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MULTIPLE INTEGRATION IS INTRACTABLE
BUT NOT HOPELESS

IAN H. SLOAN1

(Received 16 March 1998)

1. Introduction

Multiple integrals in ten or twenty variables are often needed by atomic, molecular and
nuclear physicists, because of the large number of degrees of freedom in the quantum
systems with which they must deal. In statistics too there is often a need to evaluate
integrals with many degrees of freedom. It is in mathematical finance, however, that
the most striking examples are seen, with claims of integrals being evaluated during
recent years with many hundreds of variables.

The aim of this paper is to explore in a special context some of the mathematical
and computational issues that can arise when the dimensionality of multiple integrals
is large. As a starting point, we suppose that the integral has already been transformed
to one over the s-dimensional unit cube,

If = [ f{x\...,xs)dxx...dxs=l f(x)dx.
J[O,iy J[o,iy

(1)

Moreover, we suppose that suitable transformations have been carried out so that the
integrand / has a continuous 1-periodic extension with respect to each component xk,
and has Fourier coefficients satisfying, for some a > 1,

\f{h)\ < \ h € Is, (2)

where

f(h)= [ f {x)e-2"ihx dx
J[o,iy
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and

-h\\h\ i f | / t | > l ,

[ 1 if h = 0.

This is the most commonly used setting for the study of number-theoretic and lattice
rules; for a discussion, see [4].

The integral in (1) is to be approximated by an N -point quadrature sum

with

Xje[0,l)s, WjeK, j = l , . . . , N .

2. A pessimistic result

In recent joint work with H. Wozniakowski, see [5], a remarkably pessimistic result
has been established for the 'worst-case' error as s —• oo, in the setting indicated
above. Roughly speaking, this result says that in order to guarantee an error smaller
than the integral itself, one needs to take at least 2s quadrature points! Because the
rate of growth in the cost is greater than any polynomial in s, the quadrature problem
in this setting is said to be 'intractable'.

To state the result more precisely, we need some notation. First, for given a > 1
let Ea denote the set of functions / whose Fourier coefficients satisfy the bound (2).
For a particular quadrature rule Q, let Pa(Q) denote the worst-case error for/ e Ea,

Pa(Q):=sup{\Qf -If\:f e E a ) .

By minimising Pa(Q) over all N-point quadrature rules we obtain

e(N,s) : = in f{P a (0 : wu . . . , wN € K, * , , . . . ,xN e [0, I)1},

which we may think of as the worst-case error for the best A'-point quadrature rule.

THEOREM 1 ([5]). If N < 2s then for any choice of N -point quadrature rule Q,

e(N, s) = e(0, s) = 1.
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Here e(0, s) denotes the worst-case error with no quadrature points, that is,
e(0, s) = sup | / / | = sup | / (0) | = 1 for / € Ea. The theorem may be inter-
preted as saying, in effect, that for N < 2s the safest course is to take all of the weights
in the N-point quadrature rule to be zero!

The proof of the theorem proceeds by construction, as follows. Suppose N < 2s

and assume that an N-point quadrature rule Q is given. Then we show that a function
/ * e Ea can be found such that lf* — l and yet Qf * = 0. This is enough to prove
the results, since from this follows Pa(Q) > \Qf* — If*\ = 1; and since this holds
for arbitrary Q, it follows that e(N, s) > 1. Of course e(N, s) < e(0, s) = 1 is trivial,
so we will have proved e{N, s) = e(0, s) = 1.

We seek our factor / * in the form of a trigonometric polynomial,

Aefl,

where

Bs = [(hu... , hs) : hk = 0 or I, k = 1, ... , s),

with 9 a polynomial yet to be chosen, and the coefficients ah, not all zero, chosen so
that

ihx> = 0 , j = l , . . . , N : ( 3 )
heB,

The mathematical heart of the argument is just the elementary fact that this homoge-
neous linear system has a smaller number of equations (namely N) than unknowns
(namely 2s), and therefore certainly has a non-trivial solution. Note that by satisfying
(3) we ensure/*(;c,) = 0 for j = 1 , . . . , N, so already we ensure Qf * — 0.

To complete the argument we choose h* e Bs to maximise \ah\, and at the same
time normalise the solution of the homogeneous linear system, so that for all h e Bs

\ah\ < \ah.\, ah. = 1.

Then 9 is defined by 9(x) = e-2"ih'x, implying

heB,

and hence If* = ah. = l. It is clear that / * e Ea, because \ah\ < 1 and the
components of h — h* are all 1,0 or —1, thus the proof is complete.
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3. Lattice rules with multiples of 2s points

We have just seen that, in this particular setting at least, rules with fewer than 2s

points are destined to fail, in the worst-case sense. It is therefore interesting that
once one reaches that magic number of 2s quadrature points the situation changes
completely, in that there is a particular rule, namely the product-rectangle rule R2

(which is the equal-weight rule obtained by taking a tensor product of 2-point (left)
rectangle rules), whose worst-case error for suitable integrals can be much less than 1.
Indeed, it can easily be shown, by the methods indicated below, that

where £(a) is the Riemann zeta function, thus Pa(R2) converges to zero as a -> oo.
Yet for every value of a and any rule Q we have, for N < 2s,

Pa(Q)>e(N,s)>l.

The rectangle rule R2 is one of the simplest examples of what are known as 'lattice
rules'. It is useful to introduce lattice rules in this context, because there are some
lattice rules that do possess reasonable properties for N > 2s.

By definition, a lattice rule is an equal-weight quadrature rule

where x0,... , XJV-I are all the points of an 'integration lattice' that lie in [0, l)s. An
integration lattice in K1 is a discrete subset of Ks that is closed under addition and
subtraction (and so is a group under addition) and that contains 2s as a subset.

For a full discussion of lattice rules, see [4]. For present purposes there are just a
few points we need to emphasize. The first is that for the lattice rule Q corresponding
to the integration lattice L there is a simple expression for the worst-case error in Ea,
namely

where L x is the so-called 'dual lattice' of L, defined by

^ = {h € Is:x • h e IVx € L],

and where the prime indicates that the point h = 0 is to be omitted from the sum.
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Next, we want to define the classical kind of lattice rule, namely the 'number-
theoretic' rules (nowadays called 'lattice rules of rank 1'), which are rules of the
form

where z is a (carefully chosen) point in Is.
There exists an extensive theory of rank-1 lattice rules. One of the earliest results,

due to Bahvalov in 1959 [1], says that if N is prime then there exists an N-point rank-1
lattice rule SN such that

with the 'constant' C(s, a) not specified. A recent result, due to [3], which gives more
detailed information while preserving the order of convergence with respect to A7, is

as N -> oo.
Finally, we want to define rules which are '2s copies of rank-1 rules'. Explicitly,

the unique rule which is a 2s copy of the m-point rank-1 rule defined in (4) is

*,=(> *,=0j=0

This too is a lattice rule. Moreover it is a rule which has better behaviour than a
classical rank-1 rule, at least on the average, according to the following theorem
of [2].

THEOREM 2. Let m be prime, and let N be a prime number closest to 2sm. Then

mean Pn

mean

'a(CVm) < / 2 + £(q)/2°

PASN) ~ \ l+2£ (a )

Here mean Pa(SN) is the mean of Pa(SN) taken over all z-vectors in (4) (with m
replaced by N) whose components satisfy

N N
- y < zk < —, zk^0, for£ = l s,
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while mean Pa(C2>m) is the mean of Po(C2.m) taken over all z-vectors in (5) with
components satisfying

-— < zk<—, zk^0, for k = 1, ... , s.

Lattice rules which are 2s copies of rank-1 lattice rules also have practical virtues:
firstly, good examples are relatively easy to find; secondly, they can be implemented
in an efficient manner; and thirdly, an a posteriori error estimate can be obtained at the
same time as the estimate of the integral at essentially no cost. For all these aspects
of copy rules the reader is referred to [4].
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