs concerning the noncontainment of c_0 in a Banach space. We will use a new characterization of Banach space not containing a subspace isomorphic to c_0 in terms of Radon-Nikodym-type properties [5].

2. **Preliminaries and results.** Let G denote a compact metrizable abelian group, $\mathcal{B}(G)$ the σ -algebra of Borel subsets of G and λ the normalized Haar measure on G. We let Γ denote the dual group of G and let Λ be a subset of G. For a complex Banach space X, we say that a measure $\mu: \mathcal{B}(G) \to X$ is a Λ -measure if

$$\hat{\mu}(\gamma) = \int_{G} \overline{\gamma(g)} d\mu(g) = 0 \text{ for all } \gamma \notin \Lambda.$$

DEFINITION 1. A Banach space X is said to have type I- Λ -Radon-Nikodym property (type I- Λ -RNP) if every X-valued Λ -measure of bounded average range has a Radon-Nikodym derivative with respect to λ .

DEFINITION 2. A Banach space X is said to have type II- Λ -Radon-Nikodym property (type II- Λ -RNP) if every X-valued Λ -measure of bounded variation, which is absolutely continuous with respect to λ , has a Radon-Nikodym derivative with respect to λ .

Received by the editors December 11, 1990.

AMS subject classification: Primary: 46E40; secondary: 43A46.

[©] Canadian Mathematical Society 1992.

DEFINITION 3. A sequence $\{i_n\}_{n=1}^{\infty}$ of measurable functions $i_n: G \to \mathbb{R}$ is called a *good approximate identity on G* if

- (a) $i_n \ge 0$ for all $n \in \mathbb{N}$,
- (b) $\int_G i_n(g) d\lambda(g) = 1$ for all $n \in \mathbb{N}$,
- (c) $\sum_{\gamma \in \Gamma} i_n(\gamma) < \infty$ for all $n \in \mathbb{N}$, and
- (d) $\lim_{n\to\infty} \int_U i_n(g) d\lambda(g) = 1$ for all neighborhoods U of 1 in G.

PROPOSITION 1 ([7]). Let G be a compact metrizable abelian group, let Λ be a subset of Γ and let $\{i_n\}_{n=1}^{\infty}$ be a good approximate identity on G. For a complex Banach space X the following conditions are equivalent;

- (i) X has type I- Λ -RNP,
- (ii) If $\{a_{\gamma}\}_{\gamma \in \Lambda} \subset X$ and $f_n = \sum_{\gamma \in \Lambda} \hat{i}_n(\gamma) a_{\gamma} \gamma$ is bounded in $L^{\infty}_{\Lambda}(G, X)$, then there exists a function $f \in L^{\infty}_{\Lambda}(G, X)$ with $\hat{f}(\gamma) = a_{\gamma}$ for all $\gamma \in \Lambda$,
- (iii) If $\{a_{\gamma}\}_{\gamma \in \Lambda} \subset X$ and the sequence $\{f_n\}_{n=1}^{\infty}$, as in (ii), is bounded in $L^{\infty}_{\Lambda}(G,X)$, then $\{f_n\}_{n=1}^{\infty}$ converges in $L^1(G,X)$ -norm.

PROPOSITION 2 ([6]). Let G be a compact metrizable abelian group, let Λ be a Riesz subset of Γ and let $\{i_n\}_{n=1}^{\infty}$ be a good approximate identity on G. For a complex Banach space X the following conditions are equivalent;

- (i) X has type II- Λ -RNP,
- (ii) If $\{a_{\gamma}\}_{\gamma \in \Lambda} \subset X$ and $f_n = \sum_{\gamma \in \Lambda} \hat{i}_n(\gamma) a_{\gamma} \gamma$ is bounded in $L^1_{\Lambda}(G, X)$, then there exists a function $f \in L^1_{\Lambda}(G, X)$ with $\hat{f}(\gamma) = a_{\gamma}$ for all $\gamma \in \Lambda$,
- (iii) If $\{a_{\gamma}\}_{\gamma \in \Lambda} \subset X$ and the sequence $\{f_n\}_{n=1}^{\infty}$, as in (ii), is bounded in $L^1_{\Lambda}(G,X)$, then $\{f_n\}_{n=1}^{\infty}$ converges in $L^1(G,X)$ -norm.

(A subset Λ of Γ is a Riesz set if every Radon measure μ , on G with $\hat{\mu}(\gamma) = 0$ for all $\gamma \notin \Lambda$, is absolutely continuous with respect to λ .)

PROPOSITION 3 ([5]). Let G be a compact metrizable abelian group and let Λ be an infinite Sidon subset of Γ . For a complex Banach space X the following conditions are equivalent:

- (i) X has type I- Λ -RNP,
- (*ii*) X has type II- Λ -RNP,
- (iii) X does not contain a subspace isomorphic to c_0 .

(A subset Λ of Γ is a Sidon set if there is a constant C such that for all $f \in C_{\Lambda}(G)$, $\sum_{\gamma \in \Lambda} |\hat{f}(\gamma)| \leq C ||f||_{\infty}$, where $||f||_{\infty} = \sup\{|f(g)| : g \in G\}$.)

THEOREM 1. Let E be a Banach ideal space and X a complex Banach space with $E \neq \{0\}$ and $X \neq \{0\}$. Then E(X) does not contain a subspace isomorphic to c_0 if and only if neither E nor X contains a subspace isomorphic to c_0 .

PROOF. If E(X) does not contains a subspace isomorphic to c_0 then neither does E nor X since E(X) contains isometric copies of both E and X.

Conversely, suppose neither E nor X contain a subspace isomorphic to c_0 . To show that E(X) does not contain a subspace isomorphic to c_0 we may assume, without loss of

generality, that *E* and *X* are both separable [2]. Let $G = \mathbb{T}$, the circle group. Then $\Gamma = \mathbb{Z}$. The set $\Lambda = \{2^j\}_{j=1}^{\infty} \subset \mathbb{Z}$ is an infinite Sidon subset of \mathbb{Z} (see Rudin [10]). To show that E(X) does not contain a subspace isomorphic to c_0 it suffices, by Proposition 3, to show that E(X) has type I- Λ -RNP. For each $n \in \mathbb{N}$, let $r_n = 1 - \frac{1}{n}$ and $i_n = P_{r_n}$ where

$$P_{r_n}(t) = \frac{1 - r_n^2}{1 - 2r_n \cos t + r_n^2} \quad \text{for } 0 \le t \le 2\pi$$

Then $\{i_n\}_{n=1}^{\infty}$ is a good approximate identity on \mathbb{T} . Suppose that $\{a_m\}_{m\in\Lambda} \subset E(X)$ and define

$$f_n(t) = \sum_{m \in \Lambda} \hat{i}_n(m) a_m e^{imt}.$$

Now suppose that $\{f_n\}_{n=1}^{\infty}$ is bounded in $L^{\infty}_{\Lambda}(\mathbb{T}, E(X))$; that is, $\sup_n \|f_n\|_{L^{\infty}_{\Lambda}(\mathbb{T}, E(X))} < \infty$. By Proposition 1, to show that E(X) has type I-A-RNP it suffices to show that $\{f_n\}_{n=1}^{\infty}$ converges in $L^1(\mathbb{T}, E(X))$ -norm. For $\omega \in \Omega$ we define $F_n(\omega, t) = (f_n(t))(\omega)$. We note that since $P_{r_n/r_{n+1}} * f_{n+1} = f_n$ and $\|P_{r_n/r_{n+1}}\|_1 = 1$ we have $\|f_n\|_{L^{\infty}_{\Lambda}(\mathbb{T}, E(X))} \leq \|f_{n+1}\|_{L^{\infty}_{\Lambda}(\mathbb{T}, E(X))}$ and so we can apply the same method of proof as Theorem 1 of [4] to obtain that for almost all $\omega \in \Omega$ and for all $n \in \mathbb{N}$, $F_n(\omega, \cdot): \mathbb{T} \to X$, defined by $(F_n(\omega, \cdot))(t) = F_n(\omega, t)$, has its Fourier transform supported on Λ . Also, it can be shown, again using Theorem 1 of [4] that $e_0 \in E$ where $e_0(\omega) = \sup_n \int_{\mathbb{T}} \|F_n(\omega, t)\|_X \frac{dt}{2\pi}$. In particular, for almost all $\omega \in \Omega$, $e_0(\omega) < \infty$ and so for almost all $\omega \in \Omega$, $\sup_n \|F_n(\omega, \cdot)\|_{L^1_{\Lambda}(\mathbb{T}, X)} < \infty$. Notice also that $F_n(\omega, t) = \sum_{m \in \Lambda} \hat{\imath}_n(m) a_m(\omega) e^{imt}$. Since X does not contain a subspace isomorphic to c_0 , X has type II- Λ -RNP, by Proposition 3. Hence, by Proposition 2, we have that for almost all $\omega \in \Omega$, $\{F_n(\omega, \cdot)\}_{n=1}^{\infty}$ converges in $L^1_{\Lambda}(\mathbb{T}, X)$ -norm. Thus, for almost all $\omega \in \Omega$, there exists $g_\omega \in L^1_{\Lambda}(\mathbb{T}, X)$ such that

$$\lim_{n\to\infty}\int_{\mathbb{T}}\|F_n(\omega,t)-g_{\omega}(t)\|_X\frac{dt}{2\pi}=0.$$

It is easily seen that for almost all $\omega \in \Omega$,

$$e_0(\omega) = \int_{\mathbb{T}} \|g_{\omega}(t)\|_X \frac{dt}{2\pi}.$$

From the above results we see that for almost all $\omega \in \Omega$, $||F_n(\omega, t) - g_\omega(t)||_X \to 0$ as $n \to \infty$ for almost all $t \in \mathbb{T}$.

Now, for almost all $\omega \in \Omega$ and for all $n \in \mathbb{N}$ the X-valued function, $F_n(\omega, t)$ is continuous in the t variable and so is measurable in the t variable. As in the proof of Theorem 7 of [3], by passing to a weighted L^1 -space we may assume that $E \subset L^1$. Hence by the Dominated Convergence Theorem

$$\lim_{n,m\to\infty}\int_{\Omega}\int_{\mathbb{T}}\|F_n(\omega,t)-F_m(\omega,t)\|_X\frac{dt}{2\pi}d\mu(\omega)=0.$$

That is, $\{F_n\}_{n=1}^{\infty}$ is a Cauchy sequence in $L^1(\Omega \times \mathbb{T}, X)$ and so there exists a function $g \in L^1(\Omega \times \mathbb{T}, X)$ such that

$$\lim_{n\to\infty}\int_{\Omega}\int_{\mathbb{T}}\|F_n(\omega,t)-g(\omega,t)\|_X\frac{dt}{2\pi}d\mu(\omega)=0.$$

Therefore, (by passing to a subsequence if necessary) we have that for almost all $\omega \in \Omega$,

$$\lim_{n\to\infty} \|F_n(\omega,t) - g(\omega,t)\|_X = 0 \text{ for almost all } t \in \mathbb{T}.$$

Hence, for almost all $\omega \in \Omega$, $g(\omega, t) = g_{\omega}(t)$ for almost all $t \in \mathbb{T}$. We note also that (by passing to a subsequence if necessary) we have for almost all $t \in \mathbb{T}$,

$$\lim_{n\to\infty} \|F_n(\omega,t) - g(\omega,t)\|_X = 0 \text{ for almost all } \omega \in \Omega.$$

Since $\sup_n ||f_n||_{L^{\infty}_{\Lambda}(\mathbb{T}, E(X))} < \infty$ we have for λ -almost all $t \in \mathbb{T}$ that $\sup_n ||\|F_n(\cdot, t)||_X||_E < \infty$. Hence the mapping $g(\cdot, t): \Omega \to X$ given by $(g(\cdot, t))(\omega) = g(\omega, t)$ is an element of E(X), because E does not contain a subspace isomorphic to c_0 (see [9, p. 34]), for almost all $t \in \mathbb{T}$. Now we need to show that the function $g: \mathbb{T} \to E(X)$ defined by $(g(t))(\omega) = g(\omega, t)$ is measurable. Since E and X are separable it suffices to check that g is scalarly measurable on a total set in $(E(X))^*$. By [1], the set $\{e^* \otimes x^* : e^* \in E^* \text{ and } x^* \in X^*\}$ is total in $(E(X))^*$. For $e^* \in E^*, x^* \in X^*$ and $t \in \mathbb{T}$ we have

$$(e^*\otimes x^*)(e(t))=\int_{\Omega}x^*(g(\omega,t))e^*(\omega)\,d\mu(\omega).$$

This integral is a measurable function of t since $g(\omega, t)$ is measurable in both variables. Therefore $t \to (e^* \otimes x^*)(g(t))$ is measurable and consequently so is g. Finally, we need to show that $\{f_n\}_{n=1}^{\infty}$ converges to g in $L^1(\mathbb{T}, E(X))$ -norm. We note from Proposition 1, that this is equivalent to showing that $f_n = i_n * g$ for all $n \in \mathbb{N}$. Since for almost all $\omega \in \Omega$, $\{F_n(\omega, \cdot)\}_{n=1}^{\infty}$ converges in $L^1(\mathbb{T}, X)$ -norm to g_ω we have $F_n(\omega, \cdot) = i_n * g_\omega$. But for almost all $\omega \in \Omega$, $g_\omega(t) = g(\omega, t)$ for almost all $t \in \mathbb{T}$ we have $F_n(\omega, \cdot) = i_n * g(\omega, \cdot)$; that is, $(f_n(\cdot))(\omega) = i_n * (g(\cdot))(\omega)$. Hence $f_n = i_n * g$ and so E(X) has type I-A-RNP which completes the proof.

REMARK 1. A special case of the above result is that $L^1(\mathbb{T}, X)$ does not contain a subspace isomorphic to c_0 if and only if X does not contain a subspace isomorphic to c_0 . This special case was proved by Kwapien [8]. We have indirectly used this result in proving our Theorem because the equivalence of conditions (ii) and (iii) of Proposition 3 uses Kwapien's result.

REMARK 2. In [6], it is shown that if Λ is a Riesz subset of Γ , then Banach lattices not containing subspaces isomorphic to c_0 have type I- Λ -RNP. A close analysis of Theorem 1 combined with this Remark yields the following generalization of Theorem 1;

THEOREM 2. Let G be a compact metrizable abelian group and let Λ be a Riesz subset of Γ . If type I- Λ -RNP and type II- Λ -RNP are equivalent properties then E(X)has type I- Λ -RNPif and only if X has type I- Λ -RNP and E does not contain a subspace isomorphic to c_0 .

Applying Theorem 2 and Proposition 2 of [6] we also get

COROLLARY. Let G be a compact abelian group and let Λ be a Riesz subset of Γ . If $L^1(G, X)$ has type I- Λ -RNP whenever X has type I- Λ -RNP, then E(X) has type I- Λ -RNP whenever X has type I- Λ -RNP and E does not contain a subspace isomorphic to c_0 .

P. N. DOWLING

REFERENCES

- 1. A. V. Bukhvalov, *Radon-Nikodymproperty in Banach spaces of measurable vector-functions*, Mat. Zametki 26(1979), 975–884. English translation: Math. Notes 26(1979), 939–944.
- 2. _____, Geometric Properties of Banach spaces of measurable vector-valued functions, Soviet Math. Dokl., (2) 19(1978), 501–505.
- 3. _____, On the analytic Radon-Nikodym property, preprint.
- 4. A. V. Bukhvalov and A. A. Danielvich, Boundary properties of analytic and harmonic functions with values in a Banach space, Mat. Zematki. 31(1982), 203–214; English translation: Math. Notes 31(1982), 104–110.
- 5. P. N. Dowling, Duality in some vector-valued function spaces, Rocky Mountain J. Math., to appear.
- **6.** _____, *Radon-Nikodym properties associated with subsets of countable discrete abelian groups*, Trans. Amer. Math. Soc., **327**(1991), 879–890.
- 7. G. A. Edgar, Banach spaces with the analytic Radon-Nikodym property and compact abelian groups, Almost Everywhere Convergence, Academic Press Inc., Boston, MA (1989), 195–213.
- 8. S. Kwapien, On Banach spaces containing c₀, Studia Math. 52(1974), 187–188.
- J. Lindenstrauss and L. Tzafriri, *Classical Banach spaces II. Function Spaces*, Ergebnisse der Mathematik und ihrer Grenzgebiete, 92(1979). Berlin-Heidelberg-New York: Springer-Verlag.
- 10. W. Rudin, Fourier analysis on groups, Tracts in Mathematics, 12(1962).

Department of Mathematics and Statistics Miami University Oxford, Ohio 45056 U.S.A.