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Abstract

We find defining equations for the Shimura curve of discriminant 15 over Z[1/15]. We then
determine the graded ring of automorphic forms over the 2-adic integers, as well as the higher
cohomology. We apply this to calculate the homotopy groups of a spectrum of ‘topological
automorphic forms’ associated to this curve, as well as one associated to a quotient by an Atkin–
Lehner involution.
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1. Introduction

A generalized cohomology theory E associates to each space X a sequence
of abelian groups En(X), often equipped with extra structure such as a graded
multiplication. These are required to satisfy the Eilenberg–Steenrod axioms, and
this alone implies that there is a natural Atiyah–Hirzebruch spectral sequence

H s(X; E t(∗))⇒ E s+t(X)

with reasonable convergence properties when X has the homotopy type of a CW-
complex.

In a coarse sense, this tells us that E∗(X) combines the cohomological data of X
and the E-cohomology of a point in some way. However, the spectral sequence is
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the first step in an iterative calculation, and much deeper information is required to
complete it: in particular, we need to find differentials and solve hidden extensions
in this spectral sequence. In a local sense these depend on X : if X is a CW-
complex, this information is determined by X and the attaching maps for the cells
of X . In a global sense these depend on E : this information is determined by an
intricate web of connective tissue between the groups E t(∗), expressible in terms
of cohomology operations, secondary operations, and so on.

It has been an active research topic to determine all the data necessary to take
a graded abelian group, or a graded ring, and lift it to a generalized cohomology
theory. Quillen showed that for many multiplicative cohomology theories there
is a theory of Chern classes, and the formula for the first Chern class of a
tensor product of line bundles gives E∗ a natural formal group law [Qui69].
Landweber showed that the converse holds in many circumstances: given a
graded-commutative ring with an appropriate type of graded formal group law,
one can realize it by a generalized cohomology theory [Lan76].

More recently, Lurie announced a very strongly functorial result of this
converse type, generalizing work of Hopkins, Miller, and others. It requires more
input: instead of just a formal group law, Lurie’s result requires an extension of
it to a p-divisible group satisfying a version of the Serre–Tate property [Goe09].
This has been exploited to construct generalized cohomology theories attached
to certain moduli of abelian varieties, under the general header of topological
automorphic forms [BL10]. Lurie’s theorem takes a scheme (or stack) with such
a p-divisible group and equips its étale site with a sheaf of E∞ ring spectra
(the homotopy-theoretic analog of a sheaf of commutative differential graded
algebras).

This gives us an abundance of new objects in homotopy theory, with each
described by purely algebro-geometric data. To bring ourselves back down to
earth, we must understand the consequences of what we have done. The data
itself determines many cohomology theories E and their coefficient rings; about
the connective tissue it gives not much direct information.

Shimura curves have provided an interesting test case. These parameterize two-
dimensional abelian varieties with an action of a quaternion algebra, and they
share many formal similarities with the moduli of elliptic curves. They have
been harder to cohomologically analyze than the moduli of elliptic curves, but
in many cases their images in homotopy theory have provided similar answers. In
[HL10], the resulting cohomology theories were analyzed for the Shimura curves
of discriminants 6, 10, and 14. The most mysterious aspect appeared with the
curve of discriminant 10. This curve has a very different geometry than the moduli
of elliptic curves, but after 3-adic completion the Shimura curve and the modular
curve have associated cohomology theories that behave in an identical fashion so
far as investigations have revealed.
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The program of this paper is to study the Shimura curve of discriminant 15 and
its relation to homotopy theory. The prime 2 does not divide 15, and as a result
this is the first Shimura curve where 2-primary information in stable homotopy
theory can be extracted. The path we will follow is similar to that in [HL10]: we
describe a moduli object, determine its cohomology, and find the coefficient ring
of the resulting cohomology theory by a spectral sequence calculation.

This results in new questions. The final calculations in homotopy theory are
very similar to the calculations of Mahowald and Rezk for topological modular
forms with level Γ0(3) structure [MR09] – so similar that Figures 12.1 and 12.3
could easily be used as references for the calculations that appeared in their paper.
At the prime 2, the coefficient ring for the Shimura curve breaks up as isomorphic
to a direct sum of two pieces: a coefficient ring for topological modular forms with
level Γ0(3) structure, and a certain module over it. Moreover, the Shimura curve
has an action of Z/2, and the quotient corresponds to a cohomology theory with
a new coefficient ring, now an extension of the coefficient ring for topological
modular forms with level Γ0(3) structure. This, again, occurs despite the lack of
obvious geometric connection between these moduli. It is not clear if something
fundamental is guiding these connections, or if these are merely coincidences in
low degrees.

We will now give a detailed outline, beginning with a more exact description
of the objects under consideration.

There is a four-dimensional division algebra D over Q, generated by elements
x and y satisfying

x2 = −3, y2 = 5, xy = −yx . (1.1)

This is uniquely characterized by the requirement that D ⊗ Qp
∼= M2(Qp)

precisely for primes p 6= 3, 5 (in other words, it has discriminant 15). In particular,
there is an isomorphism

τ : D ⊗ R ∼= M2(R).

On D there is a reduced norm N (a + bx + cy + dxy) = a2 + 3b2 − 5c2 − 15d2

which is multiplicative, and under τ it corresponds to the determinant.
Within D there is also a subring

Λ ∼= Z〈ω, y〉/(ω2 + ω + 1, yω = ω2 y), (1.2)

generated by y and ω = (−1+ x)/2. The ring Λ is maximal among finitely
generated submodules closed under the multiplication (a maximal order), and any
other such subring is conjugate to Λ [Eic38]. We obtain an embedding of the
norm-1 subgroup:

τ : ΛN=1 → SL2(R).
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This gives the action of the norm-1 elements of Λ on the complex upper half-
plane H. The quotient orbifold H/ΛN=1 = X D

C is called the complex Shimura
curve of discriminant 15, and it is a parameterizing object for two-dimensional
complex abelian varieties A equipped with an action ofΛ (sometimes called fake
elliptic curves). The orbifold structure reflects the fact that such objects A often
possess automorphisms.

The object X D
C , through this interpretation as a parameterizing object, has

an algebraic lift. Over Z[1/15], there is a stack X D such that maps S → X D

parameterize two-dimensional abelian schemes A/S with an action of Λ. There
is an underlying coarse moduli scheme X D which is a smooth curve over Z[1/15]
[Mor81]. The first goal of this paper is purely algebraic: it is to determine
defining equations for X D. As in [HL10], this builds on previous work of
Kurihara [Kur79] and Elkies [Elk98].

The second goal concerns automorphic forms, and it requires us to extend from
Z[1/15] to the ring Z2 (though statements could be made over general rings R
such that Λ⊗ R ∼= M2(R)). Letting A/X D be the universal abelian scheme, the
action of Λ ⊗ Z2

∼= M2(Z2) on the two-dimensional relative cotangent space of
AZ2 at the identity splits it into two isomorphic one-dimensional summands. This
summand is a line bundle ω on X D

Z2
, and the sections of ω⊗t are automorphic

forms of weight t on X D
Z2

. The second goal of this paper is also algebraic: it is to
determine the cohomology groups H s(X D

Z2
;ω⊗t). In particular, when s = 0 this is

a graded ring of automorphic forms over Z2.
We next 2-adically complete and study (X D)∧2 , a formal parameter object living

over Z2. In this case, the actions of Λ on the two-dimensional formal group
Â and the two-dimensional 2-divisible group A[2∞] factor through Λ⊗Z2. This
splits the 2-divisible group into two isomorphic one-dimensional summands, and
similarly for the formal group. The aforementioned theorem of Lurie then lifts
this formal group data to a derived structure sheaf Oder of E∞ ring spectra (see
[HL10, Section 2.6]), and the homotopy groups are determined by a cohomology
spectral sequence

H s(U ;ω⊗t)→ π2t−sΓ (U,Oder ).

In particular, we can define TAFD = Γ ((X D)∧2 ,Oder ) as a global section object.
The third goal of this paper is to determine the homotopy groups of this spectrum.
As stated, the calculations are similar to those of Mahowald and Rezk. The main
difference is that an extra summand occurs in the computation (Figures 12.2 and
12.4), which carries out a twist of the Mahowald–Rezk calculation.

Finally, there is an Atkin–Lehner involution w15 on X D, whose effect is to
take an abelian variety with Λ-action and ‘twist’ the action by conjugating with
xy. Since −15 has a 2-adic square root, the action of w15 lifts to the 2-divisible
group (see 10.1), and so we get an action of Z/2 on TAFD. The final goal of this
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paper is to determine the homotopy groups of this homotopy fixed-point spectrum,
which could be viewed as the global section object of an extension of Oder to the
quotient stack X D/w15. This calculation is, again, similar to the Mahowald–Rezk
calculation, but this time it adds an ideal carrying out two copies of the homotopy
fixed-point spectral sequence for KO.

The exact connection of TMF0(3) with TAFD on the spectrum level remains
unclear. Both map to a homotopy fixed-point spectrum EO(G) associated to a
finite subgroup G of the extended Morava stabilizer group, but this alone does
not support the degree of connection that is visible in homotopy theory.

2. Complex uniformization

The Shimura curve X D of discriminant 15 is of genus 1, and it has two elliptic
points of order 3.

In order to determine a complex uniformization of the curve, we first fix an
embedding τ of the division algebra D into M2(R). This differs from that in
[AB04, 5.5], and the resulting fundamental domain differs from that in [AB04,
Figure 5.3], which was determined by Michon [Mic81] and pictured in [Vig80,
IV. Section 3.C].

Let τ : D→ M2(R) be defined on the generators of Equation (1.1) by

x 7→
[

0
√

3
−√3 0

]
, y 7→

[
0
√

5√
5 0

]
, xy 7→

[√
15 0
0 −√15

]
. (2.1)

This determines the action of Λ× on C \ R, with quotient the complex Shimura
curve X D

C . Write H for the upper half-plane.
We have norm-1 elements in Λ:

ω = −1+ x
2

, h = 4+ xy, γ = 4+ 5ω2 − 2y. (2.2)

The first rotates by 2π/3 around an elliptic point i ∈H, while the element 4+ xy
is a ‘principal homothety’ h : z 7→ (4+√15)2z.

We also define elements

w̃3 = x, w̃5 = 5+ 2y, w̃15 = 5x + 2xy. (2.3)

These elements have norms 3, 5, and 15, respectively. They thus act on the upper
half-plane quotient as lifts of the Atkin–Lehner involutions w3, w5, and w15,
respectively. The element w̃5 is a hyperbolic translation stabilizing the circle of
radius 1, while w̃3 is an involution about this circle that fixes i .
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Figure 2.1. Fundamental domain for X D
C .

We note that, in Λ, there is an identity

5h = (ω2w̃5ω
2 + 5)y.

Together with the fact that y commutes with w̃5 and conjugate-commutes with ω,
this shows that

(ω2w̃5ω
2)h = h(ωw̃5ω). (2.4)

PROPOSITION 2.1. There exists a hyperbolic hexagon (Figure 2.1) which is a
fundamental domain for the action of ΛN=1/{±1} on H. It has the following six
elliptic points as vertexes:

v1 = hωw̃5i v2 = hi v3 = hω2w̃−1
5 i

v6 = ω2w̃5i v5 = i v4 = ωw̃−1
5 i.

(2.5)

This domain is symmetric about the imaginary axis, and the edges are identified
via

hω2(−−→v5v6) = −−→v2v1,

hω(−−→v5v4) = −−→v2v3,

γ (−−→v4v3) = −−→v6v1.
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Proof. As elliptic points are preserved by the action of Λ, the given vertexes are
all elliptic points in H. We note that the operator ω2w̃5ω

2 takes v4 to v5 and v5

to v6; Equation (2.4) implies that it also takes v3 to v2 and v2 to v1.
We will now show that v1, . . . , v6 are the vertexes, indexed in clockwise order,

of a fundamental domain for the action ofΛN=1. The resulting curve is of genus 1.
The geodesics ω(−−→v5v6) and ω2(−−→v5v4) are along the unit circle. Therefore, the

original geodesics −−→v5v6 and −−→v5v4 make angles of π/6 with the imaginary axis,
represented by −−→v5v2. Similarly, −−→v2v1 and −−→v2v3 also make angles of π/6 with−−→v5v2. The hyperbolic volume is therefore 8π/3, which is the volume of X D.
Therefore, once we have shown that the geodesic edges are identified, this must
be a fundamental domain.

The following identifications of geodesics are verified by checking that they
have the correct effect on endpoints.

• The transformation a = hω2 takes −−→v5v6 to −−→v2v1.

• The transformation b = hω takes −−→v5v4 to −−→v2v3.

• The transformation γ = 4+ 5ω2 − 2y, which is also realized by the element

(ω2w̃5ω
2)2 = 5(4+ 5ω2 − 2y),

takes −−→v4v3 to −−→v6v1.

This fundamental domain lets us produce a presentation of the group
ΛN=1/{±1}, which is the fundamental group of the associated orbifold.

COROLLARY 2.2. There is a presentation

ΛN=1/{±1} = 〈h, γ, ω | ω3 = (ω2h−1γ hω2γ −1)3 = 1〉. (2.6)

Proof. The fundamental domain gives us the generators a = hω2, b = hω, and
γ , and relations

(b−1a)3 = (b−1γ aγ −1)3 = 1.

By switching generators to h, ω, and γ , we obtain the desired presentation.

3. Complex multiplication

In this section we review results of Elkies on the structure of the Shimura
curve X D

Q and its quotients. All of the results in this section, and in particular the
complex multiplication (CM) points, are taken directly from [Elk98, Section 5.2].
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The quotient (X D
Q )
∗ by the full group of Atkin–Lehner involutions is of genus

zero, with one elliptic point P6 of order 6 (CM discriminant −3) and three
elliptic points P2, P ′2, and P ′′2 of order 2 (CM discriminants −12, −15, and −60,
respectively).

There is thus a unique isomorphism t : (X D)∗ → P1 so that t (P6) = ∞,
t (P2) = 0, and t (P ′′2 ) = 1. Elkies showed that this coordinate satisfies t (P ′2) = 81,
and that (among others) there is a further rational point with t-coordinate−27 and
CM discriminant −7 [Elk98, Table 6].

We now examine the Atkin–Lehner involutions w3, w5, and w15. We recall that
a point of X D is fixed by wd if and only if it parameterizes a surface with a Λ-
linear endomorphism t satisfying t2+mt + d = 0; this means that it has complex
multiplication by the splitting field of this polynomial, and that this splitting field
also splits D.

The involution w5 fixes only those points which correspond to points with an
action by Z[√−5]. However, since 3 splits in Q(

√−5), this field does not split
D, and so the involution w5 has no fixed points.

Similarly, the involution w3 on X D fixes only those points parameterizing
objects with an action of Z[√−3]. These are precisely the CM points with
discriminants −3 and −12, and hence the preimages of P6 and P2.

Finally, the involution w15 fixes two points with an action of Z[√−15]. These
must have CM discriminant −15 or −60, and so are the preimages of P ′2 and P ′′2 .

The curve (X D
Q )/w3 has exactly one preimage each of P2 and P6. The two

preimages of P ′2 are complex conjugate and their coordinates must generate the
Hilbert class field of Q(

√−15) by work of Shimura; this class field is Q(
√−15,√−3). The preimages are thus defined over Q(

√−3), and we can define a unique
Galois-invariant coordinate s such that s(P6) =∞, s(P2) = 0, and the preimages
of P ′2 are taken to ±√−3. This coordinate satisfies t = −3s2.

Then [Elk98, (76)] shows that there is a coordinate y on X D/w15 so that

y2 = −(3s2 + 1)(s2 + 27) = −(1− t)(27− t/3). (3.1)

Together s and y generate the function field of the curve. By construction, y is
fixed by w15 and negated by w3 and w5, while s is fixed by w3 and negated by w5

and w15.

4. Rational uniformization

In this section we review the structure of the rational Shimura curve X D
Q and its

quotients, continuing with the notation from the previous section.
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PROPOSITION 4.1. The curves (X D
Q )/w3 and (X D

Q )/w15 are both isomorphic to
P1, and the natural map from X D into their product is an embedding.

Proof. The map X D
Q → (X D

Q )/w3 × (X D
Q )/w15 only fails to be at an embedding

at places fixed by both w3 and w15, hence w5.
The involution w5, with no fixed points, acts as an order-2 translation on the

genus-one curve. The quotient X D/w5 is of genus one, and under the projection
X D/w5 → (X D)∗ there is a single preimage of P6 which is an elliptic point of
order 3. (The subspace of Figure 2.1 with positive real part is a fundamental
domain for X D

C /w5.)
The quotient curve X D/w3 is of genus zero with two elliptic points of order

6 (the preimages of P6) and two of order 2 (the preimages of P2). As X D/w3 is
smooth of genus zero and has points defined over Q, it is isomorphic to P1 over
Z[1/15].

The quotient curve X D/w15 is also of genus zero, with one elliptic point of
order 3 (the preimage of P6) and four of order 2 (the preimages of P ′2 and P ′′2 ).
Similarly, it is isomorphic to P1 over Z[1/15].

PROPOSITION 4.2. There are meromorphic functions

u : (X D
Q )/w3

∼→P1
Q and v : (X D

Q )/w15
∼→P1

Q

so that the resulting embedding X D
Q → P1

Q × P1
Q has, as image, the (closure of

the) set of solutions of

(u2 + u + 1)(v2 + v + 1) = 5
9 . (4.1)

The Atkin–Lehner operator w3 fixes u and sends v to −1 − v, while w15 fixes v
and sends u to −1− u.

Proof. We will first change the coordinates t , s, and y, from the previous section,
into new ones that will ultimately prove better behaved integrally.

Let w = (t − 1)/4 denote the ‘equivalent, 2-adically good’ coordinate
Elkies describes on (X D

Q )
∗. We also let u = (s − 3)/6 and v =

(3y − (t − 81))/(2(t − 81)) so that t = 4w + 1, s = 6u + 3, and
y = (4(2v + 1)(w − 20))/3. These still generate the function field.

The equation t = −3s2 is equivalent to w = −27u2 − 27u − 7.
The equation y2 = −(1− t)(27− t/3) becomes v2 + v = (w − 5)/(20− w),

or w = 20− (15)/(v2 + v + 1).
Putting these two equations for w together, we find that u and v generate the

function field of the curve X D
Q and satisfy the formula of Equation (4.1).
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Together the coordinates u and v determine an embedding X D
Q → P1

Q×P1
Q over

Q, representing the map X D
Q → X D

Q/w3 × X D
Q/w15.

5. CM points and integral uniformization

We recall the intersection theory employed in [HL10], based on [KRY06].
Given an element z ∈ C generating a quadratic imaginary field, let Dz be
the divisor on X D

Z[1/15] parameterizing points with complex multiplication by z.
The following is derived by knowing that when two such divisors with distinct
associated fields intersect, the resulting point has two distinct types of complex
multiplication and thus must represent a supersingular point.

PROPOSITION 5.1. Let two orders be generated by elements x and y contained
in nonisomorphic quadratic imaginary fields, with dx and dy their respective
discriminants. If Dx ∩ Dy contains points in characteristic p, there must be an
integer m such that the quantity

∆ = (2m + Tr(x)Tr(y))2 − N(x)N(y) (5.1)

produces Hilbert symbols

(∆, dy)q = (∆, dx)q (5.2)

which are nontrivial precisely when q ∈ {p,∞, 3, 5}. (In particular, ∆ must be
negative.)

We now choose a point Q on X D/w3 with s-coordinate 3. This makes t = −3s2

equal −27, which was already established to give it CM discriminant −7.
Table 5.1 collects together the values of the coordinates u and v on the

(preimages of) complex multiplication points discussed in the previous sections.
Where not explicitly stated previously, these are explicitly derived from the
equations relating these six coordinates. By convention, in the following table
ω is the third root of unity (−1+√−3)/2.

We thus consider the divisors on XZ[1/15] with complex multiplication by
(−1+√−3)/2, by (−1+√−7)/2, and by (−1+√−15)/2. These have
discriminants −3, −7, and −15, respectively, and their divisors are associated to
the preimages of the points P6, P ′2, and Q in Table 5.1.

PROPOSITION 5.2. The divisors associated to P6, P ′2, and Q do not intersect
on X D.
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Table 5.1. Complex multiplication points.

Point CM disc t s y w u v

P6 −3 ∞ ∞ ∞ ∞ ∞ ω

P2 −12 0 0 3
√−3

−1
4

−1
2

−3+ 1/
√−3

6
P ′2 −15 81 3

√−3 0 20 ω ∞
P ′′2 −60 1 1/

√−3 0 0
ω − 4

9
−1
2

Q −7 −27 3 12
√−7 −7 0

√−7− 3
6

Table 5.2. Complex multiplication intersections.

Points m ∆ Nonvanishing Hilbert symbols
P6 Q 0,−1 −20 {5,∞}

1,−2 −12 {3,∞}
P6 P ′2 0,−1 −44 {11,∞}

1,−2 −36 {3,∞}
2,−3 −20 {5,∞}

Q P ′2 0,−1 −104 {13,∞}
1,−2 −96 {3,∞}
2,−3 −80 {5,∞}
3,−4 −56 {7,∞}
4,−5 −24 {3,∞}

Proof. Table 5.2 summarizes the possible valid discriminants ∆ from
Equation (5.1) and the list of primes with nonvanishing Hilbert symbols from
Equation (5.2) for all possible pairs.

As a result, none of these three divisors intersect at any prime in Z[1/15].

PROPOSITION 5.3. The embedding u × v of Proposition 4.2 extends to an
embedding X D → P1 × P1 over Z[1/15], giving X D the same defining equation
integrally.

Proof. Using data in Table 5.1, we find that the coordinate u always take distinct
values on P6, P ′2, and Q over Z[1/15]. As a result, the isomorphism u, from
X D

Q/w3 to P1
Q, extends to an isomorphism from X D

Z[1/15]/w3 → P1
Z[1/15].
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The element (
√−7− 3)/6 has minimal polynomial x2 + x + 4/9, and hence

is an algebraic integer over Z[1/15] (so it never coincides with∞ in P1 over this
ring). Moreover, substituting u = 0 into Equation (4.1) we also find that(√−7− 3

6
− ω

)(√−7− 3
6

− ω2

)
= 5

9
,

so the element (
√−7− 3)/6 − ω is a unit over Z[1/15]. This shows that v also

takes distinct values on P6, P ′2, and Q over Z[1/15]. Therefore, the map v from
X D

Q/w15 to P1
Q extends to an isomorphism from X D

Z[1/15]/w15 → P1
Z[1/15].

This demonstrates that Equation (4.1) gives a valid description, over Z[1/15],
of X D as a closed subscheme of P1 × P1.

6. Sections of the cotangent bundle

Let κX be the relative cotangent bundle of X D, and κX the (trivial) relative
cotangent bundle of the coarse moduli scheme X D.

As the map X D → X D is triply ramified precisely over the degree-2 divisor P6,
there is an isomorphism

H 0(X D; κ⊗t
X )
∼= H 0(X D;O(b2t/3cP6)). (6.1)

PROPOSITION 6.1. There is a section a2 ∈ H 0(X D; κX ) which has double zeros
on the divisor P6 and nowhere else.

Proof. There is a nowhere-vanishing 1-form on X D, given by

du
(u2 + u + 1)(2v + 1)

= −dv
(v2 + v + 1)(2u + 1)

.

This exhibits κX as trivial. We denote the pullback of this to X D by a2. This
section a2 has a double pole along the divisor defining P6 (which should
be regarded as a 2/3 pole). (Note that multiplication by an

2 induces the
isomorphism (6.1).)

As in [HL10, 2.16], there is an identification of κX with the exterior square∧2
Ω of the relative cotangent bundle at the zero section of the universal abelian

scheme A→ X D.
We will choose an isomorphism Λ ⊗ Z2

∼= M2(Z2). This isomorphism
determines, on X D

Z2
, a splitting Ω ∼= ω ⊕ ω, and thus an isomorphism of κX

with ω2.
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COROLLARY 6.2. There is a 2-torsion element in the Picard group of X D
Z2

which
defines the obstruction to expressing a2 as a unit times the square of a section a1

of ω.

Proof. The section a2, with double zeros along the divisor P6, defines an
isomorphism of line bundles O(−2P6) ∼= κX , or equivalently an isomorphism
O ∼= κX (2P6). The 2-torsion line bundle ω(P6) then provides precisely this
obstruction.

7. Double covers

In this section we will analyze double covers on X D. We begin with the
following.

PROPOSITION 7.1. For p ∈ {2, 3, 5}, there exists a nontrivial homomorphism
σp : ΛN=1 → Z/2 obtained by imposing level structure at the prime p. The effect
on the generators of Corollary 2.2 is given in Table 7.1.

Proof. We first consider the ring map Λ→ M2(Z/2), given by

ω 7→
[

0 1
1 1

]
, y 7→

[
0 1
1 0

]
.

In particular, x = 2ω + 1 maps to 1. Under this map,

h 7→
[

0 1
1 0

]
, γ 7→

[
1 1
1 0

]
, −1 7→

[
1 0
0 1

]
.

The composite homomorphism

σ2 : ΛN=1 → GL2(Z/2)→ {±1},
which sends a matrix to the sign of its permutation action on (Z/2)2, is then trivial
on γ and −1 and nontrivial on h.

We next have a ring homomorphismΛ→ F9 sendingω to 1 and y to an element
which is a square root of −1, generating F9 over F3. Under this map,

h 7→ 1, γ 7→ √−1, −1 7→ −1.

The composite map

σ3 : ΛN=1 → (F9)
N=1 ∼= Z/4→ Z/2

is trivial on h and −1, and nontrivial on γ .
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Table 7.1. Images of generators under double covers.

Generator σ2 σ3 σ5

h 1 0 1
γ 0 1 1
−1 0 0 1

Finally, we have a ring homomorphism Λ→ F25, sending ω to a third root of
unity and y to zero. Under this map,

h 7→ −1, γ 7→ −1, −1 7→ −1.

The composite map

σ5 : ΛN=1 → (F25)
N=1 ∼= Z/6→ Z/2

is nontrivial on all three generators.

This shows that all elements of H 1(X D
C ;Z/2) come from some combination of

these three algebraically defined level structures.

PROPOSITION 7.2. The character σ3σ5 induces a double cover YC → X D
C ,

obtained by imposing level structure away from the prime 2, such that on YC
the form a2 has a square root.

Proof. Using the embedding Z2 → C, the section a2 of ω2 is an automorphic
form of weight 2. We represent a2 by a holomorphic function a2(z) on the upper
half-plane H, with double zeros at the elliptic points. It has a square root a1(z),
which is almost an automorphic form of weight 1. The group ΛN=1 acts on a1 by
a character ΛN=1 → {±1}.

The real structure z 7→ −z̄ is compatible with the action of ΛN=1, and so
every automorphic form f (z) has a conjugate f̄ (z) = f (−z̄). As a1(z) and ā1(z)
have the same zeros (concentrated at the elliptic points), they differ by a complex
scalar; by rescaling we may assume that a1(z) takes real values on the imaginary
axis.

We note that (−1)must act nontrivially on a1, as it acts by negation on all forms
of weight 1. Therefore, Table 7.1 tells us that the character of ΛN=1 acting on a1

is in the set {σ5, σ2σ5, σ3σ5, σ2σ3σ5}.
The element h sends a1(z) to a1((4 +

√
15)2z)/(4 − √15), which must be

±a1(z). The function t 7→ a1(i t) is an analytic function on the positive real line,
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taking real values, with zeros only at the points (4 + √15)2ki . In addition, these
are simple zeros, which forces a1(i t) to change signs. Thus h(a1(z)) = −a1(z).

By Table 7.1, this further reduces the possibilities for the character of ΛN=1

acting on a1 to the set {σ3σ5, σ5}.
The Eichler–Selberg trace formula [Miy89] shows that the ring endomorphism

associated to the Atkin–Lehner involution w5 has trace 5 on the collection of
forms of weight 2, which is one dimensional and generated by a2(z). Therefore,
w5 must act on a1(z) by sending it to ±√5a1(z). However, we have the identity
5γ = w̃2

5 in Λ. This shows that γ acts on a1(z) trivially, fixing the character as
σ3σ5. This character can thus be obtained by imposing level structure away from
the prime 2.

DEFINITION 7.3. Let K denote the nontrivial unramified extension of Q2 of
degree 4, with ring of integers OK = W (F16).

PROPOSITION 7.4. After choosing a complex embedding K → C, there is
an étale double cover Y → X D

OK
over Spec(OK ) inducing the double cover

YC→ X D
C . The composite Y → X D

Z2
is a Galois cover with Galois group Z/8.

Proof. The étale fundamental groups fit into the following diagram of groups with
exact rows:

1 // π1(X D
C )
∧ //

����

π et
1 (X D

Z2
) //

��

π et
1 (Z2) //

χ

��

1

1 // (Λ/(xy))N=1 // (Λ/(xy))× // (Z/15)× // 1.

Here χ is the cyclotomic character, and the image of χ is generated by the element
2 – the image of the Frobenius automorphism. The images of the top row in the
bottom row then fit into a commutative diagram as follows.

1 // (F9)
N=1 × (F25)

N=1 //

σ3σ5
����

I m(π et
1 (X D

Z2
)) //

����

〈2〉 //

∼
��

1

1 // Z/2 // G // Z/4 // 1.

This explicitly determines an index-8 subgroup of π et
1 (X D

Z2
) with quotient G,

determining a composite degree-8 cover

Y → X D
OK
→ X D

Z2
.
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Moreover, the pullback of Y along X D
C → X D

OK
is the double cover determined

by the character σ3σ5, which is therefore YC.
We then verify directly (using the fact that F×9 and F×25 are cyclic) that the

Frobenius element lifts to a generator of G, so that G ∼= Z/8.

REMARK 7.5. As the element −1 has nontrivial image in {±1} under the
character σ3σ5, the double cover Y has the same geometric points as X D

Z2
and X D

OK
.

REMARK 7.6. The recipe in this proof allows us to describe the stack Y as
follows. There is a degree-192 cover X D

Z2
(
√

15) → X D
Z2

parameterizing two-
dimensional abelian schemes A withΛ-action, together with a choice of primitive
torsion point for xy ∈ Λ; the group (Λ/(xy))× is a Galois group for this cover,
acting by the Λ-action on the torsion point. There are two components for
the cover, each stabilized by I m(π et

1 (X D
Z2
)). The stabilizer group of one such

component then contains an index-8 subgroup H ⊂ (Λ/(xy))×, and Y is the
stack-theoretic quotient of this component by H .

PROPOSITION 7.7. On the double cover Y → X D
OK

of Proposition 7.2, an OK -
unit times the restriction of a2 has a square root.

Proof. The étale fundamental group of YK fits into an exact sequence

1→ π1(YC)
∧→ π et

1 (YK )→ Gal(Q2/K )→ 1,

which gives an exact sequence in cohomology

0→ K×/(K×)2 → H 1(YK ;Z/2)→ H 1(YC;Z/2). (7.1)

There is an isomorphism Z/2 → µ2 of étale sheaves on YK , and so the étale
cohomology group Hom(π et

1 (YL),Z/2) is the same as the étale cohomology
group H 1(YK ;µ2) classifying 2-torsion line bundles.

The 2-torsion line bundle ω(P6) of Corollary 6.2, with chosen trivialization a2

of its square, is classified by an element θ ∈ H 1(X D
K ;µ2). By Proposition 7.2, the

image of θ in H 1(YC;Z/2) vanishes. The exact sequence (7.1) then shows that
there is a form a1 of weight 1 on YK such that a2

1 = ua2 for a K -unit u.
Twice the divisor associated to a1 is the pullback to Y of the divisor associated

to ua2. As Y → X D
Z2

is unramified over 2, ua2 can only have an even-degree zero
or pole over the divisor (2) of Y , and no other poles. We can therefore rescale
a1 by a multiple of 2 to lift it to a form defined on Y whose square is a OK -unit
times a2.
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8. Automorphic forms on the cover

Let Y be the double cover of X D
OK

from the previous section, with section
a1 ∈ H 0(Y;ω) with simple zeros at the points lying over P6. The coarse moduli
scheme of Y is X D

OK
.

On Y , the map taking a section s to s/at
1 gives an identification of sections

of ω⊗t with elements in the fraction field of X D
OK

with poles of degree at most
b2t/3c along the divisor {u = ∞} defining P6. In this section we will determine
this graded ring.

PROPOSITION 8.1. The graded ring

∞⊕
t=0

H 0(X D
OK
;O(b2t/3cP6)) (8.1)

is isomorphic to a graded ring

OK [a1, a3, a6]/ f (ai).

Here a1 has degree 1, a3 has degree 3, a6 has degree 6, and

f (ai) = a2
6 + a6(a6

1 + a3
1a3 + a2

3)+ (a6
1 + a3

1a3 + a2
3)

2 − 5
9 a6

1(a
6
1 + a3

1a3 + a2
3).

Proof. From Equation (4.1), the fraction field of X D
K is

K (X D) = K (u)[v]/(u2 + u + 1)(v2 + v + 1)− 5
9 . (8.2)

A generic element of this field is a(u) + b(u)v. We find that this has no poles in
the coordinate chart u, v 6= ∞ only when a(u) and b(u) are in OK [u], and then
has no poles in the coordinate chart u 6= ∞, v 6= 0 only when (1+u+u2) divides
b(u). Finally, the degree of the pole of a(u) + b′(u)(1 + u + u2)v over P6 is the
total degree in u.

As a consequence, the ring of Equation (8.1) is the graded ring generated by
three elements, of weights 1, 3, and 6:

a1 a3 = ua3
1 a6 = (1+ u + u2)va6

1 .

The defining relation satisfied by u and v, after multiplying by a12
1 (1+ u+ u2),

becomes the minimal polynomial for a6:

a2
6 + a6(a6

1 + a3
1a3 + a2

3)+ (a6
1 + a3

1a3 + a2
3)

2 = 5
9 a6

1(a
6
1 + a3

1a3 + a2
3).

This gives a presentation of the ring of automorphic forms as desired.
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COROLLARY 8.2. The Z/8-action on the graded ring of automorphic forms
H 0(Y;ω⊗t) is determined as follows. On the scalars OK this action factors
through the quotient Z/8 � Gal(K/Q2), and the generator of Z/8 sends ak to
yk · ak for an element y ∈ OK with norm −1 which is congruent to 1 mod 2.

Proof. Since the group H 0(Y, ω) is isomorphic to OK with generator a1, the
generator σ of Z/8 sends a1 to y · a1 for some element y ∈ O×K . The element σ 4

acts on a1 by negation, which is equivalent to NK/Q(y) = −1.
In F16 =OK/(2), Hilbert’s theorem 90 implies that y ≡ σw/w for some unitw.

By rescaling forms in degree k by wk , without loss of generality we may assume
that y reduces to one in F16.

As a3 = ua3
1 and a6 = (1 + u + u2)va6

1 were obtained by multiplying ak
1 by

Gal(K/Q2)-invariant rational functions on X D
Q2

, we obtain the desired action on
the remainder of the ring.

9. Cohomology of X D
Z2

In this section we will exploit the ring of automorphic forms from Corollary 8.2
to determine the cohomology of X D

Z2
with coefficients in the tensor powers of ω.

We first note that Y satisfies a type of Serre duality.

PROPOSITION 9.1. The cup product creates a perfect pairing

H s(Y;ω⊗t)⊗ H 1−s(Y;ω⊗(2−t))→ H 1(Y;ω⊗2) ∼= OK .

Proof. The stack Y has a cover by the open substacks a−1
1 Y and a−1

3 Y , each
of which has an affine scheme as its coarse moduli object and whose higher
cohomology vanishes because all points have automorphism groups of odd order.
In terms of the graded ring of Corollary 8.2, the Mayer–Vietoris sequence then
degenerates to an exact sequence

0→ R∗→ a−1
1 R∗ ⊕ a−1

3 R∗→ (a1a3)
−1 R∗→ H 1(Y;ω⊗∗)→ 0.

In particular, the element D = (a1a3)
−1a6 maps to a generating element in H 1,

which makes the monomial basis ak
1al

3aε6 of H 0 dual to the basis elements which
are the image of (a1)

−1−k(a3)
−1−l(a6)

1−ε .

We now employ the cohomology spectral sequence

H p(Z/8; H q(Y;ω⊗t))⇒ H p+q(X D
Z2
;ω⊗t).

This spectral sequence is concentrated either in q = 0 or q = 1, according to the
value of t . Therefore, this collapses to the group cohomology, with terms having
degrees shifted according to whether they originate in H 0(Y) or H 1(Y).
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THEOREM 9.2. Consider the bigraded ring

H s(Y;ω⊗t)[ζ ]/(2ζ ),
where ζ is in degree (s, t) = (1, 0). This ring has an additional Z/2-grading: a1,
a3, and ζ have odd grading, while a6 and D have even grading.

The cohomology of Z/2 ⊂ Z/8 with coefficients in H s(Y;ω⊗t) is the subgroup
of elements in bidegree (s, t) of even grading, and the cohomology of Z/8 with
with coefficients in H s(Y;ω⊗t) consists of those elements invariant under the map
x 7→ ytσ(x), where y is the element of norm −1 from Corollary 8.2 and σ is a
generator of the Galois group.

Proof. The calculation of the cohomology of Z/2 is standard. In addition, because
the extension Z2 → OK is unramified the terms in the spectral sequence

H p(Z/4; H q(Z/2; H ∗(Y;ω⊗t)))⇒ H p+q(Z/8; H ∗(Y;ω⊗t))

vanish for p > 0. Therefore,

H q(Z/8; H ∗(Y;ω⊗t)) ∼= H q(Z/2; H ∗(Y;ω⊗t))Gal(K/Q2),

as desired.

As y is congruent to 1 mod 2, elements involving a positive power of ζ are
invariant under the action of Gal(K/Q2) if and only if their coefficients come
from F2 ⊂ F16.

As y2 has norm 1, Hilbert’s theorem 90 implies that there exists an element
x ∈ O×K with y2 = x/σ(x); the element x must also reduce to 1 in F16. We
formally define bi = x i/2ai .

Then the elements bi generate a ring Z2[b1, b3, b6]/( f (bi)). The ring
H 0(Z/8; H 0(Y;ω⊗t)) is the subring consisting of those elements in even
total weight. Similarly, the module H 0(Z/8; H 1(Y;ω⊗t)) is, as a consequence
of the Mayer–Vietoris sequence, generated by elements of the form
(b1)

−1− j(b3)
−1−kb1−ε

6 in even total weight.

10. The Atkin–Lehner involution

The following is an expansion on what appears in [HL10, 5.6].

PROPOSITION 10.1. The 2-divisible group on X D descends to one on the quotient
stack X D/w15.
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Proof. We first recall the definition of the quotient stack.
For a scheme Y , the Y -points X D(Y ) form the category of two-dimensional

abelian schemes A over Y with an action of Λ, and morphisms are Λ-linear
isomorphisms. The endofunctor w15 sends A to w15(A), which has the same
underlying abelian scheme; the action is precomposed with the automorphism of
Λ given by conjugation by xy ∈ D. (Note that theΛ-linear map xy : A→ w15(A)
factors through an isomorphism A/A[xy] → w15(A), between w15(A) and the
quotient of A/A[xy] by the subgroup of points annihilated by xy.) We have
(w15)

2 = I d. The stack X D/w15 is obtained by stackifying the functor whose Y -
points form a groupoid with the same objects as those of X D; the set of morphisms
from A to B is the disjoint union of the set of isomorphisms A→ B and the set
of isomorphisms w15 A→ B.

We choose a 2-adic square root of −15. The 2-divisible group of X D takes
a Y -point A to the 2-divisible group A[2∞]. To extend this 2-divisible group to
X D/w15, for an isomorphismw15 A→ B we assign 1/

√−15 times the composite
isomorphism

A[2∞] xy−→(w15 A)[2∞] → B[2∞].

To verify that this preserves composition, we must check that it commutes with
w15, which is straightforward.

PROPOSITION 10.2. The involution on the ring of automorphic forms induced by
w15 acts trivially on the generators b2

1, b1b3, and b2
3, and sends b6 to −b6 − (b6

1 +
b3

1b3 + b2
3).

Proof. We can apply the Eichler–Selberg trace formula (as in [HL10,
Section 3.5]) to determine the action of the Atkin–Lehner operators on the
ring of automorphic forms. It shows that the ring endomorphism associated to
w15 has trace −15 in degree 2, and 2(−15)k in degrees 2k > 2.

The induced involution which gives rise to the 2-divisible group on the quotient
stack X D/w15 rescales the action on forms in weight k by (

√−15)−k ; it therefore
has trace 1 in degree 2 and trace 2 in higher degrees.

The form b2
1 generates all forms of weight 2, and is thus fixed; the forms b4

1 and
b1b3 generate all forms of weight 4, and are fixed as well. Since b2

3b2
1 = (b1b3)

2

and b2
1 is not a zero divisor, b2

3 must also be fixed.
As the forms b6

1, b3b3
1, and b2

3 are all fixed, the remaining generator b6 in degree
6 must be sent to −b6 plus a fixed element. The result must satisfy the same
minimal polynomial as b6, so it is forced to map to the conjugate root −b6 −
(b6

1 + b3
1b3 + b2

3), as desired.
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PROPOSITION 10.3. The involution w15 lifts to an involution on the double cover
Y , along with its 2-divisible group, that fixes the forms a1 and a3 and commutes
with the Z/2-action on Y .

Proof. By Remark 7.6, the points of Y are locally described as abelian schemes
A equipped with an equivalence class [p] of xy-torsion point under the action of
a subgroup of H < (Λ/(xy))×. Conjugation by xy preserves this subgroup, and
so we can lift the involution w15 to an involution (A, [p]) 7→ (w15 A, [p]) of Y .
This is an automorphism over OK and it commutes with the Z/2-action, which
sends [p] to [kp] for some k ∈ Λ.

This lift ofw15 fixes b2
1 = xa2

1 , and so must either fix a1 or negate it; however, by
possibly composing with the Z/2-action on Y we can replace it with a lift fixing
a1. It then fixes a1 and a1a3, and since a1 is not a zero divisor it fixes a3.

11. Spectra

As in [HL10, 2.6], the 2-divisible group on the Deligne–Mumford stack
X D/w15 gives rise to a sheaf Oder of spectra on the étale site of (X D/w15)

∧
2 .

In particular, we can define global section objects:

E = Γ (Y∧2 ,Oder )

TAFD = Γ ((X D)∧2 ,Oder )

Ew15 = Γ ((Y/w15)
∧
2 ,Oder )

(TAFD)w15 = Γ ((X D/w15)
∧
2 ,Oder ).

The expressions of X D, Y/w15, and X D/w15 as quotients of Y by group actions
give us fixed-point expressions:

TAFD ' Eh(Z/8×1)

Ew15 ' Eh(1×Z/2)

(TAFD)w15 ' Eh(Z/8×Z/2).

Our goal in this section is to analyze the resulting homotopy fixed-point spectral
sequences. We note that the Z/8 × Z/2-invariant cover of Y by a−1

1 Y and a−1
3 Y

gives rise to an equivariant homotopy pullback diagram:

E //

��

a−1
1 E

��
a−1

3 E // (a1a3)
−1 E .

(11.1)
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On homotopy groups, this determines a square which is part of a Mayer–Vietoris
sequence:

π∗E //

��

OK [a±1
1 , a3, a6]/ f (ai)

��
OK [a1, a±1

3 , a6]/ f (ai) // OK [a±1
1 , a±1

3 , a6]/ f (ai).

PROPOSITION 11.1. There is an E∞ ring spectrum e with a Z/8 × Z/2-
equivariant map e→ E which, on homotopy groups, is the inclusion

OK [a1, a3, a6]/ f (ai)→ π∗E

of terms in even total degree which were contributed by H 0(Y).

Proof. Let ẽ be the connective cover of E ; the map ẽ → E is a Z/8 × Z/2-
equivariant map, and it has the desired behavior on homotopy groups except that
π1ẽ is OK 6= 0. Let P1ẽ = ẽ[0, 1] be the Postnikov stage of ẽ. As the element η ∈
π1(S∧2 ) maps to zero in π1(ẽ), the map S∧2 → P1ẽ factors through the Postnikov
stage of the equivariant E∞ cone on η, which is HZ2. Similarly, attaching cells to
HZ2 allows us to extend to a map of E∞ rings HOK → P1e. We can therefore
form the homotopy pullback

e //

��

ẽ

��
HOK

// P1ẽ,

which has the desired properties.

A direct consideration of homotopy groups gives the following.

COROLLARY 11.2. The maps a−1
1 e→ a−1

1 E and a−1
3 e→ a−1

3 E are equivalences.

12. Homotopy groups of TAFD

12.1. Connective fixed points. We begin to compute the homotopy groups
of TAFD by analyzing the homotopy fixed-point spectral sequence for the
spectrum e in Proposition 11.1. These carry a very strong resemblance to the
calculations of [MR09], with the addition of the generator b6 which operates
largely independently.

We will write ζ for the generating element of H 1(Z/2;Zsgn
2 ). This allows us to

give the following short expression of the group cohomology.
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PROPOSITION 12.1. The E2-term of the homotopy fixed-point spectral sequence
for Z/8 acting on e takes the following form:

E s,t
2 = Z2[b2

1, b1b3, b2
3, b6, ζ

2, ζa1, ζa3]/(2ζ, f (bi)).

In particular, these terms are concentrated in degrees with (t − s) ≡ s mod 4,
and the only possible differentials are d4k+3.

REMARK 12.2. As x reduces to 1 mod 2, ζ x = 0, and hence for any polynomial
g(a1, a3, a6) which is homogeneous of even degree we have ζg(a1, a3, a6) =
ζg(b1, b3, b6). This allows us to abuse notation by writing ζbi = ζai .

PROPOSITION 12.3. Under the map π∗S → ehZ/2, the images of η ∈ π1S and
ν ∈ π3S are represented by ζb1 and ζ 3b3 in the homotopy fixed-point spectral
sequence.

Proof. Completion at the supersingular locus gives a map e → E2 to a Lubin–
Tate spectrum over F16, which is expressed on homotopy groups

Z2[b1, b3, b6]/ f (bi)→ OK Ju1K [u±1]
by sending b1 to u1u, b3 to u3, and b6 to the unique root of f (bi) which reduces,
mod (2, u1), to ωu6, where ω is a chosen primitive third root of unity. This
expresses L K (2)e as a homotopy fixed-point spectrum of E2 by an action of Z/3,
and the Z/2-action on e realizes to the action of [−1] as a subgroup of the Morava
stabilizer. The elements η and ν are detected on the 1-line and 3-line respectively
of the associated homotopy fixed-point spectral sequence for E2, by a transfer
argument in the latter case [MR09]. They are hence also detected in the homotopy
fixed-point spectral sequence for e.

PROPOSITION 12.4. In the homotopy fixed-point spectral sequence, we have
differentials

d3(ζ
2) = ζ 5b1 and d7(ζ

4) = ζ 11b3.

Proof. In the homotopy fixed-point spectral sequence for the action of Z/2 on
S, which coincides with the Atiyah–Hirzebruch spectral sequence for the stable
cohomotopy of RP∞, the cell attachment structure of RP∞ implies that we have
differentials

d2(ζ
2) = ζ 4η, and d4(ζ

4) = ζ 8ν.
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We truncate to a skeleton of EZ/2 and compare this with the homotopy fixed-
point spectral sequence for e:

F(RPk,S)→ FZ/2((EZ/2)(k), e).

When k = 5, the differentials we described show that ζ 4η is either trivial or
detected by ζ 5η2 in the spectral sequence calculating π−4 F(RP5,S). Therefore,
ζ 5b1 is equivalent to a class which could only be detected by 0 or the class
ζ 7b2

1 = 0 in the spectral sequence calculating π∗FZ/2((EZ/2)(5), e), and thus must
be the target of a differential; the only possible source is ζ 2.

Similarly, when k = 11 the differentials show that ζ 8ν is either trivial or
detected by ζ 11ν; in the spectral sequence calculating π∗FZ/2((EZ/2)(5), e) the
element ζ 11b3 is equivalent to a class that could only be detected by zero or
ζ 14b3 = 0. It then must be the target of a differential; the only possible source
after the E2-page is ζ 4.

PROPOSITION 12.5. The d3-differentials in the homotopy fixed-point spectral
sequence are determined by the following differentials and the Leibniz rule:

d3(ζ
2) = ζ 5b1 d3(b2

1) = ζ 3b3
1 d3(b2

3) = ζ 3b1b2
3 d3(b1b3) = 0

d3(ζb1) = 0 d3(ζb3) = ζ 4b1b3 d3(b6) = ζ 3b1b6.

Proof. The differential on ζ 2 is determined by the previous proposition.
For a class in even total degree which is negated by the Z/2-action, [MR09]

describes a cup-1 identity d3(x2) = η(ζ x)2 in the homotopy fixed-point spectral
sequence for the action of the subgroup Z/2, which determines a nontrivial
differential

d3(b2
1) = d3(xa2

1) = xζ 3b3
1 = ζ 3b3

1.

Naturality of the spectral sequence implies that there is a corresponding
differential in the homotopy fixed-point spectral sequence for the action of
Z/8. The differential on b2

3 follows similarly.
The elements ζb1 and ζ 3b3 support no differentials by Proposition 12.3.
The Leibniz rule shows the identity

0 = d3((ζb1)(ζ
3b3)) = ζ 4d3(b1b3).

Similarly, we have

0 = d3(ζ
3b3) = ζ 6b1b3 + ζ 2d3(ζb3).

Multiplication by ζ 2 induce isomorphisms from the s-line to the s + 2-line for
s > 0, and so this forces the identities d3(b1b3) = 0 and d3(ζb3) = ζ 4b1b3.
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241680–8

Figure 12.1. E3-page, classes which are not multiples of b6.

Finally, applying d3 to the identity f (bi) = 0 gives rise to the identity

0 = d3(b6)(b6
1 + b3

1b3 + b2
3)+ (b6

1 + b3
1b3 + b2

3)ζ
3b1b6,

which forces the desired differential on b6.

It is convenient to write a class on the zero-line in the form b4k−3l
1 bl

3 or
b2+4k−3l

1 bl
3b6 if it is in degree congruent to 0 mod 8, and in the form b−2+4k−3l

1 bl
3 or

b4k−3l
1 bl

3b6 if it is in degree equivalent to 4 mod 8. In these terms we have

d3(b2+4k−3l
1 bl

3) = η3 · b4k−3l
1 bl

3,

d3(b
4(k+1)−3l
1 bl

3b6) = η3 · b2+4k−3l
1 bl

3b6.

More, we have differentials

d3(ζ
4k+2) = η · ζ 4k+4 and d3(ζ

4kb6) = η · ζ 4k+2b6.

Mod 2, we then find that d3 is injective on classes where t − 2s ≡ 4 mod 8.
A schematic diagram of this differential appears in Figures 12.1 and 12.2,

broken up according to whether the classes are multiples of b6. Note that an arrow
indicates that all classes in the indicated degree support a differential.

The surviving classes on the zero-line are generated by

b4
1, b1b3, b4

3, b2
1b6, b2

3b6, 2b2
1, 2b2

3, 2b6;
the classes which are not multiples of 2 support η2-multiples. In filtrations
above 2, almost all classes are annihilated. The remaining ones are all ν-multiples
of the classes ηkζ 4l and ηkζ 4l+2b6 for 0 6 k 6 2, ζ lb4k−l

3 , and ζ lb4k−l+2
3 b6.

The remaining classes on the 1-line and 2-line consist only of the b4
3-multiples

of the following classes:

ζ 2b2
3, ζb3

3, ηζb3
3, ζb3b6, ζ

2b6, ηζb3b6.
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362820124

Figure 12.2. E3-page, classes which are multiples of b6.

484032241680–8–16

Figure 12.3. E7-page, classes which are not multiples of b6.

Multiplications by b4
3, ζ 4, and ν are injective in filtrations greater than or equal

to 3.

PROPOSITION 12.6. The only nonzero d7-differentials in the homotopy fixed-
point spectral sequence are

d7(ζ
kbl

3) = ζ k+7bl+2
3 if 3l − k ≡ 4 mod 8, and

d7(ζ
kbl

3b6) = ζ k+7bl+2
3 b6 if 3l − k ≡ 6 mod 8.

This differential is pictured in Figures 12.3 and 12.4; dashed lines indicate
multiplication by ν. It may be more concisely expressed as saying that ν-towers in
degrees t −2s ≡ 8 mod 16 support differentials which hit the ν-towers in degrees
t − 2s ≡ 0 mod 16.

Proof. We first note that all possible targets of a differential are elements which
are not ν-torsion, and so the only possible sources of a differential are the non-ν-
torsion elements ζ kbl

3 and ζ kbl
3b6 which have survived to E7.

We have differentials d7ζ
4 = νζ 8, and d7ν = 0; by the Leibniz rule, we then

find the desired differentials on all classes of the form ζ kbl
3.
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484032241680–8–16

Figure 12.4. E7-page, classes which are multiples of b6.

Multiplying the equation f (bi) = 0 by ζ 4 gives the identity on E7-pages:

(ζ 2b6)
2 + (ζ 2b2

3)(ζ
2b6)+ (ζ 2b2

3)
2 = 0.

The Leibniz rule then implies d7(ζ
2b2

3)(ζ
2b6)= ζ 2b2

3d7(ζ
2b6), and thus

d7(ζ
2b6) = νζ 4(ζ 2b6). The Leibniz rule then determines the differentials on

all elements ζ kbl
3b6.

There is no room for further differentials; the only remaining classes in high
filtration are ζ 8k and ζ 8k+6b6, which are in even total degree and cannot be a target
of a differential.

The following assembles the final result.

THEOREM 12.7. The nonnegative-degree homotopy groups of ehZ/2 fit into a
short exact sequence 0→ K → π∗ehZ/2〈0〉 → R→ 0. The terms in this sequence
are given as follows.

• R is the pullback in the diagram of rings

R //

��

Z[b2
1, b2

3, b6, η]/(2η, η3, f (bi ))

��
〈b4

1, b1b3, b1b5
3, b8

3, b2
1b6, b1b3

3b6, b6
3b6, η〉 �

� // Z/2[b2
1, b1b3, b2

3, b6, η]/(2η, η3, f (bi )),

where the lower map is the inclusion of the subring generated by the given
elements.

• K is freely generated over Z/2[b8
3] by the following classes:

ν, ν2, ν(b6
3b6), ν

2(b6
3b6),

ζb3
3, η(ζb3

3), ν(ζb3
3), ζb3b6, η(ζb3b6), ν(ζb3b6),

η(b4
3), η

2(b4
3), η(b2

3b6), η
2(b2

3b6),

ζ 2b6
3, ν(ζ

2b6
3), ζ 2b4

3b6, ν(ζ
2b4

3b6).

(12.1)
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12.2. Nonconnective fixed points. We can use the results of the previous
section to determine the homotopy fixed-point spectrum for the action of Z/2
on E .

Due to the size and shape of the vanishing regions in the homotopy fixed-
point spectral sequences of the previous section, we observe that the localizations
(a−1

1 e)hZ/2 and (a−1
3 e)hZ/2 have homotopy groups which are calculated by the

localizations of the E∞ terms of the homotopy fixed-point spectral sequences.
We write these as b−1

1 TAFD and b−1
3 TAFD, though they are actually formed

by inverting b4
1 and b8

3. The elements ζ 8k and ζ 8k+6b6 are destroyed in these
localizations.

The homotopy groups of b−1
1 TAFD form the ring which fits into the following

pullback diagram.

π∗b−1
1 TAFD //

��

Z[b±2
1 , b1b3, b6, η]/(2η, η3, f (bi))

��
〈b±4

1 , b1b3, b2
1b6, η〉 � � // Z/2[b±2

1 , b1b3, b6, η]/(2η, η3, f (bi)).

The homotopy groups of b−1
3 TAFD are more convenient to study by introducing

y = b−2
3 b6, which is a degree-zero term satisfying a quadratic polynomial. The

homotopy groups are free on {1, y} over a subring S which essentially coincides
with the calculation of Mahowald and Rezk [MR09]. This subring lives in a short
exact sequence 0 → L → S → b−1

3 S → 0. Here b−1
3 S fits into the pullback

diagram

b−1
3 S //

��

Z[b2
1, b±2

3 , η]/(2η, η3)

��
〈b1b3, b1b5

3, b±8
3 , η〉 �

� // Z/2[b2
1, b1b3, b±2

3 , η]/(2η, η3),

and L is a free Z/2[b±8
3 ]-module on the classes from Equation (12.1) that do not

involve b6.
The long exact sequence on homotopy groups induced by the homotopy

pullback can then be employed to produce a description of the homotopy groups
of TAFD. There is a short exact sequence 0 → b−1

3 K → π∗TAFD → R′ → 0,
where the ring R′ agrees with R in nonnegative degrees.

13. Homotopy groups of (TAFD)w15

In this section we compute the homotopy groups of TAFD after taking
homotopy fixed points with respect to the Atkin–Lehner operator w15. Much
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like the previous section, this largely coincides with the Mahowald–Rezk
computation, but adds some new v1-periodic classes.

We first consider the homotopy fixed-point spectral sequence for the spectrum
ew15 ; here e is the connective spectrum of Proposition 11.1. Recall that ω ∈ OK is
a primitive third root of unity.

PROPOSITION 13.1. The homotopy fixed-point spectral sequence for the
homotopy groups of ew15 degenerates at E2 = E∞, with target

OK [a1, a3, τ ]/(2τ, (a3
1 − ωa3)(a3

1 − ω2a3)τ ). (13.1)

The homotopy fixed-point spectral sequences for a−1
1 e, a−1

3 e, and (a1a3)
−1e

degenerate in the same way.

Proof. By Proposition 10.2, the action of w15 fixes a1 and a3, but sends a6 to
−a6−(a6

1+a3
1a3+a2

3). A direct calculation of the group cohomology gives the E2-
term described in Equation (13.1), where τ is the generator of H 2(Z/2;Z). The
terms are concentrated in even degrees, and so the spectral sequence collapses.

The corresponding calculation for the localizations follows in the same fashion.

PROPOSITION 13.2. The class τ of Equation (13.1) lifts to a class in the
homotopy of ew15 satisfying [2](τ ) = 0, where [2](x) is the 2-series of the formal
group law of e.

Proof. The spectrum ew15 , being a ring spectrum with homotopy concentrated in
even degrees, is complex orientable; we may recast the resulting map MU →
ew15 as a Z/2-equivariant map MU → e, where Z/2 acts trivially on MU and
by the Atkin–Lehner involution w15 on e. The resulting map on homotopy fixed
points is a map MU ∗(BZ/2)→ π∗ew15 , and the class τ lifts to the orientation in
MU 2(CP∞) whose image in MU 2(BZ/2) satisfies [2](τ ) = 0.

COROLLARY 13.3. The class τ lifts to an element in the homotopy of the
spectrum Ew15 on which a1 and a3 act invertibly.

Proof. We have that (a6
1+a3

1a3+a2
3)τ is zero in the homotopy fixed-point spectral

sequences. After inverting a3, the action of the element a3
1/a3 is as a third root of

unity on τ , and hence invertible. The element a3/a3
1 acts as a third root of unity

after inverting a1. As the action of a1 and a3 on τ are invertible after inverting any
of a1, a3, or a1a3, it is so in Ew15 .
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COROLLARY 13.4. We have an isomorphism

π∗Ew15 ∼= (E∗)w15 ⊕ (OK [a±1
1 ])2 · τ,

We have τ 2 = ατ for α some element congruent to 2a−1
1 mod 4.

Proof. By Corollary 13.3, the action of a1 on τ is invertible, and by
Proposition 13.2 we know that τ is annihilated by the 2-series. We have

[2](τ ) = 2τ(1+ τ 2 f0(τ
2))+ a1τ

2(1+ τ 2 f1(τ
2))

for some power series f0 and f1, and this implies that

τ 2 = a−1
1 (−2τ)(1+ τ 2g(τ 2))

for some power series g. Applying the Weierstrass preparation theorem to g, we
find that τ 2 = ατ for some α congruent to 2a−1

1 mod 4.
Mod 2, the element a3/a3

1 acts as a third root of unity on τ . By Hensel’s lemma,
there is a 2-adically convergent power series which is a unit multiple of a3/a3

1 ,
acting as a third root of unity on τ . This determines the action of the entire ring
(a−1

1 E∗)w15 : in particular, it factors through OK [a±1
1 ](ω) ∼= (OK [a±1

1 ])2.

We now consider the homotopy fixed-point spectral sequence for the action
of Z/8 on Ew15 . We have a comparison with the homotopy fixed-point spectral
sequence for E , and we will now show that τ must support some nontrivial
differential.

PROPOSITION 13.5. The image of the class τ in the homotopy of Ew15 does not
lift to the homotopy of (TAFD)w15 , or its localizations by a1, a3, or (a1a3).

Proof. To show that τ does not lift to the homotopy fixed points of Z/8 × Z/2
on E , we consider the Z/2-equivariant maps S→ TAFD → E , where the Atkin–
Lehner involution acts on both TAFD and E . The class τ appears as the unique
generating class in filtration 2 and homotopy degree −2 in all three homotopy
fixed-point spectral sequences, and in the homotopy fixed-point spectral sequence
for TAFD the only nonzero class in higher filtration is ζ 14b6.

The homotopy fixed-point spectral sequence for S calculates the stable
cohomotopy groups of RP∞, and in this spectral sequence the class τ supports a
d2-differential d2(τ ) = ητ 2 due to the attaching maps for the cells constructing
RP∞. As the map S → TAFD is an inclusion of a summand in homotopy
degrees −7 through 2, the class τ also supports a d2-differential in the homotopy
fixed-point spectral sequence for (TAFD)w15 .

The only class in higher filtration whose image could possibly be τ is ζ 14b6.
However, this class is annihilated by inverting a1, which acts invertibly on τ .
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PROPOSITION 13.6. In the homotopy fixed-point spectral sequence for the action
of Z/8 on Ew15 , we have a d3-differential d3(τ ) = η3b−2

1 τ . All remaining
differentials are determined by their image in the homotopy fixed-point spectral
sequence for E.

Proof. We first consider the E3-page. The elements τ and b2
1τ are in the kernel

of the map to the E3-page for E , and so can only support differentials to unit
multiples of η3b−2

1 τ or η3τ , respectively.
From the Leibniz rule either τ or b2

1τ must support a nonzero differential. As
the element b3/b3

1 is a cycle, we cannot have both of these differentials occurring.
No matter which differential occurs, no elements in the kernel of the map of
homotopy fixed-point spectral sequences survive above the 2-line, and so this
is the only possible differential that τ could support. Therefore, we must have
d3(τ ) = η3b−2

1 τ and d3(b2
1τ) = 0.

The d3-differential is determined on classes which are not multiples of τ by
their image in the homotopy fixed-point spectral sequence for E . On the E4-page,
the homotopy fixed-point spectral sequence for Ew15 maps surjectively onto that
for E , and the map is an isomorphism above the 2-line. Therefore, the remaining
differentials are determined by their image in the homotopy fixed-point spectral
sequence for E .

As a consequence of this description of the spectral sequence, we have the
following.

THEOREM 13.7. Under the map

π∗(TAFD)w15 → π∗TAFD,

the kernel is isomorphic to π∗(Σ2KO) ⊗ W (F4), and the image in the homotopy
of (TAFD)w15 consists of those classes in the homotopy of TAFD which are not
multiples of b6.
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