
J. Austral. Math. Soc. 24 (Series A) (1977), 139-161

CONCISE SURVEY OF MATHEMATICAL LOGIC

JOHN STILLWELL

(Received 2 February 1976)
Communicated by J. N. Crossley

Abstract
This paper contains proofs of the compactness, completeness and Lowenheim-
Skolem theorems for predicate logic, together with their application to non-
standard numbers; proofs of undecidability in predicate logic and number
theory, and the Godel incompleteness theorem.

Subject classification (Amer. Math. Soc (MOS), 1970): 02—02

Introduction

The object of this survey is to present all the classic results of mathematical logic
within the space of a single paper. In fact, a paper with this objective already
exists (Kleene, 1958), and has influenced Sections 1 and 2 of the present work.
However, Kleene's paper lacks adequate detail on non-standard numbers and the
celebrated undecidability and incompleteness results, so we have attempted to fill
this gap in the remaining sections of the present paper. Section 3, on non-standard
numbers, draws on the exposition of Skolem (1955), while Sections 4 and 5, on
undecidability, make some simplifications in the author's work previously published
in Crossley and others (1972) and the work of Smullyan (1961).

Thanks to 30 years of technical simplifications (together with some shift in the
meaning of "predicate logic" and "formal system") it is now possible to give short,
complete proofs of undecidability for predicate logic and number theory (see
Section 5). Unfortunately, these results have remained a mystery to the general
mathematician because only the difficult methods originated by the pioneers (mainly
Godel) have received wide circulation. (To get the flavour of the original work
the reader can consult Davis (1965), which contains all the classic papers in this
field.) A much simpler approach is available through the work of Post (1944,
1947), but even today this has not been widely adopted. We hope that Section 5 will
convince the reader of the fruitfulness of Post's Turing machine approach.

Godel's most famous result, the incompleteness theorem, is the only proof
where we omit some detail. The heart of the proof, the translation of a sentence
about a machine M into a sentence \fiM of number theory is done in complete

139

https://doi.org/10.1017/S1446788700020164 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700020164

140 John Stillwell [2]

detail, our omission is essentially the construction of a machine to write down
the sentence if>M, this construction is neither difficult nor interesting.

The only mathematical prerequisites required for this paper are some familiarity
with Cantor's methods of enumeration and diagonalization. Actually the only
enumeration method we use is that for enumerating words over a fixed finite
alphabet—first list the one-letter words, then the two-letter words, and so on.
We appeal to this enumeration in order to claim that certain sets are countable
when their members have received names in some fixed alphabet, in particular
terms built from function symbols and constants. This is the key to the Lowenheim-
Skolem theorem of Section 2.

We use the diagonal argument in Section 4 when we apply a Turing machine M
to its own description fMl, and it is the key to the undecidability results of
Section 5. The reader will observe a contradiction arise in this "self-reference"
situation exactly as it does in Cantor's proof that each set has a smaller cardinality
than its power set.

1. Prepositional logic

The logic of propositions or truth functional logic is concerned with analysing
the truth of compound propositions in terms of the truth values of atomic propo-
sitions and the connectives which link them, such as "and", "or", "not".

We use letters px,P2,pz,... to denote atomic propositions. "True" and "False"
are denoted by T and F.

A truth function or connectivef(px,.. .,/>„) is simply any function: {T, F}n -» {T, F},
and can be given a truth table

Pi P% ••• Pn

T T

F F

T

F

f(Pl--Pn)

function

values

of 2n rows and «+1 columns, where the first n columns contain all possible values
of px, ...,pn, and the last column contains the function values.

"And", "or" and "not" are denoted by £,v,-|. They have the following truth
tables

Pi

T
T
F
F

P%

T
F
T
F

Pi^Pa

T
F
F
F

Pi

T
T
F
F

Pz

T
F
T
F

P1VP2

T
T
T
F

Pi

T
F

IPi

F
T

https://doi.org/10.1017/S1446788700020164 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700020164

[3] Survey of mathematical logic 141

FORMULAE

Compound propositions can be represented by formulae, defined inductively as
follows:

(a) any letter p{ alone is a formula (atomic formula);
(b) if <p and ifi are formulae so are (<p€.tfi), (pvf), ~\(<p), for example, ~]{pi),

(Psv~\(Pi)) a n d G'3£(/>2vl(/>i))) a r e formulae.
Because of the bracketing, the component formulae <p and ^ in a formula

constructed by (b) can be uniquely reconstructed. If <p and if/ are themselves
compound, their components can likewise be reconstructed, until we get back to
atomic formulae. Then if certain truth values have been assigned to the atomic
formulae, the truth values of the successive compounds can be read off from the
truth tables for £,v, -], giving us in the end the truth values of the formula we
started with. For example, evaluate (/>3£(/>2vi(/'i))) with Pi = F> Pz — T> Pz = T:

T T F
T

T
The value is: T

(This layout results from putting each truth value underneath the connective
which determines it.)

Actually, some brackets are redundant, and we omit them where an unambiguous
reading is still possible. For example,

and
PiZptZPa for

and also
for

since these are the same truth function.
All other truth functions may be compounded from £,v,-|. We leave this result

as an exercise, with just the hint that an arbitrary truth table has a natural descrip-
tion in terms of £, v, -\.

An important example ispx =>p2, "if Pi then/>2", which is the same truth function
as ~\PiVp2- Similarly f o r / ^ o / ^ ("if a n (i oaty if")» which is (Pi^p^^ip^^Pd-

SATISFACTION AND VALIDITY

An interpretation J of a formula <p(j>1---prd is an assignment of values (ror F)
top1,...,pn.J

r satisfies <p, written J(= 99, if 95 = T under interpretation J (if <p = F
«/ falsifies <p), <p is satisfiable if some J |= <p, <p is valid (or a tautology) if a l l . / (= <p.
For example, px v ~\p1 is a tautology.

Since p ^ , ...,pn) has only 2n interpretations, we can mechanically test for both
satisfaction and validity, using truth tables. This method of establishing validity

https://doi.org/10.1017/S1446788700020164 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700020164

142 John Stillwell [4]

was given by Post (1921), where most of the basic problems of prepositional
logic are solved.

Note that satisfiability and validity are connected by: 9? is valid if and only if -\<p
is not satisfiable. It turns out that satisfiability is the better notion to work with.

COMPACTNESS THEOREM

Propositional logic is not adequate for mathematics in itself, since its formulae
cannot express properties or relations between objects. What is surprising, how-
ever, is that mathematical sentences can be replaced by infinite sets of propositional
formulae, then a reduction to finite sets can be made by the following theorem.
(A set of formulae, 2 , is called satisfiable if there is an J which satisfies all formulae
in 2 simultaneously.)

COMPACTNESS THEOREM. If HI is a set of {propositional) formulae, each finite
subset of which is satisfiable, then 2 itself is satisfiable.

PROOF. All possible assignments to Pi,Pz,pz,... can be represented on the tree
shown. Each node at level n represents one of the 2™ possible assignments to
/>i> • ••>Pn- F ° r example, the node marked x represents px = F, p2 = T, p3 = F.

Now if the nodes are examined from the top down, and branches cut off at each
node where the corresponding assignment falsifies some formula in 2 , the final
result will be:

either (i) all branches terminate by some level «,
or (ii) there is an infinite branch.
An infinite branch gives a value to each pn, and these values must satisfy each

formula in 2 , otherwise the branch would be cut, so (ii) means 2 is satisfiable.
(i) means that for each of the 2™ assignments to />!,...,/>„, some formula in 2
comes out F. Let these formulae be <pa),<p™, ...,<pw (so k^2n). But then no
assignment makes <pa),...,<plk) simultaneously T, that is, this finite subset of 2
is not satisfiable.

https://doi.org/10.1017/S1446788700020164 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700020164

[5] Survey of mathematical logic 143

EXERCISE. Redefine "interpretation" to be an infinite sequence ofO's and Vs, that
is, a point in the space 2W. Show that each basic open set B in 2<" {product topology)
corresponds to a formula <p, namely B = {J\J\=<p} and that the compactness of I"
follows from the compactness theorem.

We defer until the next section the general procedure for reducing mathematical
sentences to sets of propositional formulae. However, we can present an example
which illustrates this fact, and affords an interesting application of the compactness
theorem.

THEOREM. If every finite map is ^-colourable then so is every infinite map.
Let countries be denoted by clt c2, c3,.... A map is determined by a set of atomic

formulae B(c{,Cj), which denote that c< borders on Cj. Other atomic formulae
^»(cf)> n~ 1> 2,3,4, denote that ct has colour n. Then "colouring" the map means
to satisfy the following formulae:

Ki(cd v ^a(ci) v K»(cd v Ki(ci) "each country has a colour"

"and only one colour"

B(ciy Cj) => ((KjfcJ => iKfa)) £. . .
"bordering countries have different

colours"

for i,7= 1,2,3,... together with the border relations of the given map.
And these can be satisfied, because each finite subset mentions only finitely many

countries and hence is satisfiable under the assumption that finite maps are
4-colourable.

EXERCISE. Prove this theorem directly by a tree argument. (Hint: Each node of the
tree branches 4 ways.)

2. Predicate logic

To obtain a language suitable for the expression of mathematical theories we
need the following elements:

Variables x1,xi,xz... intended to range over the domain of the
given theory

Predicate letters: Px, P2. • • to denote relationships on the domain
Function letters: 7^,7^... for functions on the domain
Constants: ax, a2,... for distinguished objects
Quantifiers: Vxt , 3x t "for all xt", "there exists an x"

together with £,v,-| and also = , with their usual interpretation.

https://doi.org/10.1017/S1446788700020164 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700020164

144 John Stillwell [6]

The functions, constants and = are included for their convenience and in
principle can be eliminated, since functions and = are particular types of relations,
and a constant a{ can be replaced by a relation A{(x) which denotes x = at.
However, we do not carry this out, since functions in particular will be very useful.

FORMULAE AND INTERPRETATIONS

Formulae are constructed inductively, first we need the notion of a term:
(a) a variable or a constant is a term;
(b) if tlf..., tn are terms, then so i s / ^ , . . . , tn).

Now, an atomic formula is simply P^f-y,..., tn), where tv...,tn are terms. And if y
and ip are formulae so are

(If we want V xt<p or 3^<p to mean something we will want xt to be free in <p,
that is, not governed by any other quantifier.)

An interpretation J is a sequence (D, Px,Pi,...,f1,fi,...idx,di,...) where D is
the domain and the P^fi, dt are relations and functions on D, and objects in D,
corresponding to the predicate, function and constant symbols.

J satisfies a formula <p, <?\=<p, if <p is T under J when Vxf, 3;q respectively
mean "for all members of D" and "there exists a member of £>".

p is valid if 71 under all interpretations. Examples of valid formulae are
V*!/•(*!)=> Sx^ixj) and 3xxVx2P(x1,x2)=>Vx23x1P(x1,x^. (Note that there
is no obvious test for validity in this language, since each formula has infinitely
many interpretations. Later we shall show that in fact there is no algorithm for
deciding validity in predicate logic.)

LANGUAGES FOR CERTAIN MATHEMATICAL THEORIES

(i) Group theory: Requires one constant, e (for the identity element) and a
two-place function • (for group multiplication).

EXERCISE. Write down the group axioms in this language. A group is in fact defined
to be any interpretation which satisfies these axioms.

(ii) Number theory: Requires a constant 0, one-place function ' (successor) and
two-place functions + and •. The terms 0,0',0",... then denote the natural
numbers.

EXERCISE. Define the following relations in this language:

x<y, x divides y, x is prime.

(It is now known, essentially from the work of Godel (1931), that all computable
functions are definable in this language.)

(iii) Set theory (for example, Zermelo-Fraenkel). It requires only a single
binary relation e (membership), and all contemporary mathematics can be
developed within this framework.

https://doi.org/10.1017/S1446788700020164 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700020164

[7] Survey of mathematical logic 145

PRENEX AND SKOLEM FORM

It is now clear that mathematical sentences can be viewed as formulae in the
language of predicate logic. So the problem of reducing them to prepositional
formulae amounts to finding a procedure for reducing predicate formulae.

The first step in this procedure is to move all quantifiers to the front (giving the
so-called prenex form). This can be done by systematic application of the following
equivalences:

-\ 3x<p o Vx~\<p

(and similarly with v in place of £). The rules for moving the quantifier in front of
£, v require that x is not free in cp, so if necessary x should be changed to a new
variable not free in <p before moving the quantifier forward.

The next step is to remove the 3 quantifiers in favour of constant and function
symbols. At this stage we seek, not a logical equivalent, but a formula which is
satisfiable if and only if the original formula is satisfiable. The simplest cases are
the following:

3 x<p(x) satisfiable if and only if <p(a) holds for some object a,
if and only if <p{a^ is satisfiable;

V x 3 y tp{x, y) satisfiable if and only if V x <p(x,f(x)) holds for some
function/,

if and only if V x <p(x,fi(x)) is satisfiable.

The general prenex form can be handled by simple extension of this idea, for
example

Vx 3j> Vz 3 tP(x,y,z, t) satisfiable if and only if

V x V z 3 tP(x,f(x), z, t) satisfiable
if and only if

V x V zP(x,f(x), z, g(x, z)) satisfiable.

The result of applying these reductions to a formula rp is called (p8, the Skolem
form of f, and the functions appearing in 95s are called Skolem functions.

EXAMPLE. V x 3 yR{x,y) is satisfiable in <R, <> where R = {real numbers}. Its
Skolem form is V xR(x,f(x)) and a suitable Skolem function isf(x) = x+1.

LOWENHEIM-SKOLEM AND HERBRAND THEOREM

We have that <p is satisfiable if and only if f>s is satisfiable. Now 95s is a universal
formula, that is, of the form V ^ . - . V ^ ^ , . . . , ^) where <p is quantifier-free.
To say Vx1 . . . Vxn<p(xx, ...,xn) holds in some D is simply to say that each instance

https://doi.org/10.1017/S1446788700020164 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700020164

146 John Stillwell [8]

<p(dv...,dn) with dx,...,dneD is true, so automatically Vxx...V x^x^...,xn)
will hold in any D'sD. The only proviso is that D' must be closed under any
functions occurring in <p, so that whenever the variables denote members of D',
the terms in <p do also.

This means that if 95s holds in D we can find a D ' s D in which 92s holds simply
by taking any deD and generating all the Skolem terms compounded from d
and the Skolem functions. Note that this interpretation will satisfy <p as well.

To sum up: 95 is satisfiable
if and only if 93s is satisfiable;
if and only if cps is satisfiable in the domain of Skolem terms;
if and only if the instances of 95s in the domain of Skolem terms are simultaneously

satisfiable.
Two important theorems follow from these facts.

LOWENHEIM-SKOLEM THEOREM. If<p is satisfiable then it is satisfiable in a countable
domain (Lowenheim, 1915).

PROOF. We have <p is satisfiable if and only if <p is satisfiable in the domain of
Skolem terms. But the Skolem terms are words on a finite alphabet (namely d,
the Skolem functions of <p and brackets), hence they form a countable set.

EXAMPLE. We have Vx3yR(x,y) holds in <R, <>, and a Skolem function
f(x) = x+l. Choosing OeR, the domain of Skolem terms is {0,1,2,...}, hence
countable, and V x 3 yR(x, y) holds in this domain.

EXERCISE. Vx\/y3z(R(x,y)=>(R(x,z)£R(z,y)) also holds in <R, <>. Find a
suitable Skolem function and describe the domain of Skolem terms.

HERBRAND'S THEOREM. 95 is valid if and only if some finite set of instances of
(-\<p)a is unsatisfiable (Herbrand, 1930).

PROOF. 93 is valid
if and only if 19? is unsatisfiable;
if and only if the set of instances of (-] p)s is unsatisfiable;
if and only if some finite set of instances is unsatisfiable

(since the instances are propositional formulae, and so compactness of propositional
logic applies).

This theorem gives a procedure for reducing a predicate formula <p to a propo-
sitional formula, admittedly it works only when <p is valid. Namely, construct "193s

and enumerate the Skolem terms and instances of 195s. Test each finite conjunction
of these instances for satisfiability. Termination will occur whenever <p is valid,
and can be regarded as a "proof" of <p.

https://doi.org/10.1017/S1446788700020164 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700020164

[9] Survey of mathematical logic 147

This is the essence of the so-called completeness theorem of Godel, which says
that there is a consistent formal system in which every valid formula of predicate
logic has a proof (Godel, 1930).

For our purposes, "consistent formal system" can be regarded as a mechanical
procedure which generates only valid formulae. The above procedure can obviously
be made sufficiently precise to fit this definition.

REMARKS. The Lowenheim-Skolem theorem (1915) was the first result to reveal
an inadequacy in the axiomatic method. Namely, axioms do not always completely
determine their intended subject matter. In particular, no axiom y can completely
characterize an uncountable set, since <p is also satisfiable in a countable domain.

On the other hand, it is the fact that we really only have to look at countable
models that makes the completeness theorem possible, for the compactness
theorem gives a reduction from the countable to the finite, and thus allows the
search for a proof to terminate.

3. Compactness and non-standard numbers

Our results so far have depended on only two ideas—compactness for propo-
sitional logic and the Skolem form of a predicate formula. In this section we show
how a number of Tesults may be established on the same basis.

These results are part of model theory, so called because it studies the connections
between formulas and their models (the interpretations which satisfy them). The
Lowenheim-Skolem theorem (1915) was the first result of model theory to be
discovered. We can now give its generalized form, due to Skolem.

GENERALIZED LOWENHEIM-SKOLEM THEOREM. IfS, is a satisfiable set of formulas,
then 2 has a countable model.

PROOF. It is easily seen that the language of predicate logic can be based on a
finite alphabet (using the subscript numerals as separate letters), therefore any
set of predicate formulas <p is countable.

Then the associated set of Skolem functions is also countable, and likewise the
set D' of Skolem terms generated by these Skolem functions.

But then each <pe 2 holds in D' because D' is closed under the Skolem functions
for <p, hence D' is a countable domain in which all members of 2 hold
simultaneously.

NOTE. This theorem means that even mathematical theories with infinitely many
axioms (such as Zermelo-Fraenkel set theory) have countable models. This seems
paradoxical, since the sentence "There exists an uncountable set" can be proved
in set theory. The explanation is that when "S is uncountable" holds in a model

https://doi.org/10.1017/S1446788700020164 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700020164

148 John Stillwell [10]

it merely means that there is no function in the model which maps S one-one onto
the natural numbers.

COMPACTNESS THEOREM. If 2 is a set of (predicate) formulas, each finite subset
of which has a model then 2 itself has a model.

PROOF. Convert each p in 2 to <ps and enumerate its instances pf.pf,... in the
domain of Skolem terms. Since the instances are propositional formulas, we can
get the theorem from compactness of propositional logic, provided we are able
to show that each finite subset of {?>f}9e&i=1,2,3,... is satisfiable.

But each finite subset mentions only finitely many <p's from 2, so in fact any
number of instances of their Skolem forms are simultaneously satisfiable, by
assumption that finite subsets of 2 are satisfiable.

NON-STANDARD INTEGERS

We can see from the above proof that predicate logic compactness depends
not only on propositional logic compactness but also on Skolem functions. Thanks
to the latter ingredient, some rather difficult results become quite easy conse-
quences of predicate logic compactness. A good example of this is the construction
of non-standard numbers.

Let 2 be any set of true formulas in the language of number theory, which for
convenience we will take to include the < relation, and numerals 0,1,2 Let
c be a new constant, and add to 2 the following infinite set of formulas:

c>0
c>\
c>2

The enlarged set, S', has the property that any finite subset is satisfiable, because
there will be a bound N to the n mentioned in those sentences "on" which occur,
so the given finite subset can be satisfied by taking c = N+l.

Then by compactness, 2 ' as a whole is satisfiable, and the model must include
an object c with infinitely many preceding objects 0,1,2,.... This model is called a
non-standard model for number theory, and c is called a non-standard number.

SKOLEM'S NON-STANDARD MODEL

The indirectness of the above argument makes it next to impossible to visualize
what the non-standard model looks like. Skolem gave an interesting direct con-
struction when he first proved this result in 1934, which at the same time clarifies
the role of Skolem functions in the proof.

Skolem for technical reasons considers the theory of positive integers, so that
0 is dropped. He converts each 99 in 2 to 95s, and also eliminates £, v, -| from the

https://doi.org/10.1017/S1446788700020164 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700020164

[11] Survey of mathematical logic 149

quantifier-free part, so that it becomes a pure equation. This is possible because of
the following equivalences:

-\a = b o (3x)(a+x = bva = b+x)

(this is why we do not want 0 in the system),

a = bvc — do ac+bd = bc + ad,

a = bZc = do a2+b* + c*+d2 = 2ab+2cd

(the latter equivalences come from multiplying out

(a-b)(c-d) = 0 and (a-bf + (c-df = 0
respectively, and rearranging so as to get all positive terms).

The Skolem functions, incidentally, can be explicitly defined since the y corre-
sponding to the x in a V x 3 y situation can be taken as the least such y. (In case
2 consists of all true sentences of the theory of 4- and x, the Skolem functions
are the so-called arithmetically definable functions.)

Now with the axioms in the form of equations, it is clear that they are satisfied
not only by numbers, but also by, functions, since if, say, F(ri) = G(ri) for all n
then also F(f(m)) = G(f(m)) for any function value/(m), and this is what it means
for F(f) = G(f) to hold.

We might jump to the conclusion that the set of functions constitute the non-
standard model, with the constant functions/= l , / = 2 , ... playing the role of
the standard numbers, and other functions, for example /(«) = n, being the non-
standard elements. However, we note that the equivalence

-\a = bo (3x)(a+x = bva = b+x)

is not true for functions, so we cannot carry the functions model back to our
original set of sentences 2.

The diflBculty is that functions are not comparable—we cannot in general say
that one function is less than another. Skolem's solution to this diflBculty, which
takes the place of a compactness argument, is to cut down the domain to a certain
infinite subset of the positive integers.

To begin with, we need a countable set f^f^,... of functions to satisfy the
equations. In fact the set of one-place arithmetically definable functions is such
a set, but we could start with any function and close under all the Skolem functions
derived from 2.

Now since only three relations >, <, = can hold between /x(n) and f2(ri), at
least one of them must hold infinitely often. Take the first which does so, and let
Dx be the set of n for which it holds. fx and/a are then comparable on the set Dv

To get comparability of /1?/2, •••,/fc+i we assume we have an infinite set Dk_1

on which fi,f2, ...,/& are comparable. Then there are only finitely many possible
order relations between/fc+1(«) and/x(n), ...,fk(n), so one of them must occur for

https://doi.org/10.1017/S1446788700020164 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700020164

150 John Stillwell [12]

infinitely many n in Dk_v Take the first which does so, and let Dk be the set of n
in Dk_1 for which it holds. Thus we have infinite sets

such that/1 (/2 , ...,/fc+i are comparable on Dk, for all k.
Now consider an infinite set D^ obtained as a sequence

a\ = least member of Dx,

dk+1 = least member of Dk+1 >dx,d%, ...,dk.

Then any ft,fj are comparable at all but a finite number of points in Dx. (In fact, for
all dk with k > max (/,_/) because all these dk are in Dma:s_Hj), where ft,fj are
comparable.)

Now if we take equivalence classes

[fii = U]f=fi a t aH DUt finitely many points of Dx},

we have finally comparable objects, since

[/a < m
or >
or =

fi(n) <Mn)
means > at all but finitely many points of D,

and we know that exactly one of these cases always holds.
These objects [/f] are the elements of Skolem's model. [1], [2], [3],... correspond

to the standard positive integers, while, for example, [f] for /(«) = n is a non-
standard integer, since [f] > [I], [f] > [2], \f] > (3],....

EXERCISE. Borel (1952) postulates a property Ac{x), "x is accessible" satisfying:
Ac(\), Ac(x) => Acffiix)) for each "definable" ft, and 3x~\ Ac(x). Show that the
non-standard elements of Skolem's model can be viewed as the "inaccessible"
numbers in this sense, if "definable" is interpreted as "arithmetically definable".

INFINITESIMALS

If we base a theory of rational and real numbers on number theory then this
theory will also have non-standard models. The reciprocal of a non-standard
integer > 1,2,3,... will be an "infinitesimal" <£,£, J,....

These infinitesimals behave much the same as Newton and Leibniz wanted them
to, and thus many classical calculus arguments can be given a rigorous basis
(although lacking the innocent simplicity of the originals).

https://doi.org/10.1017/S1446788700020164 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700020164

113] Survey of mathematical logic 151

EXERCISE. If elt e2 ore infinitesimals, show that ex + e2, and ex a, for any a<a
standard number, are also infinitesimal.

Definitions of limit and continuity take an especially appealing form, because it
turns out that "/(*)->/ as x->a" means that | JC—a| is infinitesimal => \f(x) — /[is
infinitesimal. Using the result of the above exercise one can then prove the well-
known theorems on sum and product of limits.

REMARKS. Skolem's model tells us roughly that if the standard integers corre-
spond to constant sequences then non-standard integers are sequences which -»-oo.
Infinitesimals therefore are sequences which -»0.

This makes it rather easy to see how they work, since we already accept that
real numbers are sequences (Cauchy sequences). Infinitesimals are simply null
sequences, and the facts in the exercise correspond to the well-known results
about sums and constant multiples of null sequences.

4. Turing machines
Around 1936 several attempts were made to capture the notion of "algorithm"

or "computation" by a precise definition. It turned out eventually that all the
proposed definitions were equivalent, and no algorithm known to the present day
fails to satisfy them, so that we now accept that the word "algorithm" has a
precise meaning.

Perhaps the most immediately convincing of the definitions proposed was
Turing's concept of a computing machine (Turing, 1936). The machines work on an
infinite tape divided into squares:

Each square can bear one symbol from a finite alphabet {D,^, •••,Sm}, which
depends on the machine given, and • denotes the blank square.

Only finitely many squares are initially marked, and the machine has a read/
write head which can scan one square at a time and whose starting position is the
leftmost marked square. Connected to the head is a control section which can
assume finitely many internal states qi,...,qn (starting always in state qj. The
machine performs a discrete sequence of atomic acts, each uniquely determined
by the current (qt, Sj} (state, scanned symbol) pair, and of the form either

(i) move one square to right, and enter new state qti or
(ii) move one square to left, and enter new state qfj or

(iii) replace St by Sk and enter new state qiy

https://doi.org/10.1017/S1446788700020164 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700020164

152 John Stillwell [14]

Turing machines can be conveniently represented by directed graphs with
components

for the three types of act just described. The fact that each <^, 5^) determines at
most one act means there is at most one arrow out of each node for each Sj in the
alphabet. If there is no Sj arrow out of qt this means that the machine halts when it
reaches the (qit £,•> situation.

Notice that once the graph is completed, the qt labels become redundant, since
a state is determined by its position in the graph. Therefore we need actually mark
the initial state only (say, with an X).

EXAMPLE 1. Machine which adds a 1 at the right-hand end of a block of l's.

I.R

(This machine will work no matter where it is started on the given block; however,
we make the convention of starting on the leftmost marked square, since in general
a specific starting point is necessary.)

EXAMPLE 2. Machine which duplicates a block of l's.
The method is to mark each successive 1 in the original block (replace 1 by 1')

adding a 1 to the copy block as each mark is made. We first sketch a flow chart of
the computation, then fill in the details of each box in the chart. (To follow these
details, it is important to remember that the starting point is the leftmost square
of the original block, hence the marked segment of the original is always on the
left.)

!f ther
origin

! is an unmarked 1 in the
I block, mark the leftmost

such 1

move right, leaving one square
blank, and add one 1 to copy

https://doi.org/10.1017/S1446788700020164 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700020164

[15] Survey of mathematical logic 153

Example 2 is virtually as general as one needs to consider in constructing Turing
machines, since it contains a loop which allows an operation ("add 1" in this case)
to be iterated. To carry out multiplication we iterate duplication as follows: given
blocks of length x,y produce a block of length xy by duplicating the y block x
times, putting markers on the x block to count the correct number of duplications.
The flow chart would be

If there is
block, ma

go

in unmarked 1 in
k the leftmost s

\

\

left to x block

the

\

e

if not

rase original
x, y blocks

duplicate
yb ock

and the machine can easily be completed along the lines of Example 2.
Continuing in this vein it is easy to see how to compute many functions of

positive integers, for example we get a block length xv by iterating multiplication.
We call a function f(xlt •••,xv) computable if there is a Turing machine Mf

which, when started on a tape with blocks of xx,x2, ...,xn ones respectively
(separated by single blank squares), eventually halts w i t h / ^ , ...,xn) ones on the
tape. Examples 1 and 2 verify that/(x) = x+1 and/(x) = 2.x are computable
functions.

EXERCISE. Construct machines which compute 2x,x\.

SOLUTION OF PROBLEMS BY ALGORITHM

By a "problem" P we mean one consisting of an infinite class of questions Q;
a solution is then a systematic, mechanical method or algorithm for correctly
answering each question in the class P. For an algorithm to be applicable to the Q,
each Q must be a string of symbols, or "word", in some fixed finite alphabet. If Q
has an "intrinsic" meaning apart from its symbolic form as a word, then the

https://doi.org/10.1017/S1446788700020164 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700020164

154 John Stillwell [16]

word must be a "reasonable equivalent" of Q, and not contain additional informa-
tion (such as the answer to Q\).

We then define P to be solvable if there is a Turing machine M, which, when
started on any Q eP, will eventually halt on 1 if the answer to Q is YES, and on •
if the answer to Q is NO.

(Obviously this method of signalling YES and NO by Turing machine is quite
arbitrary, but any other reasonable signals for YES and NO will be convertible by
Turing machines into the ones we have chosen.)

Just as Turing machines can compute familiar functions, so they can implement
familiar algorithms, for example the Euclidean algorithm for testing whether two
numbers are relatively prime. However, our objective is to find an unsolvable
problem.

STANDARD DESCRIPTION

Another way to describe Turing machines is by a list of quadruples, of the three
forms gt Sj Rqtj, qt SjLq^, qt SiSkqii to denote the three types of atomic act
(where there will be at most one quadruple for each pair (qt, S3-». For example,
the machine in Example 1 has two states, which we can call qx, q2, and its quadruples
are then ql 1 R qv ^ D 1 <72-

Without loss of generality we can assume that all Turing machine alphabet
symbols are chosen from D, 1, 1', 1", If we use q, q', q", ... to denote states
then any quadruple is a word on the alphabet {D, 1, ',q, R,L}. So also is a machine,
for we can simply write the quadruples of a given machine M end to end and still
have an unambiguous description of M. If, finally, we code into an agreed machine
alphabet as follows:

we get a word rAf 1 which we call the standard description of M.
The beauty of the standard description is that it can be presented to the machine

M itself, making a diagonal or self-referential construction possible.

THE HALTING PROBLEM

Consider the following class of questions.
QM: Does M applied to rMl eventually halt on • ?
Suppose there is a machine S which solves this problem. It is reasonable to

assume that S receives the question QM in the form of the word rAfi, since this

https://doi.org/10.1017/S1446788700020164 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700020164

[17] Survey of mathematical logic 155

contains all the necessary information. We quickly see that S then cannot correctly
answer Q8, for

(i) if S applied to r^l eventually stops on • , then Qs has answer YES, so S must
stop on 1.

(ii) if S applied to f£i never stops on D, then Qs has answer NO, so S must
stop on D.

Thus there is no machine S to solve this problem. We have in fact shown that
for any machine S which partially solves the problem—in the sense that S1 does not
always give answers, but all its answers are correct—then Qs is a specific question
that S fails to answer.

There is in fact a machine which will correctly answer all the questions whose
answer is YES. This is because there is a universal machine U which can simulate
any machine M, thus if M eventually halts U can see whether it has halted on •
or not. The unsolvable part of the problem is in tracking down the machines M
which do not halt. (The universal machine and the halting problem were first
discussed in Turing (1936), though not in exactly the above form.)

5. Undecidability and incompleteness

The fundamental problem for any mathematical theory is to decide whether a
given sentence of the theory is true or false, this problem is called the decision
problem. If no algorithm exists for the solution of this problem the theory is called
undecidable. It turns out that most interesting mathematical theories are undecidable
because the halting problem can be translated into them. We shall illustrate this
phenomenon in the case of predicate logic and number theory, by giving specific
translations of the questions QM into sentences of logic and number theory
respectively.

If the decision problem is unsolvable, we can still hope that a "semi-decision
procedure" exists which will give the answer YES for each true sentence of the
theory. In this case the theory is called complete. We have shown that predicate
logic is indeed complete by giving an algorithm which terminates for each valid
sentence. Traditional formal axiomatic systems can be viewed as attempts to find
a semi-decision procedure. An axiom system is called complete if all true sentences
can be deduced from the axioms by prescribed rules of inference. In this event, a
systematic search for a given sentence <p among the consequences of the axioms
will terminate just in case <p is true, so we have a semi-decision procedure.

Conversely, if a theory has no semi-decision procedure, that is, is incomplete in
the algorithmic sense, then any axiom system for it must be incomplete. We will
demonstrate incompleteness in the case of number theory (as a corollary of
undecidability) by showing that no Turing machine can correctly give output
YES for each true sentence of number theory.

https://doi.org/10.1017/S1446788700020164 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700020164

156 John-Stillwell [18]

Notice that incompleteness of (say) number theory means that for each axiom
system there is a true sentence of number theory which is not provable in the system.
This is called an undecidable sentence (relative to the given system). Unlike un-
decidability of the theory, undecidability of a single sentence is not absolute, since
we may find methods outside the system to establish that the sentence is true. This
will in fact happen in our number theory example; the point of incompleteness is
that there is no end to the new methods that must be invented.

REPRESENTATION OF TURING MACHINES BY WORD TRANSFORMATIONS

In order to transform the "M on fM 1 halting" problem into one easily translated
into logic and arithmetic we first construct a new representation of Turing machines.
The computation situation at a given instant is described by a word ("situation
word") which includes the marked portion of tape, the scanned square and the
current state qt. For example, we can describe the situation

by * 1 • 1 q3 1' • 1 *

where qz is inserted to the left of the scanned symbol, and *'s mark the ends of the
used portion of tape.

Successive atomic acts of the machine will then correspond to changes in the
situation word in the neighbourhood of the q symbol. It is easy to see that the
following transformations bring about the correct sequence of changes:

Type of quadruple

Qi Sj Sk qu

Qi Si RQu

Qi Sj Lqtj

Transformations

Qi Sj -*• qu Sk

Qi Sj Sk -*• Sj qtj Sk

q^ Sj* -*• Sj qij LI *

Sk Qi Sj -> q^j Sk SJ

* q^ Sj "*• * q^j _j Sj

(for each S*)

(for each Sk)

Notice that the q symbol always has a machine alphabet symbol on its right, and
the * in effect creates new blank squares when the q symbol approaches either end
of the word.

A word representing a halt-on- • situation is one containing qhu, where qhn
is not in the left-hand side of any transformation. To simplify such words we
introduce a new symbol O, which is created with the appearance of qhu in the

https://doi.org/10.1017/S1446788700020164 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700020164

[19] Survey of mathematical logic 157

word and then proceeds to eat up all other symbols. Namely, we add the trans-
formations

for each symbol S.

These transformations (including those specific for the machine M) we call the
M

M-calculus, and we write Wx- > W2 if W1 is convertible to W2 by a sequence of
transformations in the Af-calculus.

We now see that the question QM (Does M applied to fJl/1 eventually halt on
• ?) has the equivalent form

M

and therefore the unsolvability of the QM problem means there is no algorithm

for deciding * I'M! * > O.

The latter formulation of the problem is particularly suitable for translation
into both logic and number theory, since words can be represented by terms in
predicate logic and by numerals in number theory. We shall sketch the translation
into logic, then do the more difficult translation into number theory in detail.

UNDECIDABILITY OF PREDICATE LOGIC

Using q,q',q",... for states and • , 1,1', 1",... for machine symbols, all machine
calculi can be based on words from the 6-letter alphabet {O, \,',q,*,O}- We take
these letters as constants and form terms by a two-place function f(x,y) written
(xy) for simplicity. Terms are then just words with brackets in them, and we can
effectively nullify the brackets by an associative axion

= (x(yz)). . . . (1)

M
We can regard > as a two-place predicate symbol. The transformations of

M
the M-calculus, T > T*, are implemented via axioms which allow substitution
of T* for T wherever it occurs in a word, namely

Vx Vj (xT >xT*£Ty * T*yExTy >xT*y).

M
Let the conjunction of these axioms over all transformations T > T* in the
M-calculus be

• • • (2)3,

https://doi.org/10.1017/S1446788700020164 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700020164

158 John Stillwell [20]

Finally, the axiom

MM M
VxVyVz(x >y£.y > z => x >z) . . . (3)

allows deduction of relations which result from a sequence of substitutions.

M
It is clear that (1)£(2)M£(3) r> W1 > W2 is a valid formula if and only if

M
Wx > W2 is true, so in particular the formula <pM:

M
*O

is valid if and only if M on fJlfl eventually halts on • •
Now given a machine M we can construct the formula <pM, and assuming an

algorithm for logical validity, decide whether <pM is valid. This gives us an algorithm
for the M on rji/1 halting problem, which is impossible, so in fact an algorithm
for logical validity does not exist. In other words, predicate logic is undecidable
(Turing, 1936; Church, 1936).

EXERCISE (see Post, 1947). Construct an M-semigroup by replacing each trans-
formation T-+T* by an equation T= T*. Show that

M
* TMI * = O •*> * rjlfi * ,. o .

UNDEdDABILITY OF NUMBER THEORY

Again using the Af-calculus, we shall show that for each Turing machine M we
can construct a number theory formula tfiM which is true if and only if M on 'Ml
eventually halts on • . Since the words are over the 6-letter alphabet {n, 1, ',q, *, O},
it is natural to regard this alphabet as {1,2,3,4,5,6}, and let words be numerals
in base 7. Word transformations are then operations on numbers, and the relation

M
Wt > W% is a certain number theoretic relation.

The difficulty is that numerals (to any base) are not particularly easy to represent
in the language of 0, ' , + and •. A second problem is the representation of sequences
of substitutions. We are not able to introduce the transformation relation implicitly,
as in logic, so the expedient of axiom (3) above is not open to us.

The necessary relations for the discussion of numerals are constructed as
follows (notice that we are lucky to have a prime base, 7, for the third definition).
We use 1,2,3,... to abbreviate the terms 0',0",0",...

x<yo (3z)(iz= 0£,x+z = y).

x divides yo (3z)(-\z = 0£~|z = l£x.z = y).

y is a power ofloVx(x divides y^-1 divides x).

https://doi.org/10.1017/S1446788700020164 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700020164

[21] Survey of mathematical logic 159

These are used to define the concatenation relation, which we use for building words.

x^y = z o numeral for z = numeral for x followed by the numeral for y
o z = xp+y where p is the least power of 7 which exceeds y
o 3p (p is a power of 7£z = xp+yZy<p

£Vq (q<p£q a power of l=>q<y)).

By substituting for the relations previously defined we finally get concatenation ^
explicitly defined in terms o f ' , + , - .

M
Before representing > we have a separate relation Tv^{x,y) for one-step

transformation (resulting from a substitution) in the Af-calculus. It is simply the
conjunction of the formulas

M
over all transformations T >• T* in the M-calculus. (The words T, T* of course
now have /""1 signs between their letters.)

As we noted, there is a difficulty in the fact that the general transformation
relation, TrM(x,y), involves finite sequences of substitutions. However, since
words in the Af-calculus have no zeros, we can encode a sequence of substitutions
x-*x1->x2->-...->-xn->y by a single number

which is characterized by the following properties:
(i) x is the segment before the first 0.
(ii) y is the segment after the last 0.
(iii) If u, v are segments between successive zeros, then Tr^(u, v).
We can talk about segments between zeros using the following property,

definable using ^ :

noz(x) o x has no zeros in its base 7 numeral

md then TrM(x,y) can be defined by saying there is a z with properties (i), (ii)
ind (iii), namely

TiM(x,y) o (3z)(3p(z = x^0^p£.noz(x))£3q(z = q^O^yEnoz(>>))
£ VsVtVuVv(z = s^O^u^O^v^O^t
£ noz (M)£ noz (v)=>Trf(u, v))).

This finally gives a formula ifjM in the language of 0,', + , • which expresses

> O, namely Tr^(5

https://doi.org/10.1017/S1446788700020164 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700020164

160 John Stillwell [22]

As we argued in the case of predicate logic, an algorithm for deciding truth of,
formulas in number theory would yield one for the M on rAn halting problem, 5
hence no such algorithm exists—number theory is undecidable (essentially due to ̂
Godel, 1931).

INCOMPLETENESS

We define a formal system for some set E of sentences (given in some finite
alphabet) to be a Turing machine which, when given some a e S, eventually halts on
• only if a is true. The formal system is complete when the "only if" is an "if and
only if".

As we mentioned at the beginning of this section, conventional axiom systems
can be shown to fit this definition, and indeed the system for predicate logic appears
naturally in this form. The definition also has the technical advantage that to
prove incompleteness we only need consider how a machine behaves on sentences
of a particular form.

Now that we have found sentences >pM equivalent to " M on fAf1 eventually
halts on • " , this leaves us with practically nothing to do but repeat the argument
by which we established the unsolvability of the halting problem.

THEOREM. There is no complete formal system for number theory (Godel, 1931).

PROOF. Let S be a formal system for number theory. Thus if S is given i ifiM,
S eventually halts on • only if -| i/>M is true, that is, if M on fAfi never halts on D.

Now construct the machine Z = [£]-> IS where R is a machine which
converts fAfi to i ifiM. We see that Z on rMl eventually halts on Q only when M
on r M! never halts on • .

Putting M = Z, we see that Z on rz i never halts on D, otherwise there is a
contradiction. So the sentence -\ ifiz is true, but S does not "prove" it (since this
means halting on •) .

Thus S is incomplete, and -\ <\sz is a specific true sentence which S fails to prove.

REMARKS. In Godel's terminology, -\ iftz is a "sentence which asserts its own
unprovability" since

-\<fizo Z on rZl never halts on •
o S on ~]tf>z never halts on •
o S does not prove i ipz.

One can see that a sentence which says "I am not provable" cannot indeed
be provable without leading to contradiction. (Though being unprovable, it is
true.) The bulk of the celebrated paper by Godel (1931) is devoted to the con-
struction of such a sentence within formal number theory.

https://doi.org/10.1017/S1446788700020164 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700020164

r [23] Survey of mathematical logic 161

References

E. Borel (1952), Les Nombres Inaccessibles (Gauthier-Villars).
A. Church (1936), "A note on the Entscheidungsproblem", J. Symbolic Logic 1, 40-41.
J. Crossley and others (1952), What is Mathematical Logic? (Oxford University Press).
M. Davis (1965), The Undecidable (Raven Press).
K. Godel (1930), "Die Vollstandigkeit der Axiom des logischen Funktionenkalkuls", Monatsch.

Math. Phys. 37, 349-360.
K. Godel (1931), "Uber formal unentscheidbare Satze der Principia Mathematica und ver-

wandte Systeme I", Monatsh. Math. Phys. 38, 173-198.
J. Herbrand (1930), "Recherches sur la theorie de la demonstration", Travaux de la Societe des

Lettres de Varsovie, Classe III, sciences math, et phys., 33.
S. C. Kleene (1958), "Mathematical logic", Proc. Int. Cong. Math. 1958, 137-153.
L. Lowenheim (1915), "Ober Moglichkeiten im Relativkalkul", Math. Ann. 76, 447-470.
E. Post (1921), "Introduction to a general theory of elementary propositions", Amer. J. Math.

43, 163-185.
E. Post (1944), "Recursively enumerable sets of positive integers and their decision problems",

Bull. Amer. Math. Soc. 50, 284-316.
E. Post (1947), "Recursive unsolvability of a problem of Thue", / . Symb. Logic 12, 1-11.
T. Skolem (1955), Mathematical Interpretation of Formal Systems (North Holland).

jf R. Smullyan (1961), Theory of Formal Systems (Princeton University Press).
i A. Turing (1936), "On computable numbers with an application to the Entscheidungs-

V problem", Proc. Lond. Math. Soc. (2), 42, 230-265.

Monash University
Clayton 3168
Australia

https://doi.org/10.1017/S1446788700020164 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700020164

