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Abstract

We study the geography and botany of symplectic spin four-manifolds with abelian fundamental group.
By building on the constructions of J. Park and of B. D. Park and Szabó, we can give alternative proofs and
extend several results on the geography of simply connected four-manifolds to the nonsimply connected
realm.
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1. Introduction

Due to the wild and untamed nature of smooth four-manifolds, efforts towards a
classification are quite involved. The addition of a symplectic structure has led to
an impressive improvement in our understanding of these objects. The geography
problem, first proposed by McCarthy and Wolfson [18], consists of the existence
part of a possible classification: given a fundamental group, Euler characteristic and
signature, is there a symplectic spin four-manifold with these topological invariants?
The (lack of) uniqueness of such manifolds is known as the botany problem: how
many diffeomorphism classes are there for the symplectic manifold constructed with
the given topological invariants?

The geography and botany of irreducible spin simply connected four-manifolds
have been studied in depth [6, 12, 20–22, 24], so that most of the existence questions
have been settled. The recent addition of Luttinger surgery [3, 17] to the repertoire of
symplectic constructions was extremely effective. Not only did it lead to an impressive
development in our understanding of simply connected four-manifolds [1, 2, 4], but it
also facilitated the study of the geography for other fundamental groups [4, 27, 28].
The purpose of this paper is to extend results on simply connected manifolds to those
whose fundamental group is an abelian group of small rank.
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The progress on the botany has not been any less impressive. Fintushel and
Stern’s work on surgery on null-homologous tori [8, 9] unveiled a myriad of exotic
smooth structures that were previously out of reach through an elegant geometric and
topological mechanism. The same authors in joint work with B. D. Park [5] exploited
a duality between Luttinger surgery and its counterpart on null-homologous tori that
enabled the parallel study of the symplectic geography and its botany used by many
authors these days, this note included.

To put the results of this paper into context, we give a rough outline of current
knowledge about the geography of symplectic spin four-manifolds with trivial
fundamental group π1. These manifolds have an Euler characteristic e and a
holomorphic Euler characteristic χh. Extending and diagonalizing the intersection
form of the manifold, the second Betti number b2 may be written as b+

2 + b−2 , where b+
2

and b−2 are the number of times +1 and −1 appear in the diagonal. The signature
σ is then b+

2 − b−2 ; finally, χh = 1
4 (e + σ) and c2

1 = 2e + 3σ, where c2
1 is the self-

intersection of the first Chern class. B. D. Park and Szabó [22] proved that there
is a simply connected spin irreducible symplectic four-manifold with every allowed
homeomorphism type such that 0 ≤ c2

1 < 8χh and b+
2 is odd [22, Theorem 1.1]. J. Park

obtained a similar but much broader result [21, Theorem 1.1], which also treated
spin symplectic simply connected four-manifolds of zero and positive signature. In
particular, he cleverly used a complex spin surface built by Persson et al. [23] to
produce an infinite number of exotic smooth structures on (2n + 1)(S 2 × S 2), the
connected sum of 2n + 1 copies of S 2 × S 2, for all sufficiently large numbers n.

Our first result concerns the geography of spin manifolds with negative signature. It
provides an extension of the result of B. D. Park and Szabó to manifolds with nontrivial
abelian fundamental groups. In the simply connected case, we also offer an alternative
proof to their theorem.

T 1.1. Let n and s be positive integers, p and q be integers greater than 1, and
G be {1}, Zp, Zp ⊕ Zq (if n ≥ 2) or Z, Z ⊕ Zp, Z ⊕ Z (if n ≥ 1). If

(c, χ) = (8n − 8, 2s + n − 1),

then there exists an irreducible symplectic spin four-manifold X such that

π1(X) = G and (c2
1(X), χh(X)) = (c, χ).

For four-manifolds with nonnegative signature, by following closely J. Park’s main
construction [21], one obtains the following result.

T 1.2. Let G be one of {1}, Zp, Zp ⊕ Zq, Z, Z ⊕ Zp, Z ⊕ Z, where p and q are
integers greater than 1. For all but finitely many pairs of positive integers (c, χ) in
the region 8χ ≤ c ≤ 8.76χ, there exists an irreducible symplectic spin four-manifold X
such that

π1(X) = G and (c2
1(X), χh(X)) = (c, χ).

Concerning their botany, we have the following two results.
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P 1.3. Let G be {1}, Zp, Zq ⊕ Zq or Z, where p ≥ 2 and q is an odd prime
number, and (c, χ) be one of the pairs of integers for which manifolds are constructed
in Theorems 1.1 and 1.2. Then there exists an infinite family {Xn} of homeomorphic,
pairwise nondiffeomorphic irreducible smooth nonsymplectic four-manifolds such that
π1(X) = G and

(c2
1(Xn), χh(Xn)) = (c, χ).

Following J. Park, for the manifolds with zero signature of Theorem 1.2, we have
the following result.

C 1.4. There exists an integer N such that for all n ≥ N, each of the
homeomorphism types given by the manifolds

(2n + 1)(S 2 × S 2) # Lp, (2n + 1)(S 2 × S 2) # Lq,q, (2n)(S 2 × S 2) # (S 1 × S 3),

where p ≥ 2 and q is an odd prime number, has infinitely many exotic irreducible
smooth structures. In each case, only one of the exotic manifolds is symplectic.

Here Lp stands for the manifold obtained by modifying the product L(p, 1) × S 1 of
a lens space with the circle as follows. Perform surgery on L(p, 1) × S 1 along {x} × α,
where x ∈ L(p, 1), to kill the loop corresponding to the generator of the infinite cyclic
factor so that the fundamental group π1 of the resulting manifold is Zp, which comes
from the fundamental group of the lens space. If we cut out a loop {x} × αq and glue in
a disc to kill the corresponding generator instead, then we obtain a four-manifold with
fundamental group Zp ⊕ Zq, which is denoted Lp,q.

The paper is organized as follows. Section 2 provides the reader with a description
of the building blocks and the tools that are employed in our constructions. This
section also includes the two crucial lemmas for our results. In Section 3, we prove
Theorem 1.1 and half of Proposition 1.3. We provide a description of J. Park’s
construction in Section 4, as well as proofs of Theorem 1.2 and Corollary 1.4, and
the remaining part of the proof of Proposition 1.3.

2. Tools and raw materials

2.1. Symplectic sums. Gompf [12] introduced the symplectic sum, a beautiful tech-
nique to build symplectic four-manifolds that is now essential to our understanding of
symplectic four-manifolds. The next result states the properties of this construction
that we will use.

L 2.1 (Gompf [12]). Let X and Y be spin symplectic four-manifolds, both of
which contain a symplectic surface Σg of genus g and self-intersection 0. Then the
symplectic sum X #Σg Y is a spin symplectic irreducible manifold, and

(c2
1(X #Σg Y), χh(X #Σg Y)) = (c2

1(X) + c2
1(Y) + 8(g − 1), χh(X) + χh(Y) + (g − 1)).
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A spin symplectic simply connected four-manifold is irreducible, since its Seiberg–
Witten invariant is nontrivial [25, 26]. The claim of irreducibility for four-manifolds
with abelian fundamental group of small rank constructed in this paper follows from
Hamilton and Kotschick [16].

2.2. Luttinger surgery and torus surgery. Carving a torus out of a four-manifold
and then gluing it back in differently is a standard topological procedure to produce
exotic smooth structures. Recently, this idea has been exploited successfully in
three directions. First, perform this operation symplectically by adding Luttinger
surgery to the palette of constructions of symplectic manifolds; second, use it to
construct not only simply connected symplectic manifolds, but also manifolds with
several fundamental groups; and last but not least, use a null-homologous torus that
canonically comes out of this surgery, as an effective tool to change the smooth
structure at will. We proceed to give an overview of the machinery. For specific
details on the construction, the reader is directed to the references given below.

Let T be a torus in X of self-intersection zero, which has a tubular neighborhood
NT , identified with T 2 × D2. Let α and β be the generators of π1(T ) and consider the
meridian µT of T in X and the push-offs S 1

α and S 1
β in ∂NT , identified with T 3; these

are loops homologous in NT to α and β. The manifold obtained from X by performing
a q/p surgery on T along β is denoted by

XT, β(q/p) = (X − NT ) ∪φ (T 2 × D2),

where the gluing map φ : T 2 × ∂D2→ ∂(X − NT ) satisfies φ∗([∂D2]) = p[S 1
β] + q[µT ]

in H1(∂(X − NT ); Z). Denote the core torus S 1 × S 1 × {0} in XT, β(q/p) by Tq/p. The
surgery reduces b1 by one and b2 by two.

If X is symplectic and T is Lagrangian, then performing a 1/p surgery on the
preferred Lagrangian framing of NT results in XT, β(1/p) being symplectic. This
procedure is known as 1/p Luttinger surgery [3]. Concerning the botany, Fintushel
et al. [5] introduced a procedure that uses the null-homologous torus Tq/p to
manufacture infinitely many exotic smooth structures starting with a manifold with
nontrivial Seiberg–Witten invariant (for example, the symplectic manifold from which
Tq/p is obtained), by applying a more general n/1 surgery on Tq/p (see [5] or the
discussion following [4, Theorem 13] for more details). This manufactures an
infinite family {Xn} of pairwise nondiffeomorphic nonsymplectic four-manifolds (see
Remark 2.5 below).

If X is assumed to be spin, one can endow XT, β(q/p) with a spin structure by
choosing a suitable bundle automorphism from T 2 × D2 to T 2 × D2 as follows. Fix a
spin structure on X − NT and one on T 2 × D2. Their difference is given by an element
in H1(T 2 × D2; Z2), which may be identified with H1(T 2; Z2). On the other hand, this
element can readily be seen to be the image of an appropriate bundle automorphism
under the coefficient homomorphism from H1(T 2; Z) to H1(T 2; Z2). Thus, identifying
two spin structures on T 2 × D2, coming from X − NT and from T 2 × D2, yields a spin
structure for XT, β(q/p) itself.
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In the rest of this section, we introduce the building blocks in our constructions.

2.3. Surgery on T4. This building block will allow us to manipulate the fundamental
group of our constructions without changing the Euler characteristic nor the signature.
Let π1(T 4) be generated by x, y, a, b. Removing a surface from a four-manifold
normally introduces more generators to the fundamental group of the complement.
Baldridge and Kirk [4] showed that the fundamental group of the complement of two
Lagrangian tori T1 and T2 inside the four-torus is generated by four elements, just like
the group π1(T 4) itself.

P 2.2 (Baldridge and Kirk [4]). The fundamental group of T 4 − (T1 ∪ T2) is
generated by the loops x, y, a, b and the relations [x, a] = [y, a] = 1. The meridians of
the tori and the two Lagrangian push-offs of their generators are given by the following
formulae:

µ1 = [b−1, y−1], m1 = x, l1 = a,
µ2 = [x−1, b], m2 = y, l2 = bab−1.

As a corollary, we obtain the following lemma.

L 2.3. Let X be a simply connected spin symplectic four-manifold containing a
symplectic torus T such that π1(X − T ) = {1}. There exists a spin symplectic four-
manifold Z with Chern numbers χh(Z) = χh(X) and c2

1(Z) = c2
1(X). The fundamental

group π1 of Z can be chosen to be

Z ⊕ Z, Z ⊕ Zq, Z,

where q is an integer greater than 1.

P. Let the torus T1 ⊂ T 4 be as in Proposition 2.2. Perturb the symplectic form on
T 4 so that T1 becomes symplectic while T2 stays Lagrangian (see [12, Lemma 1.6]).
The torus T1 carries the generators x and b. Take the symplectic sum Y := T 4 #T1=T X
of T 4 and X along T1 and T . Since the meridian of T in X − T is trivial, the
relation [y, b] = 1 holds in the fundamental group of this newly constructed manifold.
Therefore the symplectic sum gives rise to a manifold Y for which π1(Y) = Z ⊕ Z, with
generators y and b. We can now apply a 1/q Luttinger surgery to T2 to produce a
manifold with fundamental group Zq ⊕ Z, where b generates Z. �

2.4. Symplectic manifolds with the cohomology of (2n − 3)(S2 × S2). Fintushel
et al. [5] built an infinite family of irreducible pairwise nondiffeomorphic spin four-
manifolds with the same integer cohomology ring as S 2 × S 2. Akhmedov and
B. D. Park [2] extended the construction, producing an infinite family of irreducible
pairwise nondiffeomorphic spin four-manifolds {Yn(m) | m = 1, 2, 3, . . .} with only one
symplectic member with the same integer cohomology ring as (2n − 3)(S 2 × S 2)
where n ≥ 2. The characteristic numbers of these manifolds are e = 4n − 4 and σ = 0;
equivalently, c2

1 = 8n − 8 and χh = n − 1.
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These manifolds are constructed by applying Luttinger surgery 2n + 3 times and
torus surgery once to Σ2 × Σn (the product of a genus 2 surface with a genus n surface).
Let ai and bi (where i = 1, 2) be the standard generators of π1(Σ2) and c j and d j (where
j = 1, . . . , n) be the standard generators of π1(Σn). The following relations hold in
π1(Yn(m)):

[b−1
1 , d−1

1 ] = a1, [a−1
1 , d1] = b1, [b−1

2 , d−1
2 ] = a2, [a−1

2 , d2] = b2,

[d−1
1 , b−1

2 ] = c1, [c−1
1 , b2] = d1, [d−1

2 , b−1
1 ] = c2, [c−1

2 , b1] = d2,

[a1, c1] = 1, [a1, c2] = 1, [a1, d2] = 1, [b1, c1] = 1,

[a2, c1] = 1, [a2, c2] = 1, [a2, d1] = 1, [b2, c2] = 1,

[a1, b1][a2, b2] = 1, [c1, d1][c2, d2] = 1,

[a−1
1 , d−1

3 ] = c3, [a−1
2 , c−1

3 ] = d3, . . . , [a−1
1 , d−1

n ] = cn, [a−1
2 , c−1

n ] = dn,

[b1, c3] = 1, [b2, d3] = 1, . . . , [b1, cn] = 1, [b2, dn] = 1,

and
n∏

j=2

[c j, d j] = 1.

We refer the reader to [2] for further details.
These manifolds are our basic building blocks for manufacturing the fundamental

group. We employ them to obtain the following result.

L 2.4. Let X be a simply connected spin symplectic four-manifold containing a
symplectic torus such that π1(X − T ) = {1}. Then for all positive integers n there exists
a spin symplectic four-manifold Z such that

(c2
1(Z), χh(Z)) = (c2

1(X) + 8n − 8, χh(X) + n − 1).

The fundamental group of Z can be chosen to be

(1) Z ⊕ Z, (2) Z ⊕ Zq, (3) Zp ⊕ Zq,
(4) Zq, (5) Z, (6) {1},

where p and q are integers greater than 1. Furthermore, Z contains a Lagrangian torus
such that the fundamental group homomorphism from π1(Z − T ) to π1(Z) induced by
inclusion is an isomorphism.

P. Consider the case where n = 2. Let S be the manifold obtained by applying ±1
Luttinger surgery five times to Σ2 × Σ2. The operations that are not to be performed
are (a′1 × c′1, a′1, −1), (a′2 × c′2, a′2, −1) and (a′′2 × d′1, d′1, +1) surgery. Call these three
tori T1, T2 and T3 respectively. In π1(S ), all the relations from π1(Y2(1)) hold, except
for [b−1

1 , d−1
1 ] = a1, [b−1

2 , d−1
2 ] = a2 and [c−1

2 , b1] = d2.
Build the symplectic sum of X and S along the corresponding torus in X and T1 in

S and call the resulting manifold S Z⊕Z. The meridian of T1, that is, [b−1
1 , d−1

1 ] = a1,
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is killed by the symplectic sum construction, and the surviving relations show that the
fundamental group π1(S Z⊕Z − (T2 ∪ T3)) is generated by the two commuting elements
a2 and d1. The Mayer–Vietoris sequence shows that H1(S Z⊕Z − (T2 ∪ T3); Z) = Z2,
and thus π1(S Z⊕Z) = Za2 ⊕ Zd1. It is straightforward to check that e(S Z⊕Z) = e(X) + 4
and σ(S Z⊕Z) = σ(X).

Note that the geometrical dual torus T ′ of T1 is contained in S Z⊕Z and its meridian
is trivial in the complement. This implies that π1(S Z⊕Z − T ′) � π1(S Z⊕Z) = Z2. Thus,
item (1) of the lemma has been produced.

Applying (a′2 × c′2, a′2, −1/q), that is, a −1/q Luttinger surgery to S Z⊕Z on T2 along
a′2, produces item (2). Applying (a′′2 × d′1, d′1, +1/p) to the resulting manifold produces
item (3) when p > 1 and item (4) when p = 1. Applying (a′′2 × d′1, d′1, +1) to S Z⊕Z
produces item (5), while item (6) is produced by applying both (a′′2 × d′1, d′1, +1) and
(a′2 × c′2, a′2, −1) to S Z⊕Z.

The cases where n ≥ 3 follow the procedure described above almost verbatim, but
substituting Σ2 × Σ2 by Σ2 × Σn. The details are left to the reader. We point out that the
bigger n is, the more Lagrangian tori the resulting manifold contains. For example, the
manifold obtained by applying Luttinger surgery to Σ2 × Σ5 contains 12 Lagrangian
tori while that obtained from Σ2 × Σ7 has 20 Lagrangian tori; all of these have trivial
meridian in homology. �

R 2.5. An infinite number of exotic smooth structures can be unveiled at the
cost of giving up the symplectic structure. We exemplify the process in the case where
the fundamental group is infinite cyclic, while the next paragraph explains why the
process works for the other groups. Before applying the last Luttinger surgery to obtain
a symplectic manifold with fundamental group Z, one has a symplectic manifold XZ⊕Z
for which π1(XZ⊕Z) = Z ⊕ Z. By Taubes’ results [25, 26], XZ⊕Z has nontrivial Seiberg–
Witten invariants. One can perform a more general torus surgery on XZ⊕Z to obtain
a manifold XZ with fundamental group Z and nontrivial Seiberg–Witten invariants.
The manifold XZ contains a null-homologous torus T ′. Applying a torus surgery
on T ′ yields an infinite family {Xn} parametrized by the surgery coefficient n. The
formula in [19, Theorem 3.4] can be used to prove that the Seiberg–Witten invariants
distinguish infinitely many diffeomorphism types within the members of {Xn} (see also
[5, Corollary 2]).

To conclude our discussion on their homeomorphism type, one must check that
these manifolds have the desired fundamental group; we already know that their Chern
invariants remain unchanged after the surgery. For this purpose, it suffices to see that
the effect of the surgery on the presentation of the fundamental groups is to replace a
relation of the form [a, b] = cp by [a, b]n = cp for a given p and n and generators a, b.
In the proofs of Lemmas 2.3 and 2.4, we argued that the original relation is trivial, and
so raising it to any power will result in a trivial relation as well.

2.5. Horikawa surfaces. The complex surfaces satisfying c2
1 = 2χh − 6 are known

as Horikawa surfaces; we denote them throughout this paper by H(8k′ − 1). They
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are constructed as branched covers of the Hirzebruch surface F2m along disconnected
curves. The Chern invariants of H(8k′ − 1) are given by (c2

1, χh) = (16k′ − 8, 8k′ − 1).
Moreover, H(8k′ − 1) contains an embedded Lagrangian torus which intersects a
2-sphere transversally at one point [6, 24].

2.6. A spin surface of positive signature. Persson et al. [23] constructed a simply
connected spin complex surface Y of positive signature which contains a holomorphic
curve Σg of genus g and trivial self-intersection. Further, the meridian of this surface
in the complement is trivial since Y also contains an embedded 2-sphere CP1 that
intersects Σg transversely at a point. Its Chern invariants are given approximately
by (c2

1(Y), χh(Y)) ≈ (60068x2, 6857x2), where x is a large positive integer that is not
computed explicitly.

2.7. Knot surgery on elliptic minimal surfaces. Our last building block is also a
classical element in the construction of four-manifolds and we remind the reader of its
relevant properties only. Let E(2s) denote the underlying smooth four-manifold of the
simply connected minimal elliptic surface without multiple fibers and with geometric
genus pg = 2s − 1 (see [11] and [13, Proposition 3.1.11]). Its Chern numbers are given
by (c2

1, χh) = (0, 2s). Notice that in particular E(2) is a K3 surface. In Sections 3 and 4,
it is easy to see where the manifold E(2s) can be replaced by an exotic version E(2s)K

obtained by knot surgery [8].

3. Negative signature

3.1. Examples where σ = −16s and s > 0. We now extend the results of B. D. Park
and Szabó [22] to manifolds with abelian fundamental group of small rank.

P 3.1. Let n and s be positive integers, p and q be integers greater than 1,
and G be {1}, Zp, Zp ⊕ Zq (if n ≥ 2) or Z, Z ⊕ Zp and Z ⊕ Z (if n ≥ 1). Then there exists
a spin irreducible symplectic manifold X such that

π1(X) = G and (c2
1(X), χh(X)) = (8n − 8, n + 2s − 1).

P. The proposition follows by employing the symplectic manifold X = E(2s)K in
Lemmas 2.3 and 2.4. �

By applying appropriate homeomorphism criteria, we conclude that when p and q
are odd prime numbers, the manifolds constructed in Proposition 3.1 for the various
choices of G are homeomorphic to the following topological prototypes:

G = {1} E(2s) # (2n − 2)(S 2 × S 2),
G = Zp E(2s) # (2n − 2)(S 2 × S 2) # Lp,
G = Zq ⊕ Zq E(2s) # (2n − 2)(S 2 × S 2) # Lq,q,
G = Z E(2s) # (2n − 1)(S 2 × S 2) # (S 3 × S 1).

Indeed, the Euler characteristic, the spin property and the signature of the
symplectic sum are computed by Lemma 2.1, and torus surgery does not change any
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of these topological invariants. In the simply connected case, the ground-breaking
result of Freedman [10] gives the homeomorphism type of the manifolds constructed.
Other (less well known but still very significant) results allow us to determine the
homeomorphism types for manifolds with nontrivial fundamental group by using the
same topological invariants. The criteria of Hambleton and Teichner [15] determines
the homeomorphism type for manifolds with infinite cyclic fundamental group. The
finite fundamental group cases, both cyclic and noncyclic but abelian of odd order,
follow from the criteria of Hambleton and Kreck [14]; one must check that the
manifolds constructed share the same ω2-type: this requires verification that the
universal covers of the manifolds are spin as well. The hypothesis requiring q to be a
prime number in Proposition 1.3 is needed to apply these criteria.

Thus, in light of Remark 2.5, we have the following result.

C 3.2. Each of the manifolds

E(2s) # (2n − 2)(S 2 × S 2), E(2s) # (2n − 2)(S 2 × S 2) # Lp,
E(2s) # (2n − 2)(S 2 × S 2) # Lq,q, E(2s) # (2n − 1)(S 2 × S 2) # (S 3 × S 1),

where p is an integer greater than 1 and q is an odd prime number, admits infinitely
many exotic irreducible smooth structures. In each case, only one of these exotic
manifolds is symplectic.

These methods improve the main theorem of Fintushel and Stern [7], who
constructed a manifold X homeomorphic to K3 # (S 2 × S 2) # (S 3 × S 1). We remind
the reader that in the noncyclic abelian case, the fundamental group is assumed to be
π1 = Zq ⊕ Zq, where q is a prime number.

3.2. Examples with σ = −48k′ for k′ > 0. Using the Horikawa surfaces H(8k′ − 1)
and H(7) #T #H(8k′ − 1) in Lemmas 2.3 and 2.4 yields the following proposition.

P 3.3. Let k′ and n be positive integers, p and q be integers greater than 2,
and G be {1}, Zp, or Zp ⊕ Zq (if n ≥ 2) or Z, Z ⊕ Zp or Z ⊕ Z (if n ≥ 1). Then there
exist spin irreducible symplectic manifolds X with fundamental group G such that
(c2

1(X), χh(X)) is either
(16k′ + 8n − 16, 8k′ + n − 2)

or
(16k′ + 8n + 88, 8k′ + n + 53).

C 3.4. Each of the manifolds

H(8k′ − 1) # (2n − 2)(S 2 × S 2),
H(8k′ − 1) # (2n − 2)(S 2 × S 2) # Lp,
H(8k′ − 1) # (2n − 2)(S 2 × S 2) # Lq,q,
H(8k′ − 1) # (2n − 1)(S 2 × S 2) # (S 3 × S 1),

where p is an integer greater than 1 and q is an odd prime number, admits infinitely
many exotic irreducible smooth structures. In each case, only one of these exotic
manifolds is symplectic.
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4. Nonnegative signature

We now study symplectic manifolds whose signature is either zero or positive.

4.1. J. Park’s construction. J. Park [21] used the spin complex surface described in
Section 2.6 to find manifolds with trivial fundamental group whose Chern invariants
(c2

1, χh) are all but finitely many points of the set {(c, χ) ∈ Z2 | 0 ≤ c ≤ 8.74χ}. We filled
in the points of negative signature above, and we now follow his construction almost
verbatim to address the region {(c, χ) | 8 ≤ c ≤ 8.74χ}. We start by describing Park’s
argument and main building blocks.

Consider a simply connected spin symplectic four-manifold Z which contains a
symplectic torus T in a cusp neighborhood N and symplectic surface Σg of genus g
and zero self-intersection, Σg disjoint from N. The Chern coordinates (c2

1(Z), χh(Z))
of this manifold are (8g2 − 16g + 8, 2g2 − g + 1). In particular its signature σ(Z) is
−8g2 + 8g. Now take the spin complex surface described in Section 2.6 and build the
symplectic sum of k copies of Y and one copy of Z along a surface of genus g:

X := Y #Σg · · · #Σg Y #Σg Z.

Assume the integer k is such that X has positive signature. Then π1(X) = {1}, since all
the pieces are simply connected and the meridian of Σg in Y − Σg is trivial, and, by
calculation, the Chern numbers (c2

1(X), χh(Y)) are

(kc2
1(Y) + c(Z) + 8k(g − 1), kχh(Y) + χh(Z) + k(g − 1)).

Thus, by considering sufficiently large integers k and x,

c2
1(X)

χh(X)
=

kc2
1(Y) + c(Z) + 8k(g − 1)

kχh(Y) + χh(Z) + k(g − 1)
≈

c2
1(Y)

χh(Y)
≈

60068x2

6857x2
= 8.76009 . . . .

Next, J. Park fixes sufficiently large integers k and x that c2
1(X) > 8.76χh(X). At this

point one should note that X contains a symplectic torus of self-intersection zero lying
on the building block Z. One can also find such tori in the Y blocks. To finish his
argument, Park defines a line c = f (χ)

f (χ) =
c(X)
χ(X)

·

(
χ −

1
2

c(X) − 6
)

+ c(X)

whose slope c(X)/χ(X) is greater than 8.76. Finally, he builds the simply connected
manifold W as the symplectic sum X #T 2 X #T 2 · · · #T 2 X #T 2 V along tori of m copies
of X and one copy of another manifold V that is chosen to be H(8k′ − 1) #T 2 E(2s),
H(7) #T 2 H(8k′ − 1) #T 2 E(2s) or one of the simply connected manifolds constructed
in Proposition 3.1. Then, by varying m, he shows that for every lattice point (c, χ) in
the first quadrant of the geography plane for which c = f (χ), there exists an irreducible
symplectic simply connected spin four-manifold W with (c2

1(W), χh(W)) = (c, χ).
Since W has a torus T of self-intersection zero and of trivial meridian in W − T ,

Lemmas 2.3 and 2.4 imply the following result (Theorem 1.2).
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P 4.1. Let G be {1}, Zp, Zp ⊕ Zq, Z, Z ⊕ Zp or Z ⊕ Z, where p is an integer
greater than 1 and q is an odd prime number. For all but finitely many pairs (c, χ) of
positive integers satisfying the condition

8χ ≤ c ≤ 8.76χ,

there exists a spin irreducible symplectic manifold X satisfying

π1(X) = G and (c2
1(X), χh(X)) = (c, χ).

Our next result is about the manifolds with negative signature from the previous
proposition.

C 4.2. There exists an integer N such that for all n ≥ N, each of the
manifolds

(2n + 1)(S 2 × S 2), (2n + 1)(S 2 × S 2) # Lp,
(2n + 1)(S 2 × S 2) # Lq,q, (2n + 2)(S 2 × S 2) # (S 1 × S 3),

where p and q are odd prime numbers, has infinitely many exotic irreducible smooth
structures. In each case, only one of the exotic manifolds admits a symplectic structure.
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