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A Note on the Weierstrass Preparation
Theorem in Quasianalytic Local Rings
Adam Parusiński and Jean-Philippe Rolin

Abstract. Consider quasianalytic local rings of germs of smooth functions closed under composition,
implicit equation, and monomial division. We show that if the Weierstrass Preparation Theorem holds
in such a ring, then all elements of it are germs of analytic functions.

1 Introduction and Main Results

Since the original work of Borel [5, 6], the notion of quasianalytic rings of infinitely
differentiable functions has been studied intensively (see for example the expositary
article on quasianalytic local rings by V. Thilliez [21]). Recall that a ring Cn of smooth
germs at the origin of Rn is called quasianalytic if the only element of Cn that admits
a zero Taylor expansion is the zero germ.

The early works of Denjoy [9] and Carleman [7] show a deep connection between
the growth of partial derivatives of C∞ germs at the origin and the quasianalyticity
property, leading to the notion of quasianalytic Denjoy–Carleman classes of functions.
The algebraic properties of such rings, namely their stability under several classical
operations, such as composition, differentiation, implicit function, is well under-
stood (see for example [16] and [18]).

These stability properties have allowed a study of quasianalytic classes from the
point of view of real analytic geometry, that is, the investigation of the properties
of subsets of the real spaces locally defined by equalities and inequalities satisfied
by elements of these rings. For example, it is shown in [3] how the resolution of
singularities extends to the quasianalytic framework.

However, two classical properties, namely Weierstrass division and Weierstrass
preparation, seem to cause trouble in the quasianalytic setting. For example it has
been proved by Childress [8] that quasianalytic Denjoy–Carleman classes might not
satisfy Weierstrass division. Since Weierstrass preparation is usually introduced as
a consequence of Weierstrass division, it is classically considered that Weierstrass
preparation should fail in a quasianalytic framework. So far, no explicit counterex-
ample has been given. Moreover, we do not know any example of a ring of smooth
functions for which the Weierstrass preparation theorem holds, but the Weierstrass
division fails.

We are interested here in what we call in the next section a quasianalytic system,
that is, a collection of quasianalytic rings of germs of smooth functions that contains
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the analytic germs and is closed under composition, partial differentiation and im-
plicit function. Such systems have been investigated in several works from the point
of view of real analytic geometry or o-minimality [3, 12, 19, 20]. It is worth noticing
that, in these papers, the possible failure of Weierstrass preparation leads to a study
mostly based on resolution of singularities.

In such a context, a nice result has been obtained by Elkhadiri and Sfouli in [15].
They prove, in a remarkably simple way, that if a quasianalytic system satisfies Weier-
strass division, then it coincides with the analytic system: all its germs are analytic.
The proof is based on the following idea. In order to prove that a given real germ f
is analytic at the origin of Rn, they prove that f extends to a holomorphic germ at
the origin of Cn. This extension is built by considering the complex formal extension
f̂ (x + i y) ∈ C[[x, y]], where f̂ is the Taylor expansion of f at the origin. The real
and imaginary parts of this series statisfy the Cauchy–Riemann equations. Moreover,
the Weierstrass division of f (x + t) by the polynomial t2 + y shows that these real
and imaginary parts are the Taylor expansions of two germs that belong to the initial
quasianalytic system. By quasianalyticity, these two germs also satisfy the Cauchy–
Riemann equations. They consequently provide the real and imaginary parts of a
holomorphic extension of f .

Our goal is to use Elkhadiri and Sfouli’s methods to prove that a quasianalytic
system in which Weierstrass preparation holds coincides with the analytic system.
This result apply in particular to the examples of quasianalytic systems mentioned
above. We still don’t know if any ring of a quasianalytic system strictly bigger than
the analytic one, besides the ring of one variable germs, is noetherian or not.

A similar property has been announced in [1] for quasianalytic Denjoy–Carleman
classes. More precisely, the statement made in [1] claims that if a Denjoy–Carleman
class contains strictly the analytic system, then Weierstrass preparation does not hold,
even if we allow the unit and the distinguished polynomial to be in any wider quasian-
alytic Denjoy–Carleman class. The approach there, pretty different from ours, leads
to a precise investigation of the following extension problem: does a function belong-
ing to a quasianalytic Denjoy–Carleman class defined on the positive real axis extend
to a function belonging to a wider Denjoy–Carleman class defined on the real axis?
The authors actually produce an explicit example of non-extendable function with
additional properties that permit contradicting Weierstrass preparation.

2 Notations and Main Result

Notation 2.1 For n ∈ N, we denote by En the ring of smooth germs at the origin of
Rn and by An ⊂ En the subring of analytic germs.

For every f ∈ En, we denote by f̂ ∈ R[[x1, . . . , xn]] its (infinite) Taylor expansion
at the origin.

Finally, we denote (x1, . . . , xn) by x and (x1, . . . , xn−1) by x ′.

Definition 2.2 Consider a collection C = {Cn, n ∈ N} of rings of germs of smooth
functions at the origin of Rn. We say that C is a quasianalytic system if the following
properties hold for all n ∈ N:
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(i) The algebra An is contained in Cn.
(ii) (Stability by composition) If f ∈ Cn and g1, . . . , gn ∈ Cm with g1(0) = · · · =

gn(0) = 0, then f (g1, . . . , gn) ∈ Cm.
(iii) (Stability by implicit equation, assuming n > 0) If f ∈ Cn satisfies f (0) = 0

and (∂ f /∂xn)(0) 6= 0, then there exists ϕ ∈ Cn−1 such that ϕ(0) = 0 and
f
(

x ′, ϕ(x ′)
)
= 0.

(iv) (Stability under monomial division) If f ∈ Cn satisfies f (x ′, 0) = 0, then there
exists g ∈ Cn such that f (x) = xng(x).

(v) (Quasianalyticity) For every n ∈ N, the Taylor expansion at the origin map
f 7→ f̂ is injective on Cn.

Remark 2.3 It can easily be seen that the above properties imply that the alge-
bras Cn are closed under partial differentiation (see [19, p. 423] for example).

Definition 2.4 A germ f ∈ En is of order d in the variable xn if f (0, xn) = xd
nu(xn),

where u(0) 6= 0 (that is, u is a unit of E1).

Definition 2.5 We say that a quasianalytic system C satisfies Weierstrass preparation
if, for all n ∈ N, the following statement (Wn) holds: every f ∈ Cn of order d in the
variable xn can be written

f = U (x)
(

xd
n + a1(x ′)xd−1

n + · · · + ad(x ′)
)
,

where U ∈ Cn, a1, . . . , ad ∈ Cn−1, U (0) 6= 0 and a1(0) = · · · = ad(0) = 0.

Our main result is the following:

Theorem If the quasianalytic system C = {Cn, n ∈ N} satisfies Weierstrass prepara-
tion, then it is contained in the analytic system: for all n ∈ N, Cn = An.

Remark 2.6 We will actually prove that the conclusion of the theorem is true
once W3 holds.

3 Proof of the Theorem

We consider in this section a quasianalytic system C that satisfies Weierstrass prepa-
ration.

In order to prove the theorem, it is enough to prove that C1 = A1. In fact, it
is noticed in [15] that the equality C1 = A1 implies Cn = An for all n ∈ N. The
argument is the following. If f ∈ Cn (and n > 1) then, for every ξ ∈ Sn−1, the germ
fξ : t 7→ f (tξ) belongs to C1. Hence, under the assumption C1 = A1, the germ fξ is
analytic. Thanks to a result of [4], this implies that f ∈ An.

Lemma Let f ∈ Cn such that f (0, xn) = x2
n + x3

n + h(xn), where h ∈ C1 has order
greater than 3. Then there exists f0, f1 ∈ Cn such that

f (x) = f0(x ′, x2
n) + xn f1(x ′, x2

n).
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Proof We introduce the germs

g0 : x 7→
(

f (x ′, xn) + f (x ′,−xn)
)
/2 and g1 : x 7→

(
f (x ′, xn)− f (x ′,−xn)

)
/2,

which both belong to Cn and satisfy f = g0 + g1. They are respectively even and odd
in the variable xn. Hence the exponents of xn in their Taylor expansions at the origin
are respectively even and odd.

The order of g0 in the variable xn is exactly 2, so is the order in xn of the
germ F : (x, t) 7→ g0(x) − t , which belongs to Cn+1. Since the system C satisfies
Weierstrass preparation, there exist ϕ1, ϕ2 ∈ Cn and a unit U ∈ Cn+1 such that
ϕ1(0) = ϕ2(0) = 0 and

F(x, t) =
(

x2
n + ϕ1(x ′, t)xn + ϕ0(x ′, t)

)
·U (x, t).

We claim that ϕ1 = 0. In fact, considering the Taylor expansions, we have

F̂(x, t) =
(

x2
n + ϕ̂1(x ′, t)xn + ϕ̂0(x ′, t)

)
· Û (x, t).

Now it stems from the classical proof of the Weierstrass Preparation Theorem for
formal series that the support of x2

n + ϕ̂1(x ′, t)xn + ϕ̂0(x ′, t) is contained in the sub-
semigroup of Nn+1 generated by the support of F̂. Hence this support contains only
even powers of the variable xn, and ϕ̂1 = 0. Since the system C is quasianalytic (see
Definition 2.2 (v)), ϕ1 = 0.

Notice that the order of the germ (x ′, z, t) 7→ z + ϕ0(x ′, t) in the variable t is 1.
Since the system C is closed under implicit equation (see Definition 2.2 (iii)), there
exists a germ f0 ∈ Cn such that

z + ϕ0(x ′, t) = 0⇐⇒ t = f0(x ′, z).

We deduce that

t = g0(x)⇐⇒ F(x, t) = 0⇐⇒ x2
n + ϕ0(x ′, t) = 0⇐⇒ t = f0(x ′, x2

n),

that is, g0(x) = f0(x ′, x2
n).

In the same way, we notice that the order of g1 in the variable xn is exactly 3.
Moreover, g1(x ′, 0) = 0. By stability under monomial division (see Definition 2.2
(iv)) there exists ḡ1 ∈ Cn such that g1(x) = xnḡ1(x). The germ ḡ1 is even in the
variable xn and its order in this variable is exactly 2.

Therefore there exists a germ f1 ∈ Cn such that ḡ1(x) = f1(x ′, x2
n), and the lemma

is proved.

Remark It is well known that, for every f ∈ En, there exist f0 and f1 in En such that
f (x) = f0(x2) + x f1(x2) (see, for example, [17, p. 12]). But the classical proof, whose
first step consists in transforming f into a flat germ, cannot work in a quasianalytic
system.
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Proof of the Theorem Consider a germ h ∈ C1. Up to adding a polynomial, we may
suppose that h(x1) = x2

1 + x3
1 + `(x1), where the order of ` in the variable x1 is greater

than 3. We define the germ f ∈ C2 by f : (x1, x2) 7→ h(x1 + x2). According to the
lemma, there exist two germs, f0 and f1, in C2 such that

f : (x1, x2) 7−→ f0(x1, x
2
2) + x2 f1(x1, x

2
2).

We introduce the complex germ H defined by

H : z = x1 + ix2 ∈ C 7−→ f0(x1,−x2
2) + ix2 f1(x1,−x2

2).

We see that H(x1, 0) = f (x1, 0) = h(x1). Hence the theorem is proved once we
have proved that the germ H is holomorphic, that is, that its real and imaginary parts
satisfy the Cauchy–Riemann equations.

Consider the Taylor expansion ĥ(x1) =
∑

n≥0 hnxn
1 ∈ R[[x1]] of the germ h. The

real and imaginary parts of the formal series Ĥ(x1 + ix2) ∈ C[[x1, x2]] defined by

Ĥ(x1 + ix2) =
∑
n≥0

hn(x1 + ix2)n

are the series f̂0(x1,−x2
2) and x2 f̂1(x1,−x2

2). These series satisfy the Cauchy–Riemann
equations. By quasianalyticity, the germs f0(x1,−x2

2) and x2 f1(x1, x2
2) satisfy the same

equations.
We deduce that the complex germ H is holomorphic, and thus the germ h is ana-

lytic.

Remark 3.1 In the proof of the theorem, the lemma is applied to the germ f , which
belongs to C2. Hence the single hypothesis W3 is actually required.

4 Corollaries

Well-behaved Quasianalytic Systems. We say that a quasianalytic system C =
{Cn, n ∈ N} is noetherian if all the rings Cn are noetherian. To our knowledge the
problem of noetherianity of quasianalytic systems is still open. At the end of [8],
Childress conjectures that a quasianalytic system is noetherian if and only if it satisfies
Weierstrass division. By Elkhadiri and Sfouli [15], Weierstrass division does not hold
in quasianalytic systems that extend strictly the analytic system. Hence the resolu-
tion of Childress’ conjecture would ensure that such quasianalytic systems cannot be
noetherian.

Elkhadiri proves in [13] that Childress’ conjecture is true for well-behaved quasi-
analytic systems. This result could lead to the research of well-behaved, hence non-
noetherian, quasianalytic systems. However, it follows easily from the proof of our
main result that the only well-behaved quasianalytic system is the analytic system.

Definition A quasianalytic system C is well-behaved if, for all n, d ∈ N \ {0}, ev-
ery formal power series f̂ ∈ R[[x1, . . . , xn]] such that one of f̂ (x1x2, x2, . . . , xn) and
f̂ (xd

1 , x2, . . . , xn) is the Taylor expansion of a germ in Cn is itself the Taylor expansion
a germ in Cn.
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The lemma in the previous section holds in a well-behaved quasianalytic system C.
Indeed, let f ∈ Cn. We may write f as the sum f = g0 + g1 of two elements of Cn,
even and odd respectively in the variable xn. The Taylor series of g0 is f̂0(x ′, x2

n) for
some power series f̂0 ∈ R[[x ′, xn]]. If C is well behaved, the power series f̂0 is the
Taylor expansion of a f0 ∈ Cn. By quasianalyticity, g0(x) = f0(x ′, x2

n). Similarly
g1(x) = xn f1(x ′, x2

n) for a f1 ∈ Cn. We complete the proof as in the previous section.

Weierstrass Preparation for Definable Analytic Germs. Note that the proofs of
the previous section hold as well for quasianalytic systems that do not necessarily
contain the analytic system. (We replace Definition 2.2 (i) by asking that Cn contains
the polynomial germs.) If C is a subsystem of an analytic system that satisfies Weier-
strass preparation, our method shows that every germ f ∈ C1 admits a holomorphic
extension F(x1 + ix2) = f0(x1, x2) + i f1(x1, x2), f (x1) = F(x1), where f0 and f1 belong
to C2.

Such systems appear in the framework of o-minimal structures (see, for example,
[11] for the basic definitions). Consider an o-minimal expansion S of the real field.
If f is a function defined on an open neighborhood of 0 ∈ Rn and definable in S, its
germ at the origin is called a definable germ. For every n ∈ N, let Cn be the ring of the
analytic definable germs at 0 ∈ Rn. The collection C = {Cn, n ∈ N} is obviously a
quasianalytic system. The possible failure of Weierstrass division in such a system is
a question asked by van den Dries in [10].

Elkhadiri and Sfouli address this question in [14]. They prove that the system C

associated to the structure Re = (R, exp |[0,1]) does not satisfy Weierstrass division
(here, the restricted exponential exp|[0,1] is the function which coincides with the ex-
ponential function on the interval [0, 1] and is extended by 0 on R \ [0, 1]).

We claim that this system does not satisfy Weierstrass preparation either. Otherwise,
our main result would imply that the real and imaginary parts of the germ at 0 ∈ C
of the complex exponential function would be definable in Re. This would contradict
a result of Bianconi [2], which states that the restriction of the sine function to any
interval is not definable in Re.
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[5] E. Borel, Sur la généralisation du prolongement analytique. C. R. Acad. Sci. 130(1900), 1115–1118.
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