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We focus on Chen’s theorem, proved in 1966 by Chen [5, 6]. We obtain the first
completely explicit version of Chen’s theorem and, in doing so, improve many
mathematical tools that are needed for the task. We prove the following result.

THEOREM 1. All even numbers bigger than exp(36) can be written as the sum of a
prime and another integer that is the product of at most two primes.

Here, it is interesting to note that while a lot of effort was put into making
Vinogradov’s proof of Goldbach’s weak conjecture completely explicit, not much work
was put into making Chen’s theorem explicit, while arguably this result is an even
better approximation of Goldbach’s conjecture. The only attempt was made by Yamada
[14], but some mistakes can be found in the proof. (See [14, (87) and (104)], where a
log term appears to be missing. Also, no proof is given of the explicit version of the
linear sieve that is used and this version is inconsistent with the versions in [11, 12]).
We also show that the following result follows readily from Theorem 1.

THEOREM 2. All even numbers bigger than 2 can be written as the sum of a prime
and the product of at most exp(33) primes.

For the proof of Theorem 1, we draw inspiration from the work by Nathanson [12]
and Yamada [14]. We will now illustrate the most salient steps and results employed to
obtain Theorem 1.

The proof of Chen’s theorem is based on the linear sieve, proved by Jurkat and
Richert [11] and Iwaniec [9], who were inspired by the work of Rosser [10]. We base
our work on another version obtained by Nathanson in [12] from unpublished notes
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by Iwaniec. Taking S(A, P(z)), a certain set of integers, sieved using P(z), the product
of certain primes, we find that for fixed D ∈ R+ and s = log D/log z,

S(A, P(z)) < (F(s) + oK(s))X + RQ,

whenever s ≥ 1, and if s ≥ 2, we have a lower bound

S(A, P(z)) > ( f (s) − oK(s))X − RQ.

Here, X and RQ are two specific sums and F(s) and f (s) two well-known functions,
which are optimal. We can also note that it is simple to effectively bound the X term.

To obtain an explicit version of Chen’s theorem, we need an explicit version of the
term oK(s). This was first obtained by Nathanson [12, Theorem 9.8]. He proved that
we can take oK(s) = (K − 1)e14−s. To optimise the lower bound on N in Theorem 1, we
need oK(s) to be as small as possible. We obtain this by using a more computational
approach, compared with Nathanson’s analytic one, and we thus reduce the term by a
factor of 1000 (see [4]).

We are now left with bounding the error term RQ that is related to the prime
number theorem for primes in arithmetic progressions (PNTPAP). To bound this term
efficiently, we focus on improving the version of the PNTPAP for medium-sized x,
and isolate the contribution of the possible Siegel zero, given by Yamada [13]. We
obtain this result by proving an explicit version of the result by Goldston [7], to obtain
a log x/ log log x saving. We also improve the Bombieri–Vinogradov style theorem for
nonexceptional moduli [13].

It remains to obtain a good explicit bound on the Siegel zero. To do so, we focus on
improving the bound proven by Bennett et al. [1]. First we prove a general result that
allows us to remove one of the two terms that appeared, in the previous results, in the
upper bound of L′(σ, χ) (see [2]). We then introduce a different technique, following
from a paper of Hua [8] on the average of Dirichlet characters, and compute better
lower bounds for L(1, χ) to further improve the result for even characters (see [3]). As
a consequence, we obtain

β0 ≤ 1 − 100
√

q log2 q
. (1)

The proof of Theorem 1 thus depends on the possible existence of an exceptional
zero. We use some ideas from Yamada [13] to handle this. Letting k0 be the modulus
of the exceptional zero, we use two approaches that distinguish its size.

(1) If k0 is ‘big’, we can bound the error term RQ using (1) as, in this case, we have
100/

√
q log2 q ‘small’.

(2) If k0 is ‘small’, we want to be sure that k0 does not appear in the sum in RQ and
this depends on the number of primes in P(z). Here it is fundamental to use an
inclusion–exclusion principle.
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