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Abstract

Aggregates provide a concise way to express complex knowledge. The problem of selecting an ap-
propriate formalization of aggregates for answer set programming (ASP) remains unsettled. This
paper revisits it from the viewpoint of Approximation Fixpoint Theory (AFT). We introduce
an AFT formalization equivalent with the Gelfond–Lifschitz reduct for basic ASP programs and
we extend it to handle aggregates. We analyze how existing approaches relate to our framework.
We hope this work sheds some new light on the issue of a proper formalization of aggregates.
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1 Introduction

Aggregate expressions are very useful and have been added to classical logic, query lan-

guages, constraint languages, and also to logic programming (LP) and answer set pro-

gramming (ASP). The effort it takes to add aggregates to (syntax and semantics of)

a logic is very language dependent. For example, to extend first order logic (FO) with

a Count aggregate, we extend the definition of “term” with a new inductive rule: “If

a1, . . . , an are variables, and ψ a formula, then Count({(a1, . . . , an), ψ}) is a term” and

the definition of “interpretation of a term t in structure I” (used in the definition of

|=) with: “If t = Count({(a1, .., an), ψ}) then tI is #{(d1, . . . , dn) ∈ Dom(I)n|I[a1 :

d1, . . . , an : dn] |= ψ}, that is, the number of tuples that satisfy ψ in I.”. The method is

simple and follows Frege’s compositionality principle.

In LP and ASP, it is much more difficult. Research into extensions with aggregates

(well-founded and stable semantics) started with the work of Kemp and Stuckey (1991).

Many approaches exist, but so far no consensus on how to handle aggregates in those

logics has been reached.
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ficiële Intelligentie (AI) Vlaanderen” programme and from the FWO (Research Foundation Flanders)
for project G0B2221N.
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We propose a framework for defining semantics for extensions of LP and ASP based

on Approximation Fixpoint Theory (AFT) introduced by Denecker et al. (2000) and

(2004). AFT is an abstract lattice theoretic formalization of constructive methods for

non-monotonic operators. It defines different types of constructions and fixpoints to a

lattice operator in an approximation space, including supported, Kripke–Kleene (KK),

stable and well-founded (WF) fixpoints. The theory has been applied to a range of

non-monotonic logics to characterize existing as well as new semantics: for example, LP

and ASP as shown in the paper by Denecker et al. (2012), autoepistemic and default

logic as shown in the paper by Denecker et al. (2003), higher order LP as shown in the

paper by Charalambidis et al. (2018), argumentation frameworks and abstract dialectal

frameworks as shown in the papers by Strass (2013) and Bogaerts (2019). AFT has

been applied to aggregate LP and ASP resulting in the ultimate stable and well-founded

semantics in the work by Denecker et al. (2001) and the broader framework in the paper

by Pelov et al. (2007) where stable and well-founded semantics are induced by a choice

of a 3-valued truth function.

Here, we clarify and expand this work. First, to make the AFT framework more acces-

sible to the ASP community, we show how each approximation truth assignment can be

broken up in a lower and an upper ternary satisfaction relation which, in the context of

ASP can be easily related to the reduct approach originally used by Gelfond and Lifschitz

(1988) to define stable semantics. Then we focus on aggregate ASP using examples from

the literature. Where possible, we consider aggregate atoms with positive and negative

literals as conditions. However, the semantics described by Gelfond and Zhang (2019)

does not allow negation by default inside an aggregate atom, therefore we only con-

sider positive conditions for this specific case. It is shown that not only the semantics of

Denecker et al. (2001), Pelov et al. (2007) but also those of Liu et al. (2010) and Gelfond

and Zhang (2019) are instances of our framework. But not all proposed semantics for

aggregate ASP semantics belong to our framework; for example those of Ferraris (2011),

Marek and Remmel (2004), Faber et al. (2011). We investigate the reason for this. The

paper contributes to the discussion about semantics for Aggregate ASP by clarifying

some important principles of NMR and by showing where they are applied and where

other principles are applied.

2 Approximation fixpoint theory

Here, we recall the basics of AFT from the work by Denecker et al. (2000). In many

non-monotonic languages, a theory defines a semantic lattice1 operator O : L→ L. If O

is monotone, its least fixpoint is often taken as the semantics of the theory. Otherwise,

AFT can be applied. The first step is to associate the approximation space L2 to L.

A pair (x, y) ∈ L2 is an approximation of any z ∈ [x, y]. With x ≤ y, the interval is

non-empty and the pair is consistent. Lc is the subspace of consistent pairs. L2 and Lc

possess (i) a precision order, (x, y) ≤p (u, v) if x ≤ u and y ≥ v and (ii) the embedding

1 A lattice 〈L,≤〉 is a partially ordered set where each subset S has a least upper bound lub(S) and a
greatest lower bound glb(S).
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of L, namely the set of exact pairs (x, x) which approximate only x. The least precise

point is (⊥,�), with ⊥ = glb(L),� = lub(L).

The second step is to assign an approximating operator A to O: a ≤p-monotone op-

erator on L2 or Lc such that if (x, y) approximates z then A(x, y) approximates O(z);

an approximator on L2 also has to be symmetric: A(x, y) = (u, v) iff A(y, x) = (v, u).

Thus, increasing the precision of the input to an approximator A increases the pre-

cision of the output. With an approximator A, several types of fixpoints are defin-

able. The least fixpoint (lfp) construction (⊥,�), A(⊥,�), . . . , Aα(⊥,�), . . . produces
the KK fixpoint KK(A) = lfp(A). The KK fixpoint is a pair (x, y) ∈ L2. If exact,

x(= y) is the only fixpoint of O. Otherwise, it approximates all fixpoints of O, including

“self-supported” ones that are often not minimal in L. Stable and WF fixpoint defini-

tions contain mechanisms to reduce self-support.2 A stable fixpoint x ∈ L is one such

that x = lfp(λz : A(z, x)1), where A(z, x)1 is the first component of the pair A(z, x).

The WF fixpoint WF(A) is the least precise pair (x, y) with x = lfp(λz : A(z, y)1)

and y = lfp(λz : A(x, z)2). It is the least precise fixpoint of the monotone operator

(x, y) 	→ (lfp(λz : A(z, y)1), lfp(λz : A(x, z)2)). We have that KK(A) and WF(A) are

consistent and for each stable fixpoint x, KK(A) ≤p WF(A) ≤p x and x is a minimal

fixpoint of O.3

AFT induces relationships between fixpoints of different approximators of O. If approx-

imator A is pointwise less precise than B, then KK(A) ≤p KK(B), WF(A) ≤p WF(B)

and any stable fixpoint of A is a stable fixpoint of B. Thus, with increasing precision of the

approximator, KK and WF fixpoints increase in precision, and the set of stable fixpoints

grows. There exists a most precise approximator UltO of O, with the most precise KK and

WF fixpoint and the largest set of stable fixpoints. For consistent pairs (x, y), UltO(x, y)

is the most precise pair approximating O([x, y]), that is, (glb(O([x, y]), lub(O([x, y]))). It

follows, perhaps surprisingly, that if an even moderately precise approximator A has a

stable fixpoint x, then x is approximated by the most precise WF fixpoint WF(UltO)

associated with O (but keep in mind that unprecise approximators are unlikely to have

stable fixpoints). This counter-intuitive fact tells us that in all cases, if stable fixpoints

exist, they are in the proximity of the most precise WF fixpoint that can be associated

to O. This may explain the good quality of stable semantics in capturing intuitions. But

while KK and WF are constructive, stable semantics is not really. It only has a construc-

tive test: testing if x is stable is by testing if x is the limit of the lfp construction of

λz : A(z, x)1.

We now sketch how to use AFT to define constructive semantics for programs based

on some logic L.4 We assume L is a first-order logic with a (Herbrand) model semantics

2 The intuition of self-support is not easily explained in an algebraic setting but shows intuitively in the
logic program {p← p. q ← ¬p}. It has two minimal fixpoints {p} and {q}, but {p} is self-supported
(in p) while {q} is not. The second is the unique stable and well-founded fixpoint.

3 In case of an Lc-operator, the domain of λz : A(z, y)1 is [⊥, y] and that of λz : A(x, z)2 is [x,�] while
the range of both operators is L. So, it is possible that the iterated lfp construction of one of these
operators terminates in a point outside the operator domain in which case the operator has neither a
fixpoint nor a lfp. To accommodate, we call x a stable fixpoint of A if the lfp of λz : A(z, y)1 exists
and is equal to x. In the paper by Denecker et al. (2004), it was proven that every Lc-approximator
A is expandable to L2 approximators, and that each such an expansion has the same KK, WF and
stable models as A. Therefore, we spend little attention to the difference between L2 and Lc.

4 For ease of discussion, this work only considers Herbrand interpretations and ground programs.
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defined using a 2-valued truth function H2, or equivalently, a satisfaction relation |=2

(where I |=2 φ iff H2
I(φ) = t). An L-program is then defined as follows:

Definition 1 (L-program)

An L-program is a set of rules r of the form p← ψ such that the body ψ is a formula of

L and the head p is a propositional atom.

Importantly,← is not a connective of L but AFT defines its meaning as a construction

operator. LP and (non-disjunctive) ASP are instances of this where L is simply the logic

of conjunctions of literals p or ¬p under standard interpretation. Given an L-program P ,

the corresponding lattice L,≤ is the set of P ’s Herbrand interpretations ordered by the

truth order (f < t). The sets Lc and L2 correspond to 3- and 4-valued interpretations.

Any 3- or 4-valued interpretation I can be split into a pair (I, J) by splitting truth values

as in t ∼ (t, t), f ∼ (f , f),u ∼ (f , t) and i ∼ (t, f). If I is 3-valued, then I ≤ J , and I

is a lower bound, J an upper bound of I. The 3- and 4-valued structures are equipped

with a truth order, which isomorphically corresponds to the product order ≤ of L2 and

Lc, and with a precision order ≤p (u <p t <p i,u <p f <p i which corresponds to the

precision order of L2 and Lc. Any truth or precision monotone operator Γ on 2-, 3- or

4-valued structures corresponds to a truth or precision monotone operator on L,Lc, L2.

An L-program P is characterised by the immediate consequence operator TP : L→ L.

This operator fulfills the role of O, the approximated operator. The immediate conse-

quence operator TP : L → L for a program P is such that TP (I) = J if for every

ground atom p, H2
J(p) = lub≤({H2

I(ψ)|(p ← ψ) ∈ P}). There are two ways to define

AFT semantics using an approximator A(= AP ) for TP .

One way is to use AP = Ult(TP ), the most precise approximator of TP in Lc leading

to ultimate versions of the family of AFT semantics as described by Denecker et al.

(2004) and used by Denecker et al. (2001) for defining semantics of Aggregate LP. This

is the most precise approach, but computationally costly. The other way is to extend

L’s truth assignment to 3- or 4-valued interpretations and by interpreting TP ’s defini-

tion in this broader context. For example, a 3-valued truth assignment H3 induces a

3-valued immediate consequence operator ΦP where ΦP (I) = I ′ if for every atom p,

H3
I′(p) = lub≤{H3

I(ψ)|(p ← ψ) ∈ P}. The operator ΦP corresponds isomorphically to

an Lc approximator AP on pairs I < J of 2-valued interpretations. But for AP to be

an approximator of TP , the 3-valued truth assignment H3 should satisfy a condition

introduced for 3-valued logic by Kleene (1952):

Definition 2 (Regular truth assignment)

A 3-valued truth assignment H3 of L is regular iff for all formulas ψ, for all 3-valued

structures I interpretating ψ: (1) (extension of H2) if I is 2-valued, then H2
I(ψ) = H3

I(ψ)
and (ii) (precision monotonocity) if I ≤p I ′ then H3

I(ψ) ≤p H3
I′(ψ) .5

For example, Kleene’s strong 3-valued truth assignment HSK of FO (introduced by

Kleene 1952) and Belnap’s 4-valued extension (introduced by Belnap 1977) are regular.

They induce multi-valued extensions ΦP of TP first introduced by Fitting (1985). Later,

ΦP was found to correspond to an approximator AP of TP whose KK, WF and stable

fixpoints correspond to the semantics of the same name.

5 For the 4-valued case, an additional condition is symmetry.
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In LP and ASP, it is often taken for granted that LP’s nonmonotonicity is due to

its non-classical negation not. But it is evident in AFT-based semantics, that the main

non-classical connective is the rule operator: its semantics is defined via operators and

constructive processes while negation in bodies is treated like the other FO connectives,

using three-valued logic only for approximation of the standard classical connectives.

The AFT road is quite unlike other semantic techniques in ASP. In the next section,

we reformulate the framework in more accessible terms for the ASP community.

3 Ternary satisfaction relations

Ternary satisfaction relations were used originally by Liu et al. (2010) in the context of

Aggregate ASP semantics where they were called sub-satisfiability relations.

We still assume a base logic L equipped with satisfaction relation |=2. Below, we restrict

ourselves to 3-valued interpretations corresponding to pairs (I, J) of 2-valued Herbrand

interpretations I ⊆ J (but extension to non-Herbrand interpretations is possible).

Definition 3 (Ternary satisfaction relations)

A ternary satisfaction relation (TSR) |=3 of L is a relation between pairs (I, J) of in-

terpretations such that I ⊆ J , and formulas ψ of L such that I |=2 ψ iff (I, I) |=3 ψ.

It is lower-monotone if (I, J) |=3 ψ implies (I ′, J) |=3 ψ when I ⊆ I ′ ⊆ J . It is lower-

regular (upper-regular) if (I, J) |=3 ψ implies (I ′, J ′) |=3 ψ when (I, J) ≤p (I ′, J ′)
((I ′, J ′) ≤p (I, J)).

For any pair of a lower-regular TSR |=3 and an upper-regular TSR |=↑
3, it always

holds that |=3⊆|=↑
3 since (I, J) |=3 ψ implies (I, I) |=2 ψ which implies (I, J) |=↑

3 ψ.

Also, a three-valued truth-function H3 corresponds one to one to pairs (|=3, |=↑
3) of TSRs

satisfying |=3⊆|=↑
3. The correspondence is: (i) (I, J) |=3 ψ iff H3

(I,J)(ψ) = t and (ii)

(I, J) |=↑
3 ψ iff H3

(I,J)(ψ) ∈ {t,u}.
Proposition 1

H3 is regular iff |=3 is a lower- and |=↑
3 an upper-regular TSR.6

Taking L as FO and H3 as the strong Kleene truth assignment, it is a folk result that

(I, J) |=3 ψ if ψ evaluates to true when interpreting all positively occurring atoms in I

and all negatively occurring ones in J . For (I, J) |=↑
3 ψ, exchange the roles of I and J .

For each L-program P , the lower- and upper-regular TSR induce two distinct operators

on consistent pairs I ⊆ J : A|=3

P (I, J) = {p|∃(p← ψ) ∈ P : (I, J) |=3 ψ} and A|=↑
3

P (I, J) =

{p|∃(p← ψ) ∈ P : (I, J) |=↑
3 ψ}. Now, we define AP (I, J) = (A

|=3

P (I, J), A
|=↑

3

P (I, J)).

Proposition 2

If |=3 and |=↑
3 are lower- and upper-regular TSRs , then AP is an Lc approximator.

Moreover it is isomorphic to the 3-valued ΦP induced by the 3-valued truth assignment

H3 combining |=3 and |=↑
3.

Now, supported, KK, WF and stable models of the L-programs P can be defined in

terms of |=3 and |=↑
3. Interestingly, J is a stable model of P iff J is the least fixpoint

6 All proofs are in the supplementary material corresponding to this paper at the TPLP archives.
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of A
|=3

P (I, J) = λI ∈ [⊥, J ] : {p|∃(p ← ψ) ∈ P : (I, J) |=3 ψ}. No need of |=↑
3! Clearly

there exists an asymmetry between truth and falsity in stable models. While information

about the truth of formulas, encoded by |=3, is essential to determine the stable fixpoints

of a program, information about their falsity, given by |=↑
3, is disregarded.

4 Generalizing the concept of answer set

Here, we generalize stable models of L-programs to answer sets. Now, L, the logic of the
rule bodies, has, besides a satisfaction relation |=2 also a TSR |=3.

Definition 4

I is an answer set of P if (1) for every (p← ψ) ∈ P , if I |=2 ψ then I |=2 p; (2) there is

no J ⊂ I such that for every (p← ψ) ∈ P , if (J, I) |=3 ψ then (J, I) |=3 p.

Proposition 3 (semi-constructive answer sets)

If |=3 is lower-monotone, then for L-programs P , I is an answer set of P iff I is the limit

of the increasing sequence 〈Iα〉α≥0 where (1) I0 = ∅, (2) Iα+1 = A
|=3

P (Iα, I) if Iα ⊆ I, (3)
Iλ =

⋃
α<λ Iα for limit ordinal λ.

In general, the (transfinite) fixpoint sequence may leave [∅, J ], or end up with a fixpoint

I ⊆ J . In case it is J , it is an answer set. Let |=3 be lower-regular. Combining it with any

upper-regular TSR |=↑
3 induces a regular truth assignment H3, as well as an entire family

of AFT fixpoints and models of L-programs: KK models, WF models and AFT-stable

models approximated by the WF models. The AFT-stable models in this framework

depend only on |=3 and they correspond exactly to answer sets of |=3, since a lower-

regular TSR is also lower-monotone.

Proposition 4

Answer sets and AFT-stable models coincide for L programs with a lower regular TSR.

To finish this section, we analyze the link with the original definition of answer set

given by Gelfond and Lifschitz (1988). There, L is the logic of ground sets/conjunctions

of literals with FO’s standard satisfaction relation |=2. Let P be an L-program.

Definition 5 (Gelfond-Lifschitz reduct and answer set)

The Gelfond-Lifschitz reduct (defined by Gelfond and Lifschitz 1988) P J of P for an

interpretation J is obtained from P by deleting

• all rules with a negative literal ¬l such that l ∈ J .
• all negative literals in the bodies of the remaining rules.

J is a GL-answer set of P if J |=2 P
J and there is no I ⊂ J such that I |=2 P

J .

We now identify the lower-regular TSR |=GL such that answer sets of programs induced

by |=GL, coincide with GL-answer sets. The TSR that is needed evaluates bodies ψ in

pairs (I, J) by interpreting atomic literals of ψ in I and negative literals in J . But as

explained in the previous section, that is how the lower-regular TSR |=SK of the strong

Kleene truth assignment operates: (I, J) |=SK ψ iff atoms in ψ hold in I and negative

literals hold in J . Thus, |=GL is the restriction of |=SK to conjunctions of literals. With

this in mind, the following proposition is straightforward.
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Proposition 5

For I ∈ [⊥, J ], I |=2 P
J iff for every rule p← ψ ∈ P , if (I, J) |=GL ψ then (I, J) |=GL p.

J is a GL-answer set of P iff J is an AFT-stable model of P under strong Kleene truth

assignment.

Thus, this type of answer set fits in the AFT-landscape of KK, WF and stable models.

5 Aggregates programs in the AFT framework

Aggregate Programs For the remainder of the text, we will consider L-programs where L
is the logic of conjunctions of literals and positive aggregate atoms.7

An aggregate atom aAggr is of the form: Agg({a1 : cond1, ..., an : condn}) ∗ w with

aggregate symbol Agg (e.g., SUM), comparison connective ∗ (e.g., ≤,=, �=, . . . ), numer-

ical value w and multiset {a1 : cond1, ..., an : condn} wher each condi is a literal and

each ai is a weight. The |=2 relation for L is naturally extended with a rule for evalu-

ating aggregate atoms, so also TP is defined. This enables the first approach to apply

AFT on this type of programs, using the 3-valued ultimate approximator UltTP
yielding

the ultimate KK, WF and stable semantics. Up to the syntax, this is the semantics of

Denecker et al. (2001). The second approach to apply AFT is based on defining a regular

3-valued truth assignment for aggregate atoms, leading to a three valued operator ΦAggr
P .

Up to the syntax, this was the approach followed by Pelov et al. (2007).

We now start the study of existing approaches for handling aggregates in ASP. Some of

these use more extensive programs than the ones analysed here, however our analysis only

considers the simpler L-programs. Proposition 3 shows that there is a constructive test

for answer sets of non-disjunctive L-programs for semantics with lower-monotone TSR’s.

A lower-regular TSR is lower-monotone by definition. Thus, this constructive test is

applicable for all semantics that fit in the AFT-framework. However, not all semantics

for ASP programs in the literature have lower-regular or even lower-monotone ternary

satisfaction relations.

Before we start, we define the precision order on the TSRs analogous to the precision

order on truth assignments defined by Pelov et al. (2007).

Definition 6 (Precision relation over lower ternary satisfaction relations)

A TSR |=a is less precise than a TSR |=b, or |=a≤p|=b, iff for every formula ψ and every

pair of two-valued interpretations (I, J): (I, J) |=a ψ implies (I, J) |=b ψ.

Proposition 6

Let |=a, |=b be TSRs that coincide with |=GL on aggregate free bodies. If |=a≤p|=b and

J is an answer set associated with |=a (an a-answer set), then J is a b-answer set.

5.1 Approaches that fit in the AFT framework

Pelov et al. (2007) This paper introduces several regular truth assignments for aggregate

atoms. This is equivalent with expanding the lower- and upper-regular TSR with a rule

7 In many semantics, including AFT semantics, a negated aggregate atom can always be represented by
its dual positive aggregate atom. For example, ¬(SUM({1 : s}) > 0) corresponds to SUM({1 : s}) ≤ 0.
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for aggregate atoms. For defining answer sets for the syntax of this paper, the lower one

suffices.8 The least precise approximation, Htriv assigns to an aggregate atom aAggr the

same value as I and J when I and J agree on the conditions in aAggr and u when they

disagree. The corresponding lower TSR is:

Definition 7 (|=triv)

|=triv extends |=GL with: (I, J) |=triv a
Aggr iff J |=2 a

Aggr and condi
I = condi

J for every

condition condi in a
Aggr.

The most precise regular truth assignment Hult assigns t (f) to an aggregate expression

in (I, J) if it is t (f) in every Z ∈ [I, J ]. Otherwise, it assigns u. The corresponding lower

TSR is:

Definition 8 (|=ult)

|=ult extends |=GL with: (I, J) |=ult a
Aggr iff for each Z such that I ⊆ Z ⊆ J : Z |=2 a

Aggr.

Pelov (2004) shows that for stratified aggregate programs (where predicates in aggre-

gate expressions are defined at a lower level), the trivial and the ultimate truth assign-

ments lead to the same semantics.

While very precise, Pelov (2004) shows that the complexity of computing KK, WF and

stable models under |=ult moves to the next level of the polynomial hierarchy. To avoid

this, he offers a less precise alternative called the bounded truth assignment.

Phrased in terms of the present aggregate programs, it uses functions LBAgg,UBAgg :

P(D̃1) → D2 that maps any three-valued multiset {ms}I to respectively the minimum

and the maximum of {Agg({ms})I′ |I ′ ∈ [I, J ]}; that is, LBAgg represents the lower bound

for the aggregate function Agg on the possible multisets and UBAgg the upperbound. The

truth value for aggregate atoms with sum and product is based on these bounds. The

corresponding lower TSR is:

Definition 9 (|=bnd)

|=bnd agrees with |=ult except for aggregate atoms of the form Agg({ms}) ∗w with Agg ∈
{SUM ,PROD} and ∗ ∈ {=, �=}
• (I, J) |=bnd Agg({ms}) = w iff LBAgg({ms}(I,J)) = w = UBAgg({ms}(I,J)).
• (I, J) |=bnd Agg({ms}) �= w iff LBAgg({ms}(I,J)) > w or UBAgg({ms}(I,J)) < w.

Pelov (2004) lists polynomial algorithms to compute both bounds for all aggregate

atoms discussed in his thesis. The same holds for the common aggregate atoms in ASP.

Consequently, the complexity of computing the different types of models remains on the

same level as for the non-aggregate case. Yet, the bound semantics is precise enough to

solve many useful aggregate programs with recursion over the aggregates.

Proposition 7

The TSRs |=triv, |=ult and |=bnd are lower-regular. Since |=triv≤p|=bnd≤p|=ult, an answer

set of |=triv is one of |=bnd, and one of |=bnd is one of |=ult.

8 The formalism of Pelov et al. (2007) is much richer including aggregate atoms under negation, and its
semantics requires lower- and upper-regular TSRs defined inductively in terms of each other.
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Liu et al. (2010). They introduced a kind of TSR to define semantics for abstract con-

straints. While the restrictions imposed on these relations are different and do not nec-

essarily fit into AFT, their main example, the sub-satisfiability relation as proposed by

Son et al. (2007) does. For any abstract constraint α: (I, J) |=LPST α if and only if for

each interpretation Z such that I ⊆ Z ⊆ J , it holds that Z |=2 α.

Definition 10 (|=LPST)

The TSR |=LPST extends |=GL with: If aAggr is an aggregate atom, then (I, J) |=LPST

aAggr iff for each Z such that I ⊆ Z ⊆ J : Z |=2 a
Aggr.

This is the same satisfaction relation as |=ult in Definition 8, hence it is lower-regular

and defines the same answer sets.

Gelfond and Zhang (2019). They construct a reduct for aggregate programs with respect

to a three-valued interpretation. We only consider the case where the interpretation is

two-valued. Gelfond and Zhang (2019) allow two kinds of negation: negation by default,

which corresponds to negation as presented in this paper, and explicit negation, which

is not a part of the syntax of the programs considered here but can be simulated by the

well-known translation of explicitly negated atoms of a predicate p into atoms of a newly

introduced predicate p∗. Since Gelfond and Zhang (2019) do not allow default negation

within an aggregate atom, here it suffices to consider programs with positive conditions

inside an aggregate atom. The reduction process is split into two main parts. The first

part constructs a reduct regarding the aggregate atoms. It consists of two steps:

1. Removing all rules with aggregate atoms that evaluate to f in the interpretation.

2. Replacing every remaining aggregate atom by the conjunction of the subset of its

conditions that are t in the interpretation.

In other words, given a rule r in a program P : p ← l1 ∧ ... ∧ ln, such that for an li
it holds that li = Agg({a1 : cond1, ..., an : condn}) ∗ w, then the rule is deleted in the

reduct P J if li evaluates to f in J . Otherwise the rule is replaced by p← l1 ∧ ... ∧ li−1 ∧
li+1 ∧ ... ∧ ln ∧ (

∧{condj ∈ {cond1, . . . , condn}|J |=2 condj}.
The second part transforms the preliminary reduct after the first phase to its Gelfond-

Lifschitz reduct. In this way, it preserves the capability to deal with ordinary propositional

atoms. From this reduct one can inductively define the TSR |=GZ:

Definition 11 (|=GZ)

|=GZ extends |=GL with: Let aAggr = Agg({a1 : cond1, ..., an : condn}) ∗ w. (I, J) |=GZ

aAggr iff J |=2 a
Aggr and (I, J) |=GZ

∧{condj ∈ {cond1, . . . , condn}|J |=2 condj}.

Proposition 8

For aggregate programs containing only positive conditions in aggregate atoms, the TSR

|=GZ is identical to the TSR |=triv and lower-regular for consistent pairs, that is, with

(I, J) a consistent pair, (I, J) |=GZ a
Aggr iff (I, J) |=triv a

Aggr.

Precision Complexity Trade-off. One expects more effort gives more precise approxi-

mations. From Theorem 7.4 in the paper by Pelov et al. (2007), it follows that if the

evaluation of an expression with respect to a lower-regular ternary satisfaction relation

|=3 is polynomially computable, then checking whether or not a model is an answer set
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is in P and deciding whether an answer set for a program exists, is in NP . This is the

case for |=triv and |=bnd and for instances of the framework that coincide with |=triv; for

instances that coincide with |=ult the check problem is in NP and the exists-problem is

in ΣP
2 .

5.2 Other ternary satisfaction relations

In the AFT framework, semantics of ASP aggregate atoms are based on lower regular

TSRs . As we show in this section, also other well-known semantics can be characterized

using TSRs , however, they are not regular. This is no coincidence. The definition of

answer set semantics in terms of TSRs strongly resembles another well-known semantic

method of ASP, namely using the logic of here-and-there (HT) (for an overview of HT

and its applications to ASP, see the work by Cabalar et al. 2017). Due to very different

points of view on answer sets, the two frameworks obtain different requirements for the

TSRs . AFT treats answer sets as the result of constructive processes; the rule operator

serves to produce them. A production is safe if the TSR is lower-regular. In contrast, HT

takes a non-constructive take on answer sets. In HT, extensions build on the inherently

non-regular TSRs derived from the three-valued logic G3 introduced by Gödel (1932)

where the rule operator is treated as HT-material implication.

Marek and Remmel (2004). They study Set Constraints (SC) Programming. It builds

an NSS-reduct for an SC-program. Liu et al. (2010) prove that this semantics for set

constraints is also obtained by the following satisfaction rule for a set constraint α:

(I, J) |=MR α, if J |=2 α and there exists an interpretation Z ⊆ I such that Z |=2 α.

This leads to the TSR |=MR:

Definition 12 (|=MR)

|=MR extends |=GL with: (I, J) |=MR aAggr iff J |=2 a
Aggr and there exists an interpreta-

tion Z such that Z ⊆ I and Z |=2 a
Aggr.

Consider the aggregate atom SUM ({1 : p,−1 : q}) ≥ 0 and two intervals, namely

(∅, {p, q, s}) <p (∅, {q}). We have that (∅, {p, q, s}) |=MR SUM ({1 : p,−1 : q}) ≥ 0 while

({p}, {q}) �|=MR SUM ({1 : p,−1 : q}) ≥ 0. Hence, |=MR is not lower-regular.

Proposition 9

(i) |=MR extends |=2, that is, (I, I) |=MR ψ iff I |=2 ψ. (ii) |=MR is lower-monotone, that

is, if I ⊆ I ′ and (I, J) |=MR ψ, then (I ′, J) |=MR ψ.

While non-regular, the ternary relation |=MR still extends the satisfaction relation

|=2 and induces a monotone operator λI : A|=MR
(I, J). Thus, an answer set may still

be defined as an interpretation J that is a least fixpoint of this operator. But, due to

non-regularity, some unexpected answer sets are obtained.

Example 1

Take the program:

s← SUM ({1 : p,−1 : q}) ≥ 0.

q ← SUM ({1 : s}) > 0. p← SUM ({1 : q}) > 0.
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The bodies of these rules are equivalent to p∨¬q, respectively s and q. Therefore, one
expects its answer sets to be the same as those of the simplified program:

s← p. s← ¬q. q ← s. p← q.

To check that J = {p, q, s} is an answer set, we observe that (∅, J) |=MR SUM ({1 :

p,−1 : q}) ≥ 0, hence the first iteration derives the head s. Two more iterations recon-

struct the fixpoint {p, q, s} which therefore is an answer set according to these semantics.

On the other hand, the Gelfond-Lifschitz reduct of the simplified program with respect

to J = {p, q, s} is:
s← p. q ← s. p← q.

Since ∅ is a model of the reduct, {p, q, s} is not an answer set of the simplified program.

The culprit for “too many” answer sets of the aggregate program is the non-regularity

of |=MR which leads to the unsafe derivation of aggregate atoms: in the first derivation,

(∅, {p, q, s}) |=MR SUM ({1 : p,−1 : q}) ≥ 0 which derived s, but this derivation was

unsafe since this aggregate atom is not satisfied in the more precise (∅, {q}). However,

things change when looking only at convex aggregate atoms.

Definition 13 (Convex aggregate atom)

An aggregate atom aAggr is convex iff for all interpretations I, Z, J , such that I ⊆ Z ⊆ J ,
it holds that if I |=2 a

Aggr and J |=2 a
Aggr, then Z |=2 a

Aggr.

Proposition 10

For convex aggregate atoms, |=MR behaves lower-regular and equivalent with |=ult.

Faber et al. (2011). They provide semantics for a broader class of ASP programs in-

cluding negated aggregate atoms. This approach constructs a reduct P J for a program

P with respect to an interpretation J by deleting all rules of which the body is not

satisfied in J . In general, the immediate consequence operator TPJ is not monotone, so

answer sets cannot be defined using the lfp construction of this operator. Nevertheless,

the FPL-answer sets are the answer sets of the following TSR:

Definition 14 (|=FPL)

We define |=FPL as follows: (I, J) |=FPL ψ iff I |=2 ψ and J |=2 ψ.

Proposition 11

|=FPL extends |=2, that is, (I, I) |=FPL ψ iff I |=2 ψ. For conjunctions of aggregate free

literals, |=FPL coincides with |=GL.

This very simple TSR is neither lower-regular nor lower-monotone, thus the construc-

tive test is inapplicable.

As a consequence, discrepancies between some aggregate programs and their aggregate-

free simplification are also present. Using again Example 1, (∅, {p, q, s}) |=FPL SUM ({1 :

p,−1 : q}) ≥ 0. But again, (∅, {q}) �|=FPL SUM ({1 : p,−1 : q}) ≥ 0. Similarily to |=MR,

the FPL-semantics leads to {p, q, s} as an answer set. It is obvious that if (I, J) |=FPL ψ,

then (I, J) |=MR ψ, since I ⊆ I. Accordingly |=FPL is less precise then |=MR. Analogously,

if (I, J) |=ult ψ, then (I, J) |=FPL ψ since the interpretations I and J are both elements

of [I, J ].
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Table 1. A summary of the different ternary satisfaction relations

LPST GZ9 MR FPL F

Regular arbitrary arbitrary convex convex anti-monotone
PDB ult triv ult ult ult
lfp arbitrary arbitrary arbitrary convex convex
<p {MR,FPL,F} {bnd,LPST,MR, ∅ {MR} ∅

FPL,F}

Proposition 12

For convex aggregate atoms, the TSR |=FPL behaves lower-regular and equivalent to

|=ult.

Ferraris (2011). This semantics is closely related to the FPL-semantics. Actually, they

coincide for negation-free programs. Ferraris (2011) also cover more extensive instances

of answer set programs, such as arbitrary propositional theories. It obtains the reduct

P J for a program P and interpretation J by replacing all maximal subformulas in P that

are unsatisfied in J by ⊥. This corresponds to the TSR |=F:

Definition 15 (|=F)

|=F extends |=GL with: Let aAggr = Agg({a1 : cond1. . . . , an : condn})∗w, (I, J) |=F a
Aggr

iff J |=2 a
Aggr and I |=2 Agg({ai : condi ∈ {a1 : cond1, . . . , an : condn}|J |=2 condi}) ∗w.

Since |=F and |=FPL coincide for negation-free programs, an analogous discussion of

Example 1 leads to the conclusion that the satisfaction relation |=F is not lower-regular

due to the lack of monotonicity.

Proposition 13

|=F extends |=2, that is, (I, I) |=F ψ iff I |=2 ψ.

Proposition 14

For convex aggregate atoms, |=F behaves lower-monotone, that is, if I ⊆ I ′ and (I, J) |=F

ψ, then (I ′, J) |=F ψ.

Proposition 15

For anti-monotone aggregate atoms, |=F behaves lower-regular and equivalent with |=ult.

Table 1 gives an overview. Row 1 indicates for which aggregate atoms the ternary

satisfaction relation behaves lower-regular. Row 2 shows which semantics from Pelov

et al. (2007) coincides with this semantics for the subclass of programs such that the

semantics behaves lower-regular. Row 3 indicates for which aggregate atoms the semantics

is monotone in the first component such that the answer sets can be constructed as the

lfp of ΦP . Row 4 gives the set Sa of semantics discussed in this paper that are strictly

more precise than the considered instance a. Consequently every a-answer will always

9 Note that the GZ-semantics is not defined for programs with conditions under default negation within
aggregate-atoms and the table should be interpreted accordingly.
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be an answer set for every semantics in Sa. This does not generally hold the other way

around. Interestingly, all non-regular semantics coincide with the ult-semantics of Pelov

(2004) for the subclass of programs in which they behave lower-regular.10 For programs

outside this subclass, the non-regular semantics differ and may derive more answer sets

than the ult-semantics.

6 Conclusions and future work

Approximation Fixpoint Theory describes various types of constructions from nonmono-

tonic operators and was designed to formalize the view of Logic Programming as con-

structive definitions, a view at least implicit in stratified logic programs, in the KK

and WF semantics, but also in the logic FO(ID) introduced by Denecker and Ternovska

(2008). We studied aggregate programs from this view point, showing how regular (3- or

4-valued) extensions of the strong Kleene truth assignment induce extensions of KK, WF

and stable semantics. We showed that regular truth assignments correspond one-to-one

to pairs of a lower-regular and an upper-regular ternary satisfaction relation (I, J) |=3 ψ,

where the lower-regular one suffices for defining stable models. To study the relation

with ASP, we then made a generalized study of TSRs as a tool to define answer sets.

We analysed different properties of TSRs, and many semantics of aggregate programs

in the literature to determine the corresponding lower ternary satisfaction relation and

the properties that influence them, such as convexity, (anti-)monotonicity, and the sign

of conditions in aggregates. We obtained many results linking many ASP semantics in

various degrees to the AFT-framework.

In the ASP community, other views of LP and ASP exist than that as a logic of

constructive definitions. They are developed in various frameworks such as the framework

of HT (for more details see the paper by Cabalar et al. 2017) or of Ferraris and Lifschitz

(for more details see the paper by Ferraris et al. 2007). These frameworks often extend the

original logic programming formalism in various directions, for example, with disjunction

in the head, other negations. They may entirely redefine full FO and the meaning of its

connectives. The base idea is that a program corresponds to a theory in some logic (e.g.,

HT or FO) from which answer set are derived using some equilibrium characterisation.

Although these semantics are not constructive in the sense of AFT, there are surely many

interesting mathematical relationships to AFT. For instance, it is striking that the logic

of HT is also defined in terms of a ternary satisfaction relation. It is a goal for future

work to investigate this.

Supplementary material

To view supplementary material for this article, please visit http://10.1017/

S1471068422000126.

10 Regularity is a property of a semantics. A program cannot be regular or non-regular. However, if a
program belongs to a specific subclass of programs, a non-regular semantics may behave lower-regular
anyway.
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Denecker, M., Marek, V. and Truszczyński, M. 2000. Approximations, stable operators,
well-founded fixpoints and applications in nonmonotonic reasoning. In Logic-based Artificial
Intelligence. Springer, 127–144.

Denecker, M., Marek, V. W. and Truszczynski, M. 2003. Uniform semantic treatment of
default and autoepistemic logics. Artificial Intelligence 143, 1, 79–122.

Denecker, M., Marek, V. W. and Truszczyński, M. 2004. Ultimate approximation and its
application in nonmonotonic knowledge representation systems. Information and Computation
192, 1, 84–121. Elsevier.

Denecker, M., Pelov, N. and Bruynooghe, M. 2001. Ultimate well-founded and stable se-
mantics for logic programs with aggregates. In Logic Programming, 17th International Confer-
ence, ICLP 2001, Paphos, Cyprus, 26 November–1 December 2001, Proceedings, P. Codognet,
Ed., Lecture Notes in Computer Science, vol. 2237. Springer, 212–226.

Denecker, M. and Ternovska, E. 2008. A logic of nonmonotone inductive definitions. ACM
Transactions on Computational Logic (TOCL) 9, 2, 1–52. ACM, New York, NY, USA.

Faber, W., Pfeifer, G. and Leone, N. 2011. Semantics and complexity of recursive aggre-
gates in answer set programming. Artificial Intelligence 175, 1, 278–298. Elsevier.

Ferraris, P., Lee, J. and Lifschitz, V. 2007. A new perspective on stable models. IJCAI 7,
372–379.

Ferraris, P. 2011. Logic programs with propositional connectives and aggregates. ACM Trans-
actions on Computational Logic (TOCL) 12, 4, 1–40. ACM New York, NY, USA.

Fitting, M. 1985. A Kripke-Kleene semantics for logic programs. Journal of Logic Programming
2, 4, 295–312.

Gebser, M., Harrison, A., Kaminski, R., Lifschitz, V. and Schaub, T. 2015. Abstract
gringo. Theory and Practice of Logic Programming 15, 4–5, 449–463.

Gelfond, M. and Kahl, Y. 2014. Knowledge Representation, Reasoning, and the Design of
Intelligent Agents: The Answer-Set Programming Approach. Cambridge University Press.

Gelfond, M. and Lifschitz, V. 1988. The stable model semantics for logic programming. In
The Stable Model Semantics for Logic Programming. ICLP/SLP, 1070–1080.

Gelfond, M. and Zhang, Y. 2019. Vicious circle principle, aggregates, and formation of sets
in ASP based languages. Artificial Intelligence 275, 28–77. Elsevier.
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