$H\delta$ in the integrated light of galaxies: What are we actually measuring?

L. C. Prochaska¹, J. A. Rose¹ and R. P. Schiavon²

¹Department of Physics and Astronomy, University of North Carolina, Chapel Hill, NC 27510, USA, email: chaska@physics.unc.edu

²Department of Astronomy, University of Virginia, P.O. Box 3818, Charlottesville, VA 22903-0818, USA, email:ripisc@virginia.edu

Abstract. We present a cautionary study characterizing the influence of non-solar abundance ratios on H δ derived ages in the integrated light of early-type galaxies. We measure H δ using a variety of index measurements designed to assess contamination from CN molecular lines in and around the H δ feature. We propose that neighboring CN lines have a strong effect on continuum levels and the H δ feature itself, thereby leading to a difficulty in designing an accurate H δ index definition in populations with C andor N non-solar abundance ratios with population synthesis models that do not account for such variations.

Keywords. galaxies: abundances — galaxies: evolution — galaxies: stellar content

1. Background

(i) H δ is necessary to measure luminosity weighted mean ages in high redshift studies where H β is inaccessible. H δ is also important for breaking degeneracy between age and H β morphology effects and to distinguish multipopulation scenarios from single age populations (Leonardi & Rose (2003), Schiavon (2006)).

(ii) Massive early-type galaxies have different abundance patterns than solar neighborhood stars on which the models are based (Worthey *et al.* (1992)). The left side of Figure 1 shows a dip in the continuum of an early-type galaxy and spectrum in the CN region redward of H δ which is not replicated in the corresponding model.

2. Index Definitions

We define variations of Worthey & Ottaviani (1997) (WO97) $H\delta_A$ and $H\delta_F$ index definitions that both avoid and include the region of CN redward of $H\delta$. The new versions of indices use only one band-pass to define the continuum.

Figure 2 shows the synthetic spectrum of a CN strong red giant with WO97 H δ wide and narrow index band-passes overlaid. CN molecular lines are shown to fall into the red continuum sideband of H δ and the feature itself.

3. Results

In the right side of Figure 1 we show our primary result. $H\delta$, a primarily age sensitive index is plot against Fe4383, a primarily metallicity sensitive index, measured on data and Vazdekis (1999) models. The following results can be obtained from Figure 1 and a similar figure of H β versus Fe4383.

(i) We derive younger ages from $H\delta$ indices using blue-continuum-only indices and older ages when using the red-continuum-only indices.

197

(ii) Due to the degree of CN contamination in each bandpass, the original WO97 H δ indices give the closest match between data and models.

(iii) Ages derived from the ${\rm H}\beta$ feature are robust, regardless of chosen continuum bandpasses.

(iv) CN lines fall into the red continuum and the H δ feature itself, an obstacle for creating an accurate H δ index definition. Unaccounted for CN molecular lines will cause uncertainty in H δ derived ages when H δ is measured in old, metal-rich stellar populations with non-solar abundance ratios.

Figure 1. Left: The top panel shows an early-type galaxy spectrum plot with [Fe/H]=0.0, 10 Gyr model spectrum. The middle panel shows M67 plot with [Fe/H]=0.0, 3.98 Gyr model spectrum. The bottom panel is an M31 globular cluster plot with a [Fe/H]=0.2, 11.22 Gyr model spectrum. Right: H δ indices versus Fe4383 for early-type galaxies (blue circles), M67 (unfilled triangle), M31 globular clusters (skeletal triangles) and M32 (filled triangle). Model grid lines of constant age (dashed lines from top to bottom: 1.00,2.51,3.98,5.62,8.91,11.22,14.12,15.85) and metallicity (solid lines from left to right: [Fe/H]=-0.68,-0.38,0.0,+0.2) are overlaid. All models are from Vazdekis (1999).

Figure 2. The ratio spectrum is plotted for a CN-strong synthetic spectrum ([C/Fe = 0.2 and [N/Fe] $\bar{0}.8$) divided by a CN normal synthetic spectrum (scaled to [Fe/H] = 0.5 dex). The WO97 H δ wide (narrow) index bandpasses are noted with dashed (solid) lines. The same bandpasses are used in our index definition variations.

References

Worthey, G., & Ottaviani, D.L. 1997, ApJ 111, 377
Leonardi, A.J., & Rose, J.A. 2003, AJ 126, 1811
Prochaska, L.C., Rose, J.A., & Schiavon, R.P. 2007, AJ submitted
Schiavon, R.P. 2006, ApJS submitted
Worthey, G., Faber, S.M., & Gonzalez, J.J. 1992, ApJ 398, 69
Vazdekis, A. 1999, ApJ 513, 224