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A RECOLLEMENT APPROACH TO GEIGLE–LENZING
WEIGHTED PROJECTIVE VARIETIES

BORIS LERNER and STEFFEN OPPERMANN

Abstract. We introduce a new method for expanding an abelian category and

study it using recollements. In particular, we give a criterion for the existence

of cotilting objects. We show, using techniques from noncommutative algebraic

geometry, that our construction encompasses the category of coherent sheaves

on Geigle–Lenzing weighted projective lines. We apply our construction to some

concrete examples and obtain new weighted projective varieties, and analyze

the endomorphism algebras of their tilting bundles.
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§1. Introduction

In their famous paper [GL], Geigle and Lenzing introduced an important

class of abelian categories with a tilting object (see Definition 2.4), which

have subsequently been called coherent sheaves on Geigle–Lenzing (GL)

weighted projective lines. This category has played an important role in

many fields, in particular representation theory of finite-dimensional alge-

bras. It was recently generalized in [HIMO] to include higher-dimensional
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72 B. LERNER AND S. OPPERMANN

projective spaces. A different interpretation of these categories was discov-

ered in [CI, RVdB] for the dimension-1 case and more generally in [IL],

where these categories are shown to be equivalent to module categories

modA of a certain order A on Pd, which we call a GL order (see below).

Both interpretations build on Artin and Zhang’s theory of noncommutative

projective schemes [AZ].

Viewing GL weighted projective spaces as module categories allows for

further, very fruitful, generalizations which is what we explore in this paper.

The idea is rather simple: in [IL], all GL orders that were considered were

always sheaves on Pd, now we allow the center to be other varieties.

Definition 1.1. Fix a scheme X over a field k, and for i= 1, . . . , n

fix prime divisors Li on X and integer weights pi > 2. The Geigle–Lenzing

order A (GL order, for short) with center X associated to this data is the

sheaf of noncommutative algebras

A=

n⊗
i=1

Ai, whereAi :=


O O(−Li) . . . O(−Li) O(−Li)
O O . . . O(−Li) O(−Li)
...

...
. . .

...
...

O O . . . O O(−Li)
O O . . . O O

⊂Opi×pi

and O =OX .

The aim of this paper is to study the category modA of GL orders A. In

particular, we give a criterion on the existence of tilting sheaves. First, we

give a description of modA in terms of grid categories A[p1
√
η1, . . . , pn

√
ηn],

which are constructed from an abelian category A with endofunctors Fi :

A→A and natural transformations ηi : Fi→ idA for i= 1, . . . , n. Moreover,

we give a sufficient condition for A[p1
√
η1, . . . , pn

√
ηn] to have a tilting object.

Then, we apply these results to GL orders and obtain the following result,

where, for each subset I ⊆ {1, . . . , n}, we denote

OI =
⊗
i∈I
OLi =O∩i∈ILi .

Theorem 1.2. (Theorem 6.7) Let A be a GL order on a smooth projec-

tive variety over an algebraically closed field k, and suppose that
∑
Li is a

simple normal crossing divisor. Assume that there is a collection of tilting

objects TI ∈modOI for all I ⊆ {1, . . . , n}, such that
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GEIGLE–LENZING WEIGHTED PROJECTIVE VARIETIES 73

• TI ⊗OJ ⊗O(−Lj)→ TI ⊗OJ is injective, whenever I, J and {j} are

pairwise disjoint;

• ExtiOJ (TI ⊗OJ , TI∪J) = 0 for all i > 0, whenever I ∩ J = ∅.

Then, ⊕
I⊆{1,...,n}

⊗
i 6∈I

Aifi ⊗
⊗
i∈I

Ai
〈ei〉
⊗ TI


is tilting in modA, where ei and fi are matrices of size pi × pi with 1 in the

bottom right (respectively top left) position, and 0 elsewhere.

We apply this result to several concrete projective varieties. For instance,

let X = P1 × P1, and let L1 and L2 be (1, 1)-divisors. Suppose that

L1 ∩ L2 = p+ q. Consider

A=A1 ⊗A2 =

[
O O(−L1)
O O

]
⊗
[
O O(−L2)
O O

]
.

Then, T∅ =O ⊕O(1, 0)⊕O(0, 1)⊕O(1, 1), Ti =OLi(1)⊕OLi(2) for

i= 1, 2, and T1,2 =Op ⊕Oq satisfies the assumptions of the theorem.

Hence, a tilting object in modA is

(A1f1 ⊗A2f2 ⊗ T∅) ⊕
(
A1

〈e1〉
⊗A2f2 ⊗ T1

)
⊕
(
A1f1 ⊗

A2

〈e2〉
⊗ T2

)
⊕
(
A1

〈e1〉
⊗ A2

〈e2〉
⊗ T1,2

)
.

Our approach is rather general and categorical. In Section 2, we begin

with an abelian category A and an integer n> 1, we fix endofunctors Fi,

natural transformations ηi and integer weights pi > 2, and construct a new

category A[p1
√
η1, . . . , pn

√
ηn]. In Section 3, we analyze the case n= 1 and,

using recollements, give a criterion for this category to have a cotilting

object. Our emphasis on cotilting, as opposed to tilting, is because the

cotilting criterion is easier to check in modA. (Abstractly, a dual statement

for tilting holds, but it does not seem to apply to the concrete setup as

readily.) Due to the existence of Serre duality in modA, cotilting and tilting

are actually equivalent, and so this subtlety causes no issues in practice. In

Section 4, we analyze the situation for an arbitrary n. In Section 5, the global

dimension of these categories is computed, showing that it often coincides

with the global dimension of the original category. In Section 6, we translate
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74 B. LERNER AND S. OPPERMANN

the categorical results to orders, to obtain the main result as stated above.

Finally, in Section 7, we show how our results may be applied to concrete

situations: to Hirzebruch surfaces and to projective spaces. In the Pd case,

we show that the tilting bundle we obtain is in fact a generalization of the

squid algebra.

§2. Setup and notation

Throughout, k denotes an algebraically closed field. Let A be a k-linear,

Hom-finite, abelian category. Throughout, we compose morphisms left to

right. Fix, for i= 1, . . . , n, commuting exact functors Fi :A→A, natural

transformations ηi : Fi→ idA and integer weights pi > 2. For any M ∈ A, we

denote

ηi(M) : FiM →M,

instead of the more conventional notation ηi,M . Using these data, we now

define a new category

A[
p1
√
η1, . . . ,

pn√ηn]

of n-dimensional grids of size (p1 + 1)× · · · × (pn + 1) of commuting mor-

phisms. To make this precise, we need to introduce some notation. Let

S = {1, . . . , p1} × · · · × {1, . . . , pn} ⊆ Zn,

and denote by ei the ith basis vector in Zn.

Throughout, for compact notation, whenever objects or morphisms are

indexed by S we also allow nonpositive indices and interpret them via

Ma := FiMa+piei , and similar for morphisms. Note that the assumption

that the Fi commute makes this well defined even if several indices are

nonpositive.

With this notation, we define objects of A[p1
√
η1, . . . , pn

√
ηn] to be tuples

((Ma)a∈S , (f
i
a :Ma−ei →Ma)16i6n

a∈S
)

of objects and morphisms in A, subject to the following conditions.
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• Commutativity condition: for any i, j ∈ {1, . . . , n} and a ∈ S, we have

f ja−eif
i
a = f ia−ejf

j
a. That is, the following diagram commutes:

Ma−ei−ej

fja−ei //

f ia−ej

��

Ma−ei

f ia
��

Ma−ej
fja // Ma

.

• Cycle condition: for any i ∈ {1, . . . , n} and a ∈ S, we have f ia−(pi−1)ei
· · ·

f ia−eif
i
a = ηi(Ma).

A morphism ϕ : (Ma, f
i
a)→ (Na, g

i
a) ∈ A[p1

√
η1, . . . , pn

√
ηn] is a set of mor-

phisms ϕa :Ma→Na in A with a ∈ S, such that the following diagram

commutes:

Ma−ei
f ia //

ϕa−ei

��

Ma

ϕa

��
Na−ei

gia // Na

Remark 2.1. A version of the grid category with one weight (see

Example 2.2 below) has been studied by Lenzing [L] under the name category

of p-cycles. His construction, in turn, was inspired by Seshadri’s discussion

[S] of quasiparabolic structures of filtration length p.

Example 2.2. If n= 1, then objects in A[p
√
η] are sequences

M0 = FMp
f1−→M1

f2−→ . . .
fp−→Mp

such that the composition

FMp−d−1
Ffp−d−−−−→ . . .

Ffp−−→ FMp
f1−→M1

f2−→ . . .
fp−d−−−→Mp−d

is equal to η(Mp−d) : FMp−d→Mp−d for all 06 d6 p− 1.

In particular, it is worth noting that A[1
√
η] is isomorphic to A: objects

of A[1
√
η] are diagrams FM1

η(M1)−−−−→M1, and thus are uniquely given by an

object M1 of A. One easily sees that the morphism spaces also match.
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76 B. LERNER AND S. OPPERMANN

Example 2.3. Suppose that n= 2, p1 = 2 and p2 = 3. Then, objects in

A[p1
√
η1, p2
√
η2] are

F1F2M2,3

F1f2(2,1)
//

F2f1(1,3)
��

F1M2,1

F1f2(2,2)
//

f1
(1,1)

��

F1M2,2

F1f2(2,3)
//

f1
(1,2)

��

F1M2,3

f1
(1,3)

��
F2M1,3

f2
(1,1)

//

F2f1(2,3)
��

M1,1

f2
(1,2)

//

f1
(2,1)

��

M1,2

f2
(1,3)

//

f1
(2,2)

��

M1,3

f1
(2,3)

��
F2M2,3

f2
(2,1)

// M2,1

f2
(2,2)

// M2,2

f2
(2,3)

// M2,3

where all of the squares commute and the rows and columns satisfy the

cycle conditions.

In this paper, we are primarily concerned with the existence of cotilting

objects in A[p1
√
η1, . . . , pn

√
ηn].

Definition 2.4. Let A be an abelian category. We say that an object

T in A is tilting (resp. cotilting), if satisfies the following two conditions.

• Rigidity: ExtiA(T, T ) = 0 for all i > 0.

• Generation (resp. cogeneration): ExtiA(T, M) = 0 (resp. ExtiA(M, T ) = 0)

for all i> 0 implies M = 0.

In the next two sections, we focus on proving results regarding cotilting

objects, rather than tilting. Analogous results can be derived for the

latter; however, the corresponding results are of little practical use in the

applications to orders that we have in mind in Sections 6 and 7. However,

due to the existence of Serre duality in the order setting, tilting and cotilting

objects coincide.

§3. Cotilting for the case with only one weight

In this section, we analyze the situation where n= 1, that is, the category

A[p
√
η]. Recall that this category was already introduced in Example 2.2. The

results we obtain will be useful when we study the general case.

We denote by Aη the full subcategory of A with objects given by

Aη := {M ∈ A | η(M) = 0}.

We begin by considering the following special case, which will prove to be

an important ingredient of the general discussion later. Let F = 0, and η be
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the zero transformation F → idA. To ease notation, we employ the following

convention.

Convention 3.1. Whenever η is the zero transformation, we consider it

as a natural transformation from the zero functor to the identity functor.

(A priori it would make sense to consider zero transformations between

any two functors. However, in this paper, we will soon assume (see 3.8) that

η is injective on sufficiently many objects. Thus, for us it makes sense to

only consider zero transformations starting in zero functors.)

In this case,

A[
p√

0] = repA ~Ap := Fun( ~Ap,A),

where ~Ap is the linearly oriented quiver of Dynkin type A and p vertices and

viewed as a (finite) category in the obvious way. We have an exact functor

δ :A→A[p
√

0], with

δ(M) := (0→M → · · · →M)⊕ · · · ⊕ (0→M → 0→ · · · → 0),

which has an exact left adjoint

δλ(0→M1→ · · · →Mp) =M1 ⊕ · · · ⊕Mp.

In the following, we prove that exact adjoint functors are also adjoint with

respect to Ext. Since the most usual way to see this is to use projective or

injective resolutions, which we do not assume to exist here, we give a small

argument using Yoneda extension groups.

Lemma 3.2. Let A and B be exact categories, and let L :A→B and

R : B →A be a pair of exact adjoint functors. Then,

ExtnA(A, RB)' ExtnB(LA, B)

functorial in A ∈ A and B ∈ B.

Proof. We view the Ext groups as Yoneda Ext groups and use

the following notation. Given E ∈ Exti(A, B) and maps α :B→B′ and

β :A′→A, we denote by α∗E ∈ Exti(A, B′) the extension obtained by

taking the pushout along α and by β∗E ∈ Exti(A′, B) the extension obtained

by taking the pullback along β. Note that by [ML, Lemma 3.1.6] we have

α∗β
∗E' β∗α∗E.
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To prove the lemma, we give two maps, and show that they are mutually

inverse to each other. From left to right, let E ∈ ExtnA(A, RB). Since L

is exact, we may apply it to E, obtaining L(E) ∈ ExtnB(LA, LRB). Now

consider the counit of the adjunction εB : LRB→B. Taking the pushout

along this map, we obtain εB∗L(E) ∈ ExtnB(LA, B).

Conversely, from right to left, we send E ∈ ExtnB(LA, B) to ω∗AR(E) ∈
ExtnA(A, RB), where ωA :A→RLA denotes the unit of the adjunction.

Both constructions are well defined on the Yoneda extension groups, and

are functorial. It remains to see that they are mutually inverse. Here, we

check that going from left to right and then back again one obtains the

extension one started with. Checking that this also works the other way

around is very similar.

Therefore, let E ∈ ExtnA(A, RB). Applying L to E and sending it to

ExtnB(LA, B) via a pushout along εB, and then applying R and sending it

back to ExtnA(A, RB) via the pullback along ωA, we obtain ω∗AR(εB∗L(E)) ∈
ExtnA(A, RB). Since R is exact, it commutes with pushouts, so this is the

same as applying RL to E and then taking the pushout along R(εB) followed

by a pullback along ωA. Thus, we have

ω∗AR(εB∗L(E))' ω∗AR(εB)∗RL(E)'R(εB)∗ω
∗
ARL(E).

Moreover, ω is a natural transformation id→RL, so ω∗ARL(E)' ωRB∗E.

Thus,

ω∗AR(εB∗L(E))'R(εB)∗ωRB∗E.

Now, the proof is completed using the general fact for adjoint pairs that

R(εB) ◦ ωRB = idRB.

Applying Lemma 3.2 to the special case of the exact adjoint functors δλ
and δ from above, we obtain the following.

Lemma 3.3. Let M, N ∈ A and i> 1. Then, ExtiA(M, N) = 0 if and

only if ExtiA[p
√

0]
(δM, δN) = 0.

Proof. Since δ and δλ are exact,

Exti
A[

p√
0]

(δM, δN) = ExtiA(δλδM, N) = ExtiA(Mn, N),

with n= 1
2p(p+ 1).

Proposition 3.4. If T is a cotilting object in A, then δ(T ) is a cotilting

object in A[p
√

0].
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Proof. By Lemma 3.3 and the fact that T is cotilting in A, we see that

δ(T ) is rigid. We now prove that δ(T ) cogenerates A[p
√

0]. Let M ∈ A[p
√

0],

and suppose that ExtiA[p
√

0]
(M, δ(T )) = 0. Then,

0 = Exti
A[

p√
0]

(M, δT ) = ExtiA(δλM, T ) = ExtiA(M1 ⊕ · · · ⊕Mp, T ),

and so, since T cogenerates A, M1 = · · ·=Mp = 0, that is, M = 0.

We now define recollements. These are used to study categories

A[p
√
η] here, and in the next section are also applied to the study of

A[p1
√
η1, . . . , pn

√
ηn] (for an arbitrary n).

Definition 3.5. [BBD] Let A′,A,A′′ be abelian categories. A recolle-

ment is the following diagram of additive functors:

A′
ι // A
ιρ

ee

ιλ

yy π // A′′

πλ

yy

πρ
ee

such that

(1) (ιλ, ι, ιρ) and (πλ, π, πρ) are adjoint triples;

(2) ι, πλ and πρ are fully faithful;

(3) im ι= ker π.

Example 3.6. Let A be a ring, and let e be an idempotent. Denote

by modA the category of left A-modules. Then, we have the following

recollement:

mod
A

〈e〉
ι // modA
ιρii

ιλ

uu
π // mod eAe

πλ

vv

πρ
hh

where

ι= inclusion, π = e(−), πλ =Ae⊗eAe −, πρ = HomeAe(eA,−),

ιλ =
A

〈e〉
⊗A −, ιρ = HomA

(
A

〈e〉
,−
)
.

If

A=

R I I
R R I
R R R

 3 e=

0 0 0
0 0 0
0 0 1

 ,

https://doi.org/10.1017/nmj.2016.39 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2016.39


80 B. LERNER AND S. OPPERMANN

where R is a ring and I is an ideal, then

A

〈e〉
=

R/I 0 0
R/I R/I 0

0 0 0

 ,
and so the recollement becomes

mod

[
R/I 0
R/I R/I

]
ι // mod

R I I
R R I
R R R


ιρll

ιλ
rr

π // modR

πλ
rr

πρll

with

πλ =

II
R

⊗R − πρ =

RR
R

⊗R −.
We now return to the category A[p

√
η]. Recall that we denote by Aη the

subcategory of A consisting of all objects on which η vanishes.

Proposition 3.7. The following is a recollement. (Recall that, by

Convention 3.1, on the left side we consider the functor 0, and not the

functor F , which is considered in the middle term.)

Aη[
p−1√

0]
ι // A[ p

√
η]

ιρii

ιλ

tt
π // A

πλ

ww

πρhh

where the functors are defined by the following:

ι(0→M1→ · · · →Mp−1) = (0→M1→ · · · →Mp−1→ 0),

π(FMp→M1→ · · · →Mp) =Mp,

πλM = (FM
id−→ FM → · · · → FM

η(M)−−−→M),

πρM = (FM
η(M)−−−→M

id−→M → · · · →M),

ιλ(FMp
f1−→M1

f2−→ . . .
fp−→Mp)

= (0→ cok f1→ cok f1f2→ · · · → cok(f1 · · · fp−1)),
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ιρ(FMp
f1−→M1

f2−→ . . .
fp−→Mp)

= (0→ ker(f2 · · · fp)→ ker(f3 · · · fp)→ · · · → ker fp).

Proof. Straightforward.

As we shall see in Proposition 6.1, the recollement from Example 3.6 is

a special case of the above more general recollement.

We observe that in the recollement of Proposition 3.7, the functors ι, π, πλ
and πρ are all exact. In particular, Lemma 3.2 implies that

Exti(M, πN)' Exti(πλM, N) and Exti(πM, N)' Exti(M, πρN)

for all i> 0.

The situation is slightly more involved for ι, since none of the functors

ιλ or ιρ is exact. To be able to still control its effect on Ext spaces we will

need the following assumption.

Assumption 3.8. For the remainder of this section, we assume that A
has enough objects M such that η(M) is a monomorphism. That is, for all

objects X ∈ A, there exists an object M ∈ A with η(M) a monomorphism,

and a surjection M �X.

Lemma 3.9. With the above assumption, the subcategory of A given by

E := {FMp
f1−→M1

f2−→ . . .
fp−→Mp ∈ A[

p√
η] | f1 . . . fp−1 is a monomorphism}

is a resolving subcategory.

The reason for choosing this particular subcategory is because im ι⊆ E ,

a fact that we need later.

Proof. It is clear from the definition that subobjects of objects in E are

in E again. In particular, E is closed under kernels of epimorphisms. Thus,

it remains to check that for any object M ∈ A[p
√
η] there is an epimorphism

E→M for some E ∈ E .

Let M• = FMp
f1−→M1

f2−→ . . .
fp−→Mp ∈ A[p

√
η]. For each i= 1, . . . , p, let

M•i = FMi→ FMi→ . . . FMi
η(Mi)−−−→Mi→ · · · →Mi,

where the η(Mi) is the ith arrow from the right. Note that we have a

surjective map ⊕M•i �M•. Furthermore, by the assumption on A, for all
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i, there exists an Xi ∈ A such that Xi�Mi and η(Xi) is a monomorphism.

Since F is exact, F (Xi)� F (Mi), and so

X•i := FXi→ FXi→ · · · → FXi ↪→Xi→ · · · →Xi�M•i ,

with X•i ∈ E . Thus, we have ⊕X•i �M•, and we are done.

Lemma 3.10. ιλ is exact on E.

Proof. Let 0→ (X, f)→ (Y, g)→ (Z, h)→ 0 be an exact sequence in

E . For each i= 1, . . . , p− 1, we end up with the following commutative

diagram, where all rows and columns are exact:

0 0

0 // FZp

OO

// Zi //

OO

cok(h1 . . . hi) // 0

0 // FYp //

OO

Yi

OO

// cok(g1 . . . gi) //

OO

0

0 // FXp
//

OO

Xi
//

OO

cok(f1 . . . fi) //

OO

0

0

OO

0

OO

From the snake lemma we see that

0→ cok(f1 . . . fi)→ cok(g1 . . . gi)→ cok(h1 . . . hi)→ 0

is exact, and so we are done.

These two lemmas, together with Lemma 3.2, give us the following.

Proposition 3.11. Let M ∈ E, and let N ∈ Aη[p−1
√

0]. Then, for any n

we have

Extn
Aη [

p−1√
0]

(ιλM, N) = ExtnA[p
√
η](M, ιN).

In particular, for M, N ∈ Aη[p−1
√

0] one obtains

ExtnA[p
√
η](ιM, ιN) = Extn

Aη [
p−1√

0]
(M, N).
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Proof. By the two lemmas above, we know that ιλ and ι form a pair of

exact adjoint functors between the exact categories E and Aη[p−1
√

0]. Thus,

it follows from Lemma 3.2 that

Extn
Aη [

p−1√
0]

(ιλM, N) = ExtnE(M, ιN).

Now, since E is resolving in A[p
√
η], we have

ExtnE(X, Y ) = ExtnA[p
√
η](X, Y )

for X, Y ∈ E . In particular,

Extn
Aη [

p−1√
0]

(ιλM, N) = ExtnA[p
√
η](M, ιN).

The “in particular” part now follows, since

ExtnA[p
√
η](ιM, ιN) = Extn

Aη [
p−1√

0]
(ιλιM︸ ︷︷ ︸

=M

, N).

Proposition 3.12. Suppose that T is a cotilting object in Aη[p−1
√

0] and

U is cotilting in A. Then, E = ιT ⊕ πρU is cotilting in A[p
√
η] if and only if

Exti(πρU, ιT ) = 0 for all i > 0.

Proof. Cogeneration: suppose that Exti(M, E) = 0 for all i> 0.

Then, 0 = Exti(M, πρU) = Exti(πM, U), and since U is cogenerating this

implies πM = 0. In this case, M ' ιN for some N . However, then 0 =

Exti(ιN, ιT ) = Exti(ιλιN, T ) = Exti(N, T ) implies, using that T is cogen-

erating, that N = 0, and so M = 0.

Rigidity: for i > 0, we have Exti(ιT, ιT ) = Exti(ιλιT, T ) = Exti(T, T ) = 0,

and similarly Exti(πρU, πρU) = Exti(ππρU, U) = Exti(U, U) = 0. Moreover,

Exti(ιT, πρU) = Exti(πιT, U) = Exti(0, U) = 0. Finally, by assumption,

Exti(πρU, ιT ) = 0, and so we are done.

We now analyze this condition further. We define an exact functor

∆ :Aη −→ Aη[
p−1√

0]

M 7−→ (0→M →M → · · · →M),

which has left and right adjoints

∆λ(0→M1→ · · · →Mp−1) = Mp−1,

∆ρ(0→M1→ · · · →Mp−1) = M1.
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Proposition 3.13. Let N ∈ Aη[p−1
√

0], and let M ∈ A. Then,

Exti(πρM, ιN) = 0 for all i > 0 if

• Exti(∆ ker η(M), N) = 0 for all i> 0 and

• Exti(∆ cok η(M), N) = 0 for all i > 0.

Proof. We have the following exact sequence:

0→ ι∆ ker η(M)→ πλM → πρM → ι∆ cok η(M)→ 0,

which we break up as follows:

0 → ι∆ ker η(M)→ πλM → C→ 0,

0 → C→ πρM → ι∆ cok η(M)→ 0.

Since for all i> 0

Exti(πλM, ιN) = Exti(M, πιN) = Exti(M, 0) = 0,

the first sequence implies that

Exti(C, ιN) = Exti−1(ι∆ ker η(M), ιN)

Proposition 3.11
= Exti−1(∆ ker η(M), N).

Inserting this in the long exact sequence obtained from the second short

exact sequence above, we obtain

· · · → Exti(ι∆ cok η(M), ιN)︸ ︷︷ ︸
=Exti(∆ cok η(M),N)

→ Exti(πρM, ιN)→ Exti(C, ιN)︸ ︷︷ ︸
=Exti−1(∆ ker η(M),N)

→ . . . ,

from which the proposition follows.

Theorem 3.14. Suppose that T is cotilting in Aη and U is cotilting in

A. If

• η(U) is injective, and

• ExtiAη(cok η(U), T ) = 0 for all i > 0,

then ιδ(T )⊕ πρU is cotilting A[p
√
η].

Proof. From Proposition 3.12 we require Exti(πρU, ιδT ) = 0. Now apply

Proposition 3.13 with M = U and N = δ(T ). The first assumption of 3.12

holds since η(U) is injective. For the second assumption, note that

Exti(∆ cok η(U), δ(T )) = Exti(cok η(U),∆ρδ(T )) = ExtiAη(cok η(U), T ).
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§4. Cotilting in the general case

In this section, we turn our attention to the more general category

A[
p1
√
η1, . . . ,

pn√ηn].

We give a criterion for this category to have a cotilting object.

For each I ⊆ {1, . . . , n}, we define the following full subcategory of A:

AI := {M ∈ A | ηi(M) = 0 for all i ∈ I} .

Furthermore, assume that each such AI has a cotilting object TI . In

particular, T∅ is a cotilting object in A.

Before we proceed, we need to introduce several new categories, just as

we did in Section 3, whose cotilting objects will be used to construct the

cotilting object we are seeking.

ForH, I, J ⊆ {1, . . . , n} withH = {a1, . . . , am} ⊆ I and J = {b1, . . . , b`}
with J ∩ I = ∅, let

AI [ηJ , 0H ] :=AI [ pb1
√
ηb1 , . . . ,

pb
√̀
ηb` ,

pa1−1√
0, . . . ,

pam−1√
0].

We have, for any K={c1, . . . , ci}⊆{1, . . . , n} satisfying K ∩ (I ∪ J) = ∅,
a restriction functor

|K :AI [ηJ , 0H ]→AI∪K [ηJ , 0H ],

M |K := cok ηc1(cok ηc2(. . . cok ηci(M))),

which is well defined since the Fi commute.

If either J or H is empty, we leave them out from the notation.

Construction 4.1. The category AI [η∅, 0H ] =AI [0H ] has a special tilting

object THI constructed iteratively from TI using the functor δ from Section 3.

Explicitly, we start with T ∅I = TI , and set THI = δT
H\{h}
I for some h ∈H,

where

δ :AI [0H\{h}]→AI [0H\{h}][01/(ph−1)] =AI [0H ]

is as in the beginning of Section 3. (One may convince oneself that the result

of this iterative construction does not depend on the order.)
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Let H, I, J be as above, and let a, b ∈H. We have the following diagram

where every row and column is a recollement:

AI\{b}[ηJ , 0H\{b}]
ιa // AI\{a,b}[ηJ∪{a}, 0H\{a,b}]

πa // AI\{a,b}[ηJ , 0H\{a,b}]

AI\{b}[ηJ∪{b}, 0H\{b}]

πb

OO

ιa // AI\{a,b}[ηJ∪{a,b}, 0H\{a,b}]
πa //

πb

OO

AI\{a,b}[ηJ∪{b}, 0H\{a,b}]

πb

OO

AI [ηJ , 0H ]
ιa //

ιb

OO

AI\{a}[ηJ∪{a}, 0H\{a}]
πa //

ιb

OO

AI\{a}[ηJ , 0H\{a}]

ιb

OO

Remark 4.2. Note that we have abused notation slightly by calling

many different functors ιa. However, no confusion should arise as they all

have different domains and codomains, and the correct one is hence clear

from context. The same applies to πa and πaρ as well.

Lemma 4.3. In the diagram of recollements above, all of the squares

(including original functors and adjoint functors) commute, except ιρ and

ιλ. In particular, the following three equalities hold, which we will use later:

(i) ιaιb = ιbιa (i.e. the left lower square of the diagram commutes);

(ii) ιaπbρ = πbρι
a;

(iii) πaρπ
b
ρ = πbρπ

a
ρ .

Proof. This is a simple, straightforward calculation.

In light of this lemma, we define, for H = {a1, . . . , ah} ⊆ {1, . . . , n} and

an object M in an appropriate category,

ιHM := ιa1 ◦ · · · ◦ ιah(M).

Similarly, we define πHρ and πH .

Similarly to the case with only one weight, we need to control how the

adjoint pair (ιaλ, ι
a) behaves with respect to Ext. We therefore need a more

general version of the assumption used earlier.

Assumption 4.4. From now on, assume that for all I ⊆ {1, . . . , n} and

a ∈ {1, . . . , n} \ I, the category AI has enough objects M such that ηa(M)

is a monomorphism.
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Lemma 4.5. Let H, I, J ⊆ {1, . . . , n}, with H ⊆ I and J ∩ I = ∅. Sup-

pose that M, N ∈ AI [ηJ , 0H ]. Then, for all a ∈H and i> 0,

Exti(ιaM, ιaN) = Exti(M, N).

Proof. By Assumption 4.4, we have that AI\{a} has enough objects on

which ηa is monomorphism. Similarly to the proof of Lemma 3.9, one sees

that this implies that also AI\{a}[ηJ , 0H\{a}] has enough objects such that

ηa is monomorphism. The result then follows from 3.11 and the observation

that

AI [ηJ , 0H ] =
(
AI\{a}[ηJ , 0H\{a}]

)
ηa

[
pa−1√

0].

Lemma 4.6. Let J ⊆ I ⊆ {1, . . . , n}. For T II as defined in Construc-

tion 4.1, we have

Exti(πJρM, ιJT II ) = 0

for all i > 0, if

• ηa(M |J ′) is injective for all J ′ ⊂ J and a ∈ J \ J ′,
• Exti(M |J , T I\JI ) = 0.

Proof. For all a ∈ J ,

Exti(πJρM, ιJT II ) = Exti(πaρ(πJ\{a}ρ M), ιa(ι
J\{a}T II )).

Hence, using Proposition 3.13, we see that Exti(πJρM, ιJT II ) = 0 for all i > 0,

if

• Exti(∆ ker ηa(π
J\{a}
ρ M), ιJ\{a}T II ) = 0 for i> 0 and

• Exti(∆ cok ηa(π
J\{a}
ρ M), ιJ\{a}T II ) = 0 for i > 0.

Since

ker ηa(π
J\{a}
ρ M) = πJ\{a}ρ ker ηa(M) and (∆ρ)ι

J\{a}T II = ιJ\{a}T
I\{a}
I ,

the two conditions become

• Exti(π
J\{a}
ρ ker ηaM, ιJ\{a}T

I\{a}
I ) = 0 for i> 0 and

• Exti(π
J\{a}
ρ M |{a}, ιJ\{a}T

I\{a}
I ) = 0 for i > 0.

Now repeat this procedure |J | − 1 more times to get the result.
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Theorem 4.7. Let A be an abelian category equipped with endofunctors

Fi and natural transformation ηi as in Section 2, satisfying Assumption 4.4.

Assume that there are cotilting objects TH in AH , such that for all H ∩ J = ∅
and a 6∈H ∪ J ,

• ηa(TH |J) is injective,

• ExtiAH∪J (TH |J , TH∪J) = 0 for all i > 0.

Then, with THH as defined in Construction 4.1, and the functors π
[1,n]\H
ρ

and ιH as explained below Lemma 4.3, the object

T :=
⊕

H⊆{1,...,n}

π[1,n]\H
ρ ιHTHH

is a cotilting object in A[p1
√
η1, . . . , pn

√
ηn].

Proof. First, we introduce the following notation: for I ⊆ {1, . . . , n}, let

Ī := [1, n] \ I.

Rigidity: we compute

Exti(πH̄ρ ι
HTHH , π

Ī
ρι
IT II )

for all H, I ⊆ {1, . . . , n} and i> 1. If H ∩ Ī 6= ∅, then using Lemma 4.3,

Exti(πH̄ρ ι
HTHH , π

Ī
ρι
IT II ) = Exti(πaιaιH\{a}πH̄ρ T

H
H , π

Ī\{a}
ρ ιIT II ) = 0,

where a ∈H ∩ Ī, since πaιa = 0. Thus, we consider the case where H ∩ Ī = ∅
or, equivalently, H ⊆ I.

If I =H, then we use ππρ = ιλι= id to obtain

Exti(πH̄ρ ι
HTHH , π

H̄
ρ ι

HTHH ) = Exti(THH , T
H
H ) = 0,

since THH is cotilting.

Finally, suppose that H ⊂ I, and let J = I \H. Then, we have

Exti(πH̄ρ ι
HTHH , π

Ī
ρι
IT II ) = Exti(πJρ T

H
H , ι

JT II ).

By Lemma 4.6, this vanishes when

• ηa(THH |J ′) is injective for all J ′ ⊂ J and a ∈ J \ J ′,
• Exti(THH |J , T

I\J
I ) = Exti(THH |J , THI ) = 0 for all i > 0.

https://doi.org/10.1017/nmj.2016.39 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2016.39


GEIGLE–LENZING WEIGHTED PROJECTIVE VARIETIES 89

Thus, rigidity follows from the assumptions of the theorem and

Lemma 3.3 applied |H| times.

Cogeneration: suppose that Exti(M, T ) = 0 for all i> 0. We aim to show

M = 0. We do so by proving that for all I ⊆ {1, . . . , n}, we have πIM = 0.

Note first that

0 = Exti(M, π[1,n]
ρ T∅) = Exti(π[1,n]M, T∅),

and so π[1,n]M = 0. We proceed by reverse induction on |I|.
Suppose that πJM = 0 for all |J |> k + 1. Let I ⊆ {1, . . . , n}, such that

|I|= k. Then, for all a ∈ Ī, we have πaπIM = 0, so πIM = ιaN ′ for some

N ′. Hence, πIM = ιĪN for some N .

0 = Exti(M, πIρι
ĪT ĪĪ ) = Exti(πIM, ιĪT ĪĪ ) = Exti(ιĪN, ιĪT ĪĪ ) = Exti(N, T ĪĪ ),

and so N = 0, and hence πIM = 0 for all πI , with |I|= k. Therefore,

πIM = 0 for all I ⊆ {1, . . . , n}, in particular π∅M =M = 0.

§5. Global dimension

In this section, we study the global dimension of the categoriesA[p
√
η]. The

main aim is Theorem 5.7, showing that under certain assumptions (the most

important of which is that F is an autoequivalence), the global dimension

of A[p
√
η] equals that of A.

We start by considering the categories on the left side of the recollement

of Proposition 3.7. (The abelian category here is called Aη because these

are the categories we want to apply this to. However, for this lemma this is

just an arbitrary abelian category.)

Lemma 5.1. Let Aη be abelian, and let p> 2. Then,

• gldimAη[p−1
√

0]6 gldimAη + 1 (and in fact we have equality unless

p= 2);

• if M = [0→M1
fM2→ · · ·

fMp−1→ Mp−1] ∈ Aη[p−1
√

0], such that all morphisms

fM2 , . . . , fMp−1 are epi, then inj. dimM 6 gldimAη.

We do not prove this lemma directly here, but the further discussion

throughout the first half of this section results in an inductive proof. See

Remark 5.5.

That means that for now, we assume that the lemma holds for a given p.

Note that this is justified for p= 2. (In that case Aη[p−1
√

0] =Aη.) However,
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since our aim is not only the inductive proof, we now consider the general

case, that is, categories A [p
√
η]. Throughout, the following morphisms and

resulting exact sequences will play a role.

Observation 5.2. LetA, F and η be as in Proposition 3.7. Let X ∈ A[p
√
η].

(i) For the unit εX :X → πρπX, we have

ker εX = ιιρX and

cok εX = ι(0→ cok(fX2 · · · fXp )→ · · · → cok fXp ).

We note that all of the nonzero maps in [0→ cok(fX2 · · · fXp )→ · · · →
cok fXp ] are epimorphisms.

(ii) For the counit ϕX : πλπX →X, we have

ker ϕX = ι(0→ ker fX1 → · · · → ker(fX1 · · · fXp−1)) and

cok ϕX = ιιλX.

We first study extensions in A[p
√
η], where the first term is in the image

of the functor ι.

Lemma 5.3. Let A, F and η be as in Section 3. For X ∈ Aη[p−1
√

0] and

Y ∈ A[p
√
η], we have

ExtnA[p
√
η](ιX, Y ) = 0, ∀n > gldimAη + 1.

If, moreover, all of the maps fY2 , . . . , f
Y
p are epimorphisms, then the equality

also holds for n= gldimAη + 1.

Proof. We first observe that

ExtnA[p
√
η](ιX, πρπY ) = ExtnA(πιX︸︷︷︸

=0

, πY ) = 0, ∀n,

so the Ext space of the lemma vanishes provided that

(1) ExtnA[p
√
η](ιX, ker εY ) = 0 and

(2) Extn−1
A[p
√
η](ιX, cok εY ) = 0.

For the first space, we use Observation 5.2 to simplify

ExtnA[p
√
η](ιX, ker εY ) = Extn

Aη [
p−1√

0]
(X, ιρY ),
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so this space vanishes provided that n > gldimAη[p−1
√

0], and hence by

Lemma 5.1 for n > gldimAη + 1. Moreover, using the second part of

Lemma 5.1, we see that this bound may be improved by 1 provided that all

of the maps f
ιρY
2 , . . . f

ιρY
p−1 are epimorphisms. This holds provided that the

corresponding maps fY2 , . . . , f
Y
p−1 are epi.

For the second space, we use the remark in the first point of Observa-

tion 5.2. Note that this precisely tells us that we are in the situation of the

second point of Lemma 5.1, whence

Extn−1
A[p
√
η]

(ιX, cok εY ) = 0, ∀n− 1> gldimAη.

Finally, we note that if all of the maps fY2 , . . . , f
Y
p are epi, then cok εY = 0,

so the space in the second point vanishes.

In the next step, we assume that the first object lies in the set E , that is,

that the map fX1 · · · fXp−1 is a monomorphism.

Lemma 5.4. Let X ∈ E and Y ∈ A[p
√
η]. Then,

ExtnA[p
√
η](X, Y ) = 0, ∀n >max{gldimA, gldimAη + 1}.

If, moreover, all of the maps fY2 , . . . , f
Y
p are epimorphisms, then

ExtnA[p
√
η](X, Y ) = 0, ∀n >max{gldimA, gldimAη}.

Proof. We start by observing that X ∈ E is equivalent to ker ϕX = 0,

whence we have the short exact sequence

0→ πλπX →X → ιιλX → 0.

Therefore, it suffices to consider the two Ext spaces ExtnA[p
√
η](πλπX, Y ) and

ExtnA[p
√
η](ιιλX, Y ).

For the first of these, we note that

ExtnA[p
√
η](πλπX, Y ) = ExtnA(πX, πY ),

so this vanishes for n > gldimA.

For the second one, we use Lemma 5.3 above.

Remark 5.5. We observe that we have now completed an inductive

proof of the upper bounds in Lemma 5.1. In fact, in the case F = 0 we have

E =A[p
√

0], so there is no restriction on X in the lemma above. The equality

claimed in parenthesis in Lemma 5.1 follows from the following result.
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Lemma 5.6. Let A, F and η be as in Section 3, and let p> 2. Then,

gldimA[
p√
η]>max{gldimA, gldimAη + 1}.

Proof. We have gldimA[p
√
η]> gldimA because, for X, Y ∈ A,

ExtnA[p
√
η](πλX, πλY ) = ExtnA(X, ππλY ) = ExtnA(X, Y ).

To see that A[p
√
η]> gldimAη + 1, we recall that for Y ∈ Aη, we have

∆Y = [0→ Y → Y → · · · → Y ] ∈ Aη[
p−1√

0].

Now, we observe that we have an epimorphism f : πρY → ι∆Y in the

category A[p
√
η]. We may explicitly describe the kernel of f as

ker f = [FY → 0→ · · · → 0→ Y ].

For any X ∈ Aη, we have ExtnA[p
√
η](ι∆X, πρY ) = ExtnA(πι∆X, Y ) = 0. Thus,

the short exact sequence

0→ ker f → πρY → ι∆Y → 0

gives rise to isomorphisms

ExtnA[p
√
η](ι∆X, ker f) = Extn−1

A[p
√
η]

(ι∆X, ι∆Y ) = Extn−1
Aη (X, Y )

for all n. It follows that

gldimA[
p√
η]> gldimAη + 1.

We are now ready to prove the main result of this section, giving the

precise value of the global dimension of the category A[p
√
η] under the

assumption that F is an equivalence.

Theorem 5.7. Let A, F and η be as in Section 3, and assume

additionally that F is an equivalence. Then,

gldimA[
p√
η] = max{gldimA, gldimAη + 1}.

One key ingredient for the proof is the following observation.
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Observation 5.8. The functor F induces an endofunctor p
√
F of A[p

√
η],

given by

p√
F (FXp→X1→ · · · →Xp) = [FXp−1→ FXp→X1→ · · · →Xp−1].

Moreover, if F is an autoequivalence of A, then p
√
F is an autoequivalence

of A[p
√
η].

Proof. For X ∈ A[p
√
η], we consider the short exact sequence

0→ ker εX →X → im εX → 0.

We may explicitly describe the rightmost term by

im εX = [FXp→ im fX2 · · · fXp → im fX3 · · · fXp → · · · →Xp],

and, in particular, all of the maps f im εX
2 , . . . f im εX

p are monomorphisms. It

follows that

(
p√
F )−1(im εX) ∈ E .

It follows that, for all Y ∈ A[p
√
η],

ExtnA[p
√
η](im εX , Y ) = ExtnA[p

√
η]((

p√
F )−1(im εX), (

p√
F )−1(Y )) = 0,

for n >max{gldimA, gldimAη + 1}. (The first equality holds because p
√
F

is an autoequivalence; the second is Lemma 5.4.)

On the other hand, since ker εX = ιιρX, we also have that

ExtnA[p
√
η](ker εX , Y ) = 0, ∀n > gldimAη + 1,

by Lemma 5.3.

Now, note that X is the middle term of a short exact sequence with

ker εX and im εX as end terms. Therefore, we have

ExtnA[p
√
η](X, Y ) = 0, ∀n >max{gldimA, gldimAη + 1}.

This is the desired upper bound for the global dimension of A[p
√
η]. The fact

that this is also a lower bound is seen in Lemma 5.6 above.

Remark 5.9. In the case that F is not an equivalence, one may extend

the argument in the proof of Lemma 5.4 to the case where X is not

necessarily in E . In that case one has to account for a possible kernel of ϕX ,
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resulting in the weaker upper bound

gldimA[
p√
η]6max{gldimA, gldimAη + 2}.

However, we do not have any examples of Theorem 5.7 failing when F is

not an equivalence.

Finally, we may apply Theorem 5.7 repeatedly to obtain the global

dimension of categories of the form A[p1
√
η1, . . . , pn

√
ηn].

Corollary 5.10. In the general situation of Theorem 4.7, and assum-

ing further that all of the Fi are autoequivalences, we have

gldimA[
p1
√
η1, . . . ,

pn√ηn] = max
I⊆{1,...,n}

gldimAI + |I|.

(Here we set gldim 0 =−∞, or alternatively let the maximum run over all

I such that AI 6= 0.)

Proof. We can construct the category A[p1
√
η1, . . . , pn

√
ηn] iteratively,

using the fact that

A[
p1
√
η1, . . . ,

pi
√
ηi,

pi+1
√
ηi+1] =A[

p1
√
η1, . . . ,

pi
√
ηi][

pi+1
√
ηi+1],

where we have extended the action of Fi+1 to A[p1
√
η1, . . . , pi

√
ηi] component

wise. Since the Fi commute, this construction is well defined and equals our

original construction. Thus, the result follows from Theorem 5.7 applied

repeatedly.

§6. Applications to orders on projective varieties

In [IL], GL orders on Pd were used to study GL weighted projective

spaces, which in turn were introduced in [HIMO]. We have already intro-

duced GL orders in Definition 1.1: they are orders made up of tensor

products of sheaves of algebras of the form

Hpi(O,O(−Li)) :=


O O(−Li) . . . O(−Li) O(−Li)
O O . . . O(−Li) O(−Li)
...

...
. . .

...
...

O O . . . O O(−Li)
O O . . . O O


︸ ︷︷ ︸

pi

.

The connection that the category A[p1
√
η1, . . . , pn

√
ηn] has to orders is

described in the following proposition.

https://doi.org/10.1017/nmj.2016.39 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2016.39


GEIGLE–LENZING WEIGHTED PROJECTIVE VARIETIES 95

Proposition 6.1. Let X be a projective variety over k, and let

L1, . . . , Ln be effective Cartier divisors on X. Let A= cohX, Fi :=

−⊗X O(−Li) and ηi be given by tensoring with the natural inclusion

O(−Li) ↪→O. If

A=
n⊗
i=1

Ai, Ai =Hpi(O,O(−Li)),

then

modA'A[
p1
√
η1, . . . ,

pn√ηn].

Proof. Let ei ∈H0(X, Aj) be the global section with a 1 in the (i, i)-

entry and 0 elsewhere.

We define the function Φ : modA→A[p1
√
η1, . . . , pn

√
ηn] as follows. For

M ∈modA and a ∈ S = {1, . . . , p1} × · · · × {1, . . . , pn}, set

Ma := (ea1 ⊗ · · · ⊗ ean)M.

As before, we extend this to allow the components of a to be 0, and treat

them as functors Fi; that is, Ma := FiMa+piei , if ai = 0.

Now, set

f ia :Ma−ei →Ma

to be the natural map coming from the Ai-module structure.

From now on, we assume the following.

Assumption 6.2. X is smooth and D =
∑
Li is a simple normal crossing

divisor; that is, for all x ∈ SuppD, the local equations of Li form a regular

sequence in OX,x.

Proposition 6.3. The global dimension of A is equal to the dimension

of X (and, in particular, finite).

Proof. Let d= dimX. The assumption on the Li implies that the

intersections ∩i∈ILi are smooth of dimension d− |I|, or empty. Thus, we

have

gldimAI = gldimO∩i∈ILi 6 d− |I|.

The claim now follows from Corollary 5.10.

Alternatively, one may observe that the proof for the case X = Pd in

[IL, Proposition 2.13] generalizes immediately to an arbitrary smooth X

and Li.
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Corollary 6.4. ([IL], Proposition 5.2) Let T be a tilting object in

modA.

• Db(modA) = thick T .

• There is a triangle equivalence Db(modA)' Db(mod EndA(T )).

Proposition 6.5. (Serre duality) Let A be a GL order, as before, and

put d= dimX. Let

ωA :=HomX(A, ωX),

which is an A-bimodule. Then, for any M, N ∈modA, we have

ExtiA(M, N) =D Extd−iA (N, ωA ⊗AM),

where D(−) = Homk(−, k).

Proof. This proof is adapted from [AdJ]. Let hi : Db(modA)→modA be

the ith cohomology functor, let RΓ be the right derived functor of the global

sections functor Γ, let RHomA(−, N) be the right derived functor of the

sheaf hom functor HomA(−, N), and let −⊗L
A N be the left derived functor

of the tensor functor. For simplicity, we introduce some more notation. Let

Hi := hi ◦RΓ be the hypercohomology functor, and for M ∈ D(modA), let

M∗ := RHomA(M, A). With this, we have

ExtiA(M, N) = Hi(RHomA(M, N)) = Hi(M∗ ⊗L
A N)

= Hi(RHom(O, M∗ ⊗L
A N))

' DHd−i(RHomO(M∗ ⊗L
A N,O)⊗L

O ωX)

= DHd−i(RHomO(M∗ ⊗L
A N, ωX))

= DHd−i(RHomA(N,RHomO(M∗, ωX)))

= DHd−i(RHomA(N, ωA ⊗L
AM))

= D Extd−iA (N, ωA ⊗AM),

and we are done.

Corollary 6.6. T ∈modA is tilting if and only if it is cotilting.

Proof. The proof follows immediately from 6.5.

We now translate our results from Sections 3 and 4 to the category modA,

but in light of the previous result we will say that T is tilting, as opposed

to cotilting.
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First, for each i= 1, . . . , n, we consider a sheafified version of the

standard recollement we presented in Example 3.6. It follows immediately

from the explicit description of ι and π that this recollement coincides, via

the equivalence of Proposition 6.1, with the recollement of Proposition 3.7.

Let ei be the global idempotent of Ai with 1 in the bottom right entry

and 0 elsewhere. We have the recollement

mod
Ai
〈ei〉

ι−→modAi
π−→mod eiAiei,

where the terms explicitly are

Ai
〈ei〉

=


OLi 0 . . . . . . 0
OLi OLi 0 . . . 0

...
...

...
OLi OLi . . . . . . OLi


︸ ︷︷ ︸

pi−1

,

Ai =


O O(−Li) . . . . . . O(−Li)
O O O(−Li) . . . O(−Li)
...

...
...

O O . . . . . . O


︸ ︷︷ ︸

pi

and mod eiAiei = cohX.

Here, the functor ι is natural inclusion, and π is given by π(N) = eiN . In

particular,

πρ(F) =Hom(eiAi, F) =

F...
F

 .
Furthermore, if T is a tilting object in coh Li, then the tilting object δ(T )

in mod Ai
〈ei〉 is given by

δ(T ) =Hom
(
Ai
〈ei〉

, T

)
=


T
T
...
T

⊕

T
...
T
0

⊕ · · · ⊕

T
0
...
0

 .
(To see this, compare the definition of δ at the beginning of Section 3 with

the equivalence of Proposition 6.1.)
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As a final step for translating our general setup from Section 4 to the

explicit setup here, note that the restriction functors are just given by

tensoring with the structure sheaf on the corresponding subvarieties. Thus,

writing OJ for the structure sheaf on the intersection ∩c∈JLj , we obtain the

following result directly by translating Theorem 4.7 to this setup.

Theorem 6.7. Let A= modA be as above. If, for all I, J ⊆ {1, . . . , n}
with I ∩ J = ∅ and j 6∈ I ∪ J ,

• TI ⊗OJ ⊗O(−Lj)→ TI ⊗OJ is injective,

• ExtiOI∪J (TI ⊗OJ , TI∪J) = 0, for all i > 0,

then ⊕
I⊆{1,...,n}

Hom

⊗
i 6∈I

eiAi ⊗
⊗
i∈I

Ai
〈ei〉

, TI


is tilting in A.

§7. Examples

We now apply Theorem 6.7 to various situations. Note that if TI is in

fact a tilting bundle, then the first condition of the theorem is automatically

satisfied. Furthermore, by Serre vanishing, we can always twist the TI so

that the second condition is also satisfied. Inertly, assuming that all TI with

smaller index sets are already fixed, we twist TI∪J in the second condition

by a sufficiently high power of OI∪J(1) to guarantee the Ext-vanishing in

that condition.

7.1 Geigle–Lenzing weighted projective lines

Let X = P1
X0:X1

, and let A= cohX. For i= 1, . . . , n, choose points

Li = (λ0,i : λ1,i) and corresponding weights pi. T∅ =OX ⊕OX(1) is a tilting

object in cohX and T{i} =OLi is a tilting object in coh Li. Then,

T =Hom

(
n⊗
i=1

eiAi, T∅

)
⊕

n⊕
i=1

Hom

⊗
j 6=i

ejAj ⊗
Ai
〈ei〉

, T{i}


is a tilting object in

mod
n⊗
i=1

Ai := mod
n⊗
i=1

Hpi(O,O(−Li))'A[
p1
√
η1, . . . ,

pn√ηn]
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with endomorphism algebra

· // . . . // ·

· // . . . // ·

·
X0 //

X1

// ·

y1

HH

y2

BB

yn
��

...
...

...

· // . . . // ·

with relations

(λ1,iX0 − λ0,iX1)yi = 0.

This algebra is known as the “squid”. (The reader may check directly that

this is indeed the quiver with relations for the endomorphism algebra, or

check our discussion of squid algebras more generally in Section 7.4.)

7.2 Geigle–Lenzing weighted P2

Let A= coh P2. Note that both lines and smooth conics in P2 are

isomorphic to P1, and hence have tilting bundles. Fix weights p1, . . . , pn, and

hyperplanes L1, . . . , Ll, as well as smooth conics Ll+1, . . . , Ln. As before,

we consider the category

A'mod
n⊗
i=1

Hpi(O,O(−Li)).

T∅ =OP2(−2)⊕OP2(−1)⊕OP2 is a tilting bundle in coh P2, T{i} =OLi ⊕
OLi(1) is a tilting bundle in coh Li (where OLi(1) denotes the degree-1 line

bundle on Li), and T{i,j} =OLi∩Lj is a tilting bundle in Li ∩ Lj . Thus, by

Theorem 6.7,

T = Hom

(
n⊗
i=1

eiAi, T∅

)
⊕

n⊕
i=1

Hom

⊗
j 6=i

ejAj ⊗
Ai
〈ei〉

, T{i}


⊕

n⊕
i,j=1
i<j

Hom

 ⊗
h6∈{i,j}

ehAh ⊗
Ai
〈ei〉
⊗ Aj
〈ej〉

, T{i,j}


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is a tilting object provided that the two conditions of the theorem are

satisfied. The first condition is automatically satisfied as all of the tilting

objects are in fact vector bundles. Furthermore, the second condition is also

satisfied as

Ext1
Li(T∅ ⊗OLi , T{i})

=


Ext1

Li
(OLi(−2)⊕OLi(−1)⊕OLi ,OLi ⊕OLi(1)) = 0,
i= 0, . . . , l,

Ext1
Li

(OLi(−4)⊕OLi(−2)⊕OLi ,OLi ⊕OLi(1)) = 0,
i= l + 1, . . . , n,

and so T is indeed a tilting bundle in modA.

7.3 Geigle–Lenzing weighted Hirzebruch surfaces

In this section, we follow King’s conventions from [K]. For m> 0, the

Hirzebruch surface is defined as

Σm = P(OP1(−m)⊕OP1).

We embed such a surface in P1
x0:x1 × Pm+1

y0:···:ym+1
via

{((x0 : x1), (y0 : · · · : ym+1)) | x0yi = x1yi−1, for 16 i6m},

and so line bundles on Σm arise as pullbacks of line bundles on P1

and Pm+1 via the stated embedding followed by the natural projections.

Thus, Pic Σm = Z2 with intersection form

[
0 1
1 m

]
and canonical bundle

O(m− 2,−2). Using the adjunction formula, which states that a smooth

genus g curve C on a surface X with canonical divisor K satisfies

2g − 2 = C.(C +K),

we see that any curve of type (a, 1) or (1, 0) is rational and hence has a

tilting bundle.

Until the end of this section, we let O =OΣm . Similar to the GL weighted

P2 case, for i= 1, . . . , l let Li be a curve of type (ai, 1) and for i= l +

1, . . . , n a (1, 0) divisor. Note that since Li is effective, ai >−m (see [K,

Proposition 6.1]). As before, we consider the category

A'mod
n⊗
i=1

Hpi(O,O(−Li)).
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Let T∅ =O ⊕O(1, 0)⊕O(0, 1)⊕O(1, 1), which is a tilting bundle in

coh Σm. For i= 1, . . . , l, let T{i} =OLi(ai +m)⊕OLi(ai +m+ 1), and let

T{i} =OLi ⊕OLi(1) for i= l + 1, . . . , m. Finally, let T{i,j} =OLi∩Lj . Thus,

by Theorem 6.7,

T = Hom

(
n⊗
i=1

eiAi, T∅

)
⊕

n⊕
i=1

Hom

⊗
j 6=i

ejAj ⊗
Ai
〈ei〉

, T{i}


⊕

n⊕
i,j=1
i<j

Hom

 ⊗
h6∈{i,j}

ehAh ⊗
Ai
〈ei〉
⊗ Aj
〈ej〉

, T{i,j}


is a tilting object provided that the two conditions of the theorem are

satisfied. Again, the first condition is automatically satisfied as all of the

tilting objects are in fact vector bundles. Furthermore, the second condition

is also satisfied as

Ext1
Li(T∅ ⊗OLi , T{i})

=


Ext1

Li
(OLi ⊕OLi(1)⊕OLi(ai +m)⊕OLi(ai +m+ 1),
OLi(ai +m)⊕OLi(ai +m+ 1)) = 0, i= 0, . . . , l,

Ext1
Li

(O ⊕OLi ⊕OLi(1)⊕OLi(1),OLi ⊕OLi(1)) = 0,
i= l + 1, . . . , n,

since ai >−m, and so T is indeed a tilting bundle in modA.

7.4 Squids

We have already seen the squid algebra that arose as the endomorphism

algebra of tilting objects on GL weighted projective lines. We now generalize

this to higher-dimensional GL weighted projective spaces.

Let X = PdX0:···:Xd , and for i= 1, . . . , n let Li : `i(X0, . . . , Xd) = 0 be

hyperplanes in general position. For I ⊆ {1, . . . , n} with |I|6 d,

TI =OI(|I|)⊕OI(|I|+ 1)⊕ · · · ⊕ OI(d)

is a tilting bundle in coh LI , where

LI =
⋂
i∈I

Li.

Furthermore, as we have seen, the category modA, where

A=

n⊗
i=1

Hpi(OX ,OX(−Li)),
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has a tilting object as described in Theorem 6.7, since the first condition is

trivial as all TI are bundles, and the second condition is easy to verify with

our choice of TI .

We now describe EndA(T ), where T is given by Theorem 6.7, presenting

it as a quiver with relations. First, we describe the vertices, then the arrows,

and finally the relations. For simplicity, we allow nonadmissible relations.

7.4.1 Vertices

The vertices correspond to the indecomposable summands of T . Writing

Op/lI =



OI
...
OI
0
...
0


⊆OpI

for the length p-vectors such that the last l − 1 entries vanish, we may

observe (see the discussion of functors above Theorem 6.7) that

Hom

⊗
i 6∈I

eiAi ⊗
⊗
i∈I

Ai
〈ei〉

,−



=


n⊗
i=1

⊕
ai∈

{1} i 6∈ I
{2, . . . , pi} i ∈ I

Opi/aiI


⊗OI −.

Thus,

T =
⊕

I⊆{1,...,n}

d⊕
j=|I|


n⊗
i=1

⊕
ai∈

{1} i 6∈ I
{2, . . . , pi} i ∈ I

Opi/aiI


⊗OI OI(j).
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We note that, in total, the vector a runs over S, where S =×ni=1{1, . . . , pi},
as before. Thus, setting Ia = {i | ai 6= 1}, we may reorganize the above to

T =
⊕
a∈S

d⊕
j=|Ia|

(
n⊗
i=1

Opi/aiIa

)
︸ ︷︷ ︸

=:Oa

(j).

Thus, the vertices of the quiver are labeledOa(j) with a ∈ S and |Ia|6 j 6 d.

7.4.2 Arrows

• (d+ 1) arrows labeled X0
Ia
, . . . , Xd

Ia
between

Oa(j)

X0
Ia //

Xd
Ia

//

... Oa(j + 1)

whenever |Ia|6 j < d.

• One arrow labeled yi between

Oa(j)→Oa+ei(j)

when Ia+ei 6 j 6 d.

7.4.3 Relations

• Commutativity relations: Xi
Ia
Xj
Ia

=Xj
Ia
Xi
Ia
, Xi

Ia
yj = yjX

i
Ia+ej

, yiyj =

yjyi whenever these compositions make sense.

• `i(X0
Ia
, . . . , Xd

Ia
) = 0 for all a ∈ S and i ∈ Ia.

• For all a ∈ S and i such that ai = 1, for any subquivers of the form

Oa(|Ia|)
X0
Ia //

Xd
Ia

//

... Oa(|Ia|+ 1)
yi // Oa+ei(|Ia+ei |) ,

we have the relation

`j(X
0
Ia , . . . , X

d
Ia)yi = 0.
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Example 7.1. (On P2 with two weights 3 and 3) Consider P2
X0:X1:X2

and hyperplanes Li : `i(X0, X1, X2) = 0 for i= 1, 2. Let

A=

O O(−L1) O(−L1)
O O O(−L1)
O O O

⊗
O O(−L2) O(−L2)
O O O(−L2)
O O O

=A1 ⊗A2.

Then, T∅ =O ⊕O(1)⊕O(2), T{i} =OLi(1)⊕OLi(2) and T{1,2} =OL1∩L2 .

Then, by Theorem 6.7,

T = (A1f1 ⊗A2f2 ⊗ T∅)⊕
(
A1

〈e1〉
⊗A2f2 ⊗ T1

)
⊕
(
A1f1 ⊗

A2

〈e2〉
⊗ T2

)
⊕
(
A1

〈e1〉
⊗ A2

〈e2〉
⊗ T1,2

)
is a tilting object in A= modA. EndA(T ) is given by the following quiver:

with commutativity relations as well as

`1(X0
1 , X

1
1 , X

2
1 ), `2(X0

2 , X
1
2 , X

2
2 ),

`1(X0
∅ , X

1
∅ , X

2
∅ )y1, `2(X0

∅ , X
1
∅ , X

2
∅ )y2,

`2(X0
1 , X

1
1 , X

2
1 )y2, `1(X0

2 , X
1
2 , X

2
2 )y1.
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Astérisque, 100, Soc. Math. France, Paris, 1982, 5–171.

[CI] D. Chan and C. Ingalls, Non-commutative coordinate rings and stacks, Proc.
London Math. Soc. (3) 88(1) (2004), 63–88.

[GL] W. Geigle and H. Lenzing, “A class of weighted projective curves arising in
representation theory of finite-dimensional algebras”, in Singularities, Repre-
sentation of Algebras, and Vector Bundles (Lambrecht, 1985), Lecture Notes in
Math. 1273, Springer, Berlin, 1987.

[HIMO] M. Herschend, O. Iyama, H. Minamoto and S. Oppermann, Geigle–Lenzing
spaces and canonical algebras in dimension d, preprint, arXiv:1409.0668.

[IL] O. Iyama and B. Lerner, Tilting bundles on orders on Pd, Israel J. Math. 211(1)
(2016), 147–169.

[K] A. King, Tilting bundles on some rational surfaces, 2007, availble at http://ww
w.maths.bath.ac.uk/∼masadk/papers/tilt.pdf.

[L] H. Lenzing, “Representations of finite-dimensional algebras and singularity
theory”, in Trends in Ring Theory (Miskolc, 1996), CMS Conf. Proc., 22,
American Mathematical Society, Providence, RI, 1998, 71–97.

[ML] S. Mac Lane, Homology, Die Grundlehren der mathematischen Wissenschaften,
114, Academic Press, New York, 1963, Springer, Berlin–Göttingen–Heidelberg.

[RVdB] I. Reiten and M. Van den Bergh, Grothendieck groups and tilting objects. Special
issue dedicated to Klaus Roggenkamp on the occasion of his 60th birthday, Algebr.
Represent. Theory 4(1) (2001), 1–23.

[S] C. S. Seshadri, “Fibrés vectoriels sur les courbes algébriques [Vector bundles
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