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Abstract. We present METAPHOR (Machine-learning Estimation Tool for Accurate PHOto-
metric Redshifts), a method able to provide a reliable PDF for photometric galaxy redshifts
estimated through empirical techniques. METAPHOR is a modular workflow, mainly based on
the MLPQNA neural network as internal engine to derive photometric galaxy redshifts, but
giving the possibility to easily replace MLPQNA with any other method to predict photo-z’s
and their PDF. We present here the results about a validation test of the workflow on the
galaxies from SDSS-DR9, showing also the universality of the method by replacing MLPQNA
with KNN and Random Forest models. The validation test include also a comparison with the
PDF’s derived from a traditional SED template fitting method (Le Phare).
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1. Introduction
Galaxy redshifts are important for a large number of studies related with the ex-

tragalactic universe, due to their direct correlation with the distance of the sources.
Photometric galaxy redshifts (hereafter photo-z’s) are crucial in the current era of large
surveys, based on massive datasets. They are used in a wide plethora of tasks, such as, for
example, to constrain the dark matter and dark energy contents of the Universe through
weak gravitational lensing, to understand the cosmic large scale structure, by identifying
galaxies clusters and groups, to map the galaxy color-redshift relationships, as well as
to classify astronomical sources. More recently, the attention in this field has been fo-
cused on the techniques able to compute a Probability Density Function (PDF) of the
photo-z’s for each individual astronomical source, with the goal to improve the knowl-
edge about statistical reliability of photo-z estimations. In the machine learning context
several methods have been proposed to approach this task, see for instance: (Bonnet
2013, Rau et al. 2015, Sadeh et al. 2015, Carrasco & Brunner 2014). Here we present
a new method, named METAPHOR (Machine-learning Estimation Tool for Accurate
PHOtometric Redshifts), a modular workflow including a machine learning engine to
derive photo-z’s and a method to produce their PDF’s, based on the evaluation of photo-
metric data uncertainties to derive a perturbation law of the photometry. With this law
we perform the perturbation of the features, in a controlled, not biased by systematics,
way. A proper error fitting, accounting for the attribute errors, allows to constrain the
perturbation of photometry on the biases of the measurements.
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2. The METAPHOR workflow
The conceptual flow of the METAPHOR pipeline is based on the following sequence

of tasks: given a multi-band data sample containing the spectroscopic galaxy redshifts,
(i) for each band involved, a photometry perturbation function is derived; (ii) the data
sample is randomly shuffled and split into a training and a test set; (iii) the photometry
of the test set is perturbed, thus obtaining an arbitrary number N of test set replica; (iv)
finally, the machine learning engine is trained and the N + 1 test sets (N perturbed plus
the unperturbed one) are submitted to the training model to derive the PDF of photo-z
estimations.

In the last step, the N +1 values, output of the trained network, are used to calculate,
for each bin of redshift, the probability that a given photo-z value belongs to each bin. The
binning step B, as well as the number N of perturbations, are user defined parameters, to
be chosen accordingly to the specific requirements of the experiment. For a given photo-z
binning step B, we calculate the number of photo-z’s for each bin (CB,i ∈ [Zi, Zi+B [)
and the probability that the redshift belongs to the bin is P (Zi � Photo-z < Zi+B ) =
CB,i/(N + 1). The resulting PDF is thus formed by all these probabilities.

At the end of the procedure, a post-processing module calculates the final photo-z
estimation and PDF statistics. For instance, we evaluate the photo-z’s in terms of a
standard set of statistical estimators for the quantity Δz = (zspec − zphot)/(1 + zspec)
on the objects in the blind test set: (a) bias: defined as the mean value of the residuals
Δz; (b) σ: the standard deviation of the residuals; (c) σ68 : the radius of the region that
includes 68% of the residuals close to 0; (d) NMAD: the Normalized Median Absolute
Deviation of the residuals, defined as NMAD(Δz) = 1.48 × Median(|Δz|); (e) fraction
of outliers with |Δz| > 0.15; (f) skewness: asymmetry of the probability distribution of
a real-valued random variable around the mean.

Furthermore, in order to evaluate the cumulative performance of the PDF we com-
pute the following three estimators on the stacked residuals of the PDF’s: (1) f0.05 : the
percentage of residuals within ±0.05; (2) f0.15 : the percentage of residuals within ±0.15;
(3) 〈Δz〉: the weighted average of all the residuals of the stacked PDF’s.

The photometry perturbation is based on the following expression, applied on the given
j magnitudes of each band i as many times as the number of perturbations of the test
set:

mij = mij + αiKij ∗ gaussRandom(μ=0,σ=1) (2.1)

The term αi is a multiplicative constant, used to customize the photometric error trend
on the base of the specific band photometric quality. This could result particularly useful
in case of photometry obtained by merging different surveys; the quantity Kij (x) is the
weighting coefficient associated to each specific band used to weight the Gaussian noise
contribution to magnitude values; finally, the term gaussRandom(μ=0,σ=1) is a random
value extracted from a normal distribution.

We investigated four different types of the weighting coefficient Kij (x). First one is a
heuristically chosen real number between 0 and 1, implying a same width of the gaussian
noise for each point. The second choice is based on weighting the Gaussian noise contri-
bution using the individual magnitude error provided for each source. The third one is
a polynomial fitting: a binning of photometric bands is performed, in which a polyno-
mial fitting of the mean magnitude errors is used to reproduce the intrinsic trend of the
distribution. The last option is a slightly more sophisticated version of the polynomial
fitting, coupled with a minimum value chosen heuristically, thus resulting in a bi-modal
perturbation function.
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3. The experiments

As introduced, one of the most suitable features of METAPHOR is the invariance to
the specific empirical model used as engine to estimate photo-z’s. In order to demon-
strate this capability, we tested the METAPHOR workflow using three different machine
learning methods: MLPQNA neural network (Byrd et al. 1994), already successfully used
in several astrophysical contexts (Brescia et al. 2013, Brescia et al. 2014a, Cavuoti et al.
2012, Cavuoti et al. 2014a, Cavuoti et al. 2014b, Cavuoti et al. 2015b), the standard KNN
(Cover & Hart 1967), and Random Forest (Breiman 2001). In particular, the experiment
with a very basic machine learning model like KNN method, would demonstrate the most
general applicability of any empirical model engine within METAPHOR. Furthermore,
by considering that the methods mostly based on SED template fitting intrinsically pro-
vide the PDF of the estimated photo-z’s, we compared METAPHOR with the Le Phare
model (Ilbert et al. 2016).

The real data used for the tests were a galaxy spectroscopic catalogue sample extracted
from the Data Release 9 (DR9) of the Sloan Digital Sky Survey, SDSS, (York et al.2000).
By using MLPQNA as internal engine for photo-z estimation, we reached values of σ =
0.024, bias ∼ 0.0063 and ∼0.12% of outliers. These statistical results are slightly worse
than what we showed in a previous article (Brescia et al. 2014c), where we already used
the MLPQNA method to derive photo-z’s for the galaxies of SDSS-DR9. However, this
discrepancy is only apparent, by considering that the spectroscopic KB used in the cited
work was much larger than the one used here (∼150, 000 training objects against only
∼50, 000 objects used for the training in this case). The decision of such limited sample
used in the present experiment was induced by the different goal of the experiment.

We performed a large number of experiments with MLPQNA using 100 photometric
perturbations in order to find the best perturbation law. The most performing experiment
turns out to be the one based on a bi-modal perturbation law with threshold 0.05 and
a multiplicative constant α = 0.9. This experiment leads to a stacked PDF with ∼92%
within [−0.05, 0.05], σ68 = 0.019, ∼21% of the objects falling within the peak of the
PDF, ∼53% falling within 1 bin from the peak and ∼82% falling within the PDF.

After having found the best perturbation law, we executed 1000 perturbations of the
test set. This experiment led to an increase in the statistical performances, obtaining
σ68 = 0.018 and ∼21.8% within the peak of the PDF, ∼54.4% within 1 bin from the
peak and ∼89.6% inside the PDF.

The same configuration and perturbed data have been used to estimate photo-z’s by
replacing MLPQNA with, respectively, the KNN and Random Forest models within the
METAPHOR workflow. In parallel, we derived also the photo-z PDF’s with the Le Phare
method. The statistical results for all these methods are summarized in Table 1.

Although there is a great difference in terms of photo-z estimation statistics between
Le Phare and MLPQNA (see Table 1), the results of the PDF in terms of f0.15 are
comparable. But the greater efficiency of MLPQNA induces an improvement in the range
within f0.05 , where we find ∼92% of the objects against the ∼72% for Le Phare. Both
individual and stacked PDF’s are more symmetric in the case of empirical methods. This
is particularly evident by observing the skewness (see Table 1), which is ∼100 times
greater in the case of Le Phare.

The presented photo-z estimation results and the statistical performance of the cu-
mulative PDF’s, achieved by MLPQNA, RF and KNN through the proposed workflow,
demonstrate the validity and reliability of the METAPHOR strategy, despite its simplic-
ity, as well as its general applicability to any other empirical method.
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Estimator MLPQNA KNN RF Le Phare

bias 0.0006 0.0029 0.0035 0.0009
σ 0.024 0.026 0.025 0.060

σ68 0.018 0.020 0.019 0.035
NMAD 0.017 0.018 0.018 0.030
skewness −0.17 0.330 0.015 −18.076

outliers > 0.15 0.11% 0.15% 0.15% 0.69%

f0 .05 91.7% 92.0% 92.1% 71.2%
f0 .15 99.8% 99.8% 99.7% 99.1%
〈Δz〉 −0.0006 −0.0018 −0.0016 0.0131

Table 1. Statistical results of photo-z’s and related PDF estimation on the blind test set
extracted from SDSS-DR9, obtained by three machine learning models (MLPQNA, KNN and
Random Forest), alternately used as internal engine of METAPHOR and by the SED template
fitting method Le Phare. The last three estimators are related to the cumulative PDF of the
estimated photo-z’s. See text for the explanation of the statistical estimators.
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