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A UNIMODAL PROPERTY OF PURELY IMAGINARY ZEROS 
OF BESSEL AND RELATED FUNCTIONS 

C. G. KOKOLOGIANNAKI, M. E. MULDOON AND P. D. SIAFARIKAS 

ABSTRACT. We show, among other things, that, for n = 0,1, the negative of the 
square of a purely imaginary zero of JJ?\x) is unimodal on (n — 2, n — 1). One of 
the important tools in the proof is the Mittag-Leffler partial fractions expansion of 
Jv+i(z)/Mz). 

1. Introduction. For n = 0,1,2 the smallest positive zero of J^\x) decreases to 0 
as v decreases to n — 1. For n = 0,1, this is a classical result [14, Chapter 15], while 
for n = 2 it is very recent; see [10], [12], [13], [15]. As v decreases below n — 1 the 
zero becomes purely imaginary first moving away from the origin and then returning 
to the origin (along the imaginary axis) as v approaches n — 2. This behaviour was 
observed numerically by Kerimov and Skorokhodov ([8] and [9]). It can be described 
by saying that the negative of the square of such a purely imaginary zero is unimodal on 
(n — 2, n — 1). Curiously, this was proved analytically [4] first for the case n = 2, i.e., 
for a purely imaginary zero ofJ"(x) on (0,1). Our main purpose here is to deal with the 
cases n = 0,1, i.e., to prove the corresponding properties of the purely imaginary zeros 
of Ju(x) and Jfa) on (—2, —1) and (—1,0) respectively. We also give a slightly simpler 
version of the proof in the case n = 2. The case n = 0 is illustrated in Figure 1. 

We will have need of the Bessel differential equation 

(1.1) z2J'J(z) + zfu(z) + (z2 - v2)Jv(z) = 0, 

the recurrence relations [14, p. 45] 

(1.2) Jv-i(z) + Jv+i(z) = —Uz), 
z 

and 

(1.3) zlUz)-"Uz) = -zJ»i(z), 

as well as the Mittag-Leffler type expansion [14, p. 498] 

(14) ^l=fA. 
JvKZ) n=\Jvn Z 
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where {±jun} is the sequence of zeros of the entire function z~vJv(z)- We note that these 
zeros are all real if v > — 1, and according to the conventional notation [14, p. 497], 

0<M <M < 
We use the method of the last part of [4], i.e., we prove the unimodality of a function 

by showing that it is concave down at every turning point, hence there can be only one 
turning point. 

2. A general function. All of the functions which we deal with can be subsumed 
in the general formula 

Mz) = (cz2 +f(y))jv(z) - azJv+\(z) + bzJ„-i(z). 

The most important special cases are: 

(i) Mz) = zJ„-i(z), got by taking b=l,a = c = f(v) = 0; 
(ii) Mz) = zJ'u(z), got by taking a=l,b = c = 0,/(i/) = v and using (1.3); 

(iii) Mz) = aJu(z) + zJ'v{z\ got by taking a= l,b = c = 0,/(i/) = a + v\ 
(iv) Mz) = —z2J"(z), got by taking a = c = 1, b = 0,/(i/) = v — v2 and using (1.1) and 

(1.3). 

THEOREM 2.1. Let v > — 1 and let ip be a purely imaginary zero ofMz)- Then 

do2 

(2.1) \(y)-f- = n(y), 
dv 

where 

(2.2) X(y) = -2 2(b + a)j: 2 2 2 , 
P n=\ W,« + P ) 

or 
oo T'2 

(2.3) X(y) = - c + 2(b + a) £ , / " » " , 
n=l 0u,n + P2)2 

and 

(2.4) ^ ) = 4(fc + a)p2E- /;-A/
2t "/(")-2*. 

For f/îose values ofv for which dp2 /dv = 0, we have 

(2.5) \(v)-^=p2
fH(v), 

where 

(2.6) 

/zi(i/) = 4(è + a) 
Mnd2jy„/di/2 °° {dim/dv)2

 A °S, (jmdjm/dv)2 

f f2 . n 2 \ 2 + Z_y / o 2 \ 2 ^ /;2 . n 2 \ 3 
U=l Vi/,n + P J n=l W,n + P i n=l Vi/,n + P ) 

-f»IP2 
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PROOF. The equation 

Mz) = (cz2 +m)Uz) - azMxiz) + bzJ„-i(z) = 0 

can be put in the form 

CZ +f(v) - az-r-— + bz—r-— = 0, 

Mz) Mz) 
except at the zeros of Mz). 

Using (1.2) and (1.4) this becomes 

OO ~2 

cz2 +/(!/) - 2(b + a)J^ -^—2 + 2bis = 0. 
k=\ Juk ~ z 

For z = jp we get 

(2.7) c -2 =2{b+a)Zp—f-
P k=\ Juk

 + P 
Differentiating this equation with respect to v and multiplying by p2, we get (2.1), with 
\(v) given by (2.2) and ^(u) by (2.4). Then, using (2.7), we can express \{y) in the form 
(2.3). Differentiating (2.1) and using dp2/du = 0, we get (2.5), where fi\(i/) is given by 
(2.6). 

In order to justify the term-by-term differentiation we have to verify that the differ
entiated series or, equivalently, all the infinite series in (2.3), (2.4) and (2.6), converge 
uniformly in z/, in any closed subinterval [z/o, i/\] of (— 1, oo). In the case of the series in 
(2.3), (2.4) and the second and third series in (2.6), this is a consequence of the inequality 
[11, p. 471] 

(2.8) ( l / + l ) ^ < ^ 

and the convergence of 

LjJvk -
k=\ 

To deal with the first infinite series in (2.6), we use the representation [1, p. 87] 

(2.9) f = 2J°° K0(2j sinh t)e~2l/tI{v, t) dt 

where 
(2.10) /(i/, t) = 2vf tanh t +f tanh21 - 2jt. 

Here we are using the notation y =j1/jc and the primes denote differentiation with respect 
to v. For the uniform convergence of the first infinite series in (2.6), it is sufficient to 
show that 

(2.11) ~J^<Fiy)jvk' v*^v^v^ 
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where F(y) is bounded on z/o < v < v\. Now, from (2.10),/' is bounded by 

(2.12) /(2|i/ | + l)2j™K0(2jsmht)e-2utdt + 4jj™K0(2jsmht)e-2uhdt. 

Using [14, p. 508], 

(2.13) / = Ijj^KoVJsmhfy-^dt, 

and (2.8), we find that the first term here is bounded by (2|i/| + l)(z/ + l)~2j. Using 
jvk > v + 1» sinhr > £ and the decreasing character of Ko(t) as a function of t, t > 0, we 
find that the second term is bounded by 

4j f° K0(2(i/ + l)t)e~2uttdt. 

Thus (2.11) holds and this completes the verification of the validity of the differentiation 
and the proof of Theorem 2.1. 

3. Zeros of Jv(z\ We first deal with the case/^z) = zJu-\(z), got by taking b = 1, 
a = c =f(v) = 0. It is well known [14, p. 483] that, for — 2 < v < — 1, Ju(z) has a pair 
of purely imaginary zeros. 

THEOREM 3.1. Let ±ip be the purely imaginary zeros ofJu(z) for — 2 < v < — 1. 
Then p2 is unimodal on (—2, —1). 

PROOF. We will actually work with the zeros of Jv-\ (z) on (— 1,0). From §2, we have 
(2.1) with 

oo T'2 

(3-D A(i/) = 2 £ '^" 
£1 W,„ + P2)2 

and 
/-} <->\ / \ /i 2 v-« Jv,nuJvn u u ~ 

(3.2) /xW = 4p £ - ^ - ^ - - 2 . 2-, /o . n2\2 

CASE (i): —l<v< —0.8. In this range we will show that dp2/du > 0, so that p2 

is increasing. Since X(u) > 0, we need to show that p,(v) > 0 for this range of values of 
v. We will need the following results [5]: 

™ • d*™^A 8(1/+ l)(i/+ 3) . 32(i/ + l)2(i/ + 2)2 

(3.3) Ji/n-T- > 4 ^ + r* , I / > - 1 ; 
^ 7™ J™ 

(3.4) 4(i/+ 1) <ful <4(i/ + l)(i/ + 2), i/ > - 1 . 

We also need inequalities for ]2
vX in the case —2 < z/ < — 1, when it is negative. Some 

simple bounds in this case are [7] 

(3.5) 2(i/ + l)(i/ + 3) <j2
ul < 4(i/ + l)(i/ + 2), - 2 < v < - 1 . 

or, in terms of our present notation, 

(3.6) - Aviy + 1 )< p2 < -2v(v + 2), - 1 < v < 0. 
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We have 

(3.7) 

Clearly 

/!(!/) = -2+ V £ 
j^ndjun/du 

Ju,n 
1 + -

1 + 
J un 

- 1 
> 1 + ;2 

> 1 - - ^ - > 1 + 
•A/i 

2v(y + 2) 
/2 > 1 + 

viy + 2) 
2(i/+1)' 

where we have used the upper bound in (3.6) and the lower bound in (3.4). On the other 
hand, from (3.3), 

£ i v n d ^ J d v > 4<x<?> - 8(1, + \Xv + 3)0?) + 32(1, + l)2(i, + 2)2<#>. 

Here we have used the notation 
Jn) _ V :-2n 
au ~ l^Juk 

k=\ 

and the closed form expressions for these sums in [14, p. 502]. This gives 

^jundjun/dl/ 51/+11 

ntt fun 8(i/+l)2(i/ + 3)(i/ + 4)* 

Using the above bounds and the lower bound for p2 in (3.6), we get from (3.7) 

_ i/(i/2+4v + 2)2(5i/+ll) 
M ( l / ) > 2 ( I /+1 ) 3 ( I / + 3)(I/ + 4 ) ' 

and it is easy to check that this is positive for —1 < v < —0.8. 

CASE (ii): —0.8 < v < 0. Here we show that cfp2/di/2 is negative at the turning 
points of p2. In the present case (2.6) can be written 

(3.8) /xi(i/)=4 
^jund2junldv2 °° (djn /dv)2 " (jvnd]vn /dv)2 

*-* (& -I- n2^2 + ^ fj2 . n 2 \ 2 ^ f 7*2 .4- n2^3 
TI=1 \lun+ P ) n=l \lun+ P ) n=l \Jun + P ) 

Now the first term on the right here is negative [1] and the sum of the two remaining 
terms will certainly be negative provided that 

(3.9) 

But 

p2-3j2
ul<0. 

p2-3j2
ul<-2(v2 + Sv + 6) 

from (3.4) and (3.6) and this is certainly negative in case —0.8 < v < 0. Thus the second 
derivative of p2 with respect to v is negative at points where the first derivative is 0; 
hence there can be only one such point and it is a relative maximum. This proves the 
unimodal property and completes the proof of Theorem 3.1. 
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FIGURE \\]2
VX vs. v 

In Figure 1, we give the graph of j ^ versus v for — 2 < v < 0. This graph, based on 
a computation described in [7], suggests strongly that 7^ is convex on — 2 < v < 0. It 
is shown [2] that it is convex on (0,00) and conjectured that the convexity extends to 
( - l ,oo) . 

A numerical calculation indicates that the smallest value of j ^ is —1.6075 to 5 digit 
accuracy and it occurs for v between —1.698 and —1.697. 

4. Dini functions and derivatives of Bessel functions. Here we deal with the case 
/„(z) = Hv(z) = ocJv{z) + zJ'v(z\ got by taking a = 1, b = c = 09f(y) = a + v. We call 
these Dini functions because they arise in expansions due to Dini [14, Chapter 18]. In 
the special case a = 0, we are, of course, dealing with the zeros of J'u(z). There do not 
appear to be many results in the literature on the monotonicity of purely imaginary zeros 
àzip of Hu(z), though it is shown in [6, pp. 78-79] that if a < 0, then p2 is decreasing on 
(0, —a). We will prove: 

THEOREM 4.1. LetHv(z, a) = aJ„(z) + zfu(z), where - 1 / 2 < a < 1 and - 1 < v < 
—a. Hv{z, a) has a pair of purely imaginary zeros ±ip(i/, a). p2(i/, a) is unimodal on 
(—1, —a), i.e., there exists a number I/Q(CX) such that p2(i/, a) increases on (— 1, vo{ocy) 
and decreases on (i/o(a), —on. 

COROLLARY. If ±ip are purely imaginary zeros of J'v(z) then p2 is unimodal on 
(-1,0). 
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PROOF OF THEOREM 4.1. The question of existence of such zeros is equivalent to the 
question of whether equation (2.7) which is, in this case, 

OO 1 

(4.1) - ( ^ « ) = 2 E , , 2 ., 

can be satisfied. The right-hand side here increases from 0 to oo as p increases from 0 
to oo, whereas the left-hand side remains constant and positive. Thus the existence of 
p(i/, a) is clear. It is also clear from 

( 4-2 ) P<~2^-/-

[6, (3.2)] that pQ/^a) vanishes as v —» — a~ and, since ju\ —• 0, it also vanishes as 

v __• —i+ i n m e present case, (2.5) holds with \(v) and p,\(v) given by (3.1) and (3.8), 
but with p interpreted as in the current section. Now, as in §3, the first term on the right 
of (3.8) is negative [1] and the sum of the two remaining terms will certainly be negative 
provided that 
(4.3) p2-3j2

ul<0. 

But this follows from (4.2). Thus the second derivative of p2 with respect to v is negative 
at points where the first derivative is 0; hence there can be only one such point and it is 
a relative maximum. This proves the unimodal property. 

Unfortunately, it does not seem to be possible to handle the case where a < — 1 /2 in 
this way. The problem is that the inequality (4.3) seems to break down in this case. This 
is becausey^ ~ â,(y + l) and p2 ~ —4(y + l)(a — I)/(a + 1) as v —• —1+ [7]. 

With regard to the Corollary, it is of interest to point out that if ful denotes the purely 
imaginary zero of J'u(x), then the smallest value of 7^ is —0.60602 to 5 digit accuracy 
and it occurs for 1/ between —0.5699 and —0.5696. 

REMARK. Since the purely imaginary zeros of Jv(z) are real zeros of /„(z), we may 
restate the results on 7^ in the following way: The unique positive zero ofI'v(x) increases 
from 0 to io (= 0.7759 to four digits) as v increases from —I to i/o(0) (—0.5699 < J/o(0) < 
—0.5697) and then decreases again toOasv increases from i/o(0) to 0. 

5. Zeros of J"(z). Here we discuss the case/^z) = —z2J"(z), got by taking a = c = 1, 
b = 0 and/(i/) = v — v2. In this situation, we have (2.1) and (2.5) where it is better to 
leave \{v) in the form given by (2.2): 

v2 — v 2° o2 

<51) m=—-25âw 
and the function /ii(i/) in (2.5) is given by 

(5.2) /ii(*/) = 4 
^ Und2jun jdv2 ~ (djun /du)2 °° (jvndjvn /dv) 

Ln=l \Jun+ P ) n=\ KJvn + P ' n=\ \Jvn + P ) 

2 
+ P2' 
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We note that A(z/) < 0, 0 < v < 1, so in order to get the unimodality of ffi, we need to 
show that /ii(V) > 0 in this interval. Apart from a change in notation ( v being replaced 
by —v) the approach and formulas here agree with those in [4]. However, we can simplify 
the proof given in [4] by noting that the first two terms in (5.2), when combined, are 
equal to 

"(cfifjdv2) 

which is clearly positive since d2jln/dv2 > 0, v > 0 [2]. Thus it remains to show that 
the sum of the remaining two terms is positive, i.e., that 

{5'5) 8 L " ^ — 2 Ï Ï " < n2' 
(jvndjyn I dvf J_ 

ntl (Jln+P2)3 P2 

But from [3, (1.5)], we have 
,c A , 1 2 i / + l 
(5.4) -^ > p2 2v(\-v2) 

while the inequality (2.8) and the Rayleigh sum [14, p. 502] 

oo 

E77„2 = l/[4(^ + D] 
n=\ 

show that the left-hand side of (5.3) is < 2/(i/ + l)3. It is a simple matter to show that 

2 2i/ + l 
< (z/+l)3 2v(\-v2) 

for 0 < i/ < 1, so we find that /xi (z/) > 0, 0 < v < 1 and this completes the proof. 
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