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Abstract. In the last three years new studies on secular resonances have been done. 
The second-order and fourth-degree secular perturbation theory of Milani and Knezevic 
allowed to point out the effect of mean motion resonances on the location of the linear 
and non linear secular resonances. Moreover this theory improved the knowledge of the 
exact location of the g = g§ (i.e. v§) resonance at low inclination. Morbidelli and Henrard 
revisited the semi-numerical method of Williams, taking into account the quadratic terms 
in the perturbing masses. They computed not only the location of secular resonances, but 
also provided a global description of the resonant dynamics in the main secular resonances 
namely g = g$ (i.e. 1/5), g = g$ (i.e. UQ) and s = SQ (i.e. V \ § ) . The resonant proper element 
algorithm developed by Morbidelli allows to identify the dynamical nature of resonant 
objects, and is a powerful tool to study the mechanisms of meteorite transport to the 
inner Solar System. Purely numerical experiments have been done, which show : (i) the 
complexity of the dynamics when two resonances overlap; (ii) the efficiency of successive 
crossings of non linear resonances in pumping up the inclination of small bodies; (iii) the 
efficiency of the secular resonance as a source of meteorites up to 2.4 AU. 

1. Introduction. 

According to secular perturbation theories, the orbital elements of the planets 
change with periods ranging from thousands to millions of years. If one restricts to 
the Sun-Jupiter-Saturn system, these changes are quasi-periodic with three basic 
frequencies : g5 (the average precession rate of Jupiter's longitude of perihelion), #6 
(the average precession rate of Saturn's longitude of perihelion) and SQ (the preces-
sion rate of both nodes); additional frequencies appear when the full solar system 
is taken into account. The planets exert also secular perturbations on any small 
body orbiting around the Sun and force the precession of their orbits; we denote 
by g the precession frequency of the asteroid's longitude of perihelion, and s the 
precession frequency of its node. These secular perturbations give particularly large 
effects when a secular resonance occurs, namely when the frequency of precession 
of the small body g or s (or a combination of these frequencies) becomes nearly 
equal to an eigenfrequency (or a combination of eigenfrequencies) of the planetary 
system. In the following we will call linear secular resonances those involving only 
one asteroid frequency and one planetary frequency. 

In the present review (since previous ones have been published, Scholl et al. 1989, 
Froeschlé and Scholl 1989) we will just mention the most important steps which 
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have been done in the field of secular resonances up to 1989 and we will devote this 
paper to the new results obtained after 1989. 

The phenomena of secular resonances have been known since the end of the 
last century (LeVerrier 1855, Tisserand 1882, Poincaré 1892). The first modern 
approach to study secular resonances was done by Williams (1969). He developed 
a semi-numerical theory based on Gauss averaging method, which can be applied 
to derive proper elements of asteroidal orbits even for large values of eccentricity 
and/or inclinations, and mapped the contours of secular resonances in the main 
asteroid belt as a function of the proper elements a, e and i. This method was 
later refined (Williams and Faulkner 1981) to derive detailed graphical maps of the 
surfaces which denote the location of the three strongest secular resonances, in the 
proper element space with semi major axis ranging between 1.25 and 3.5 AU. 

Since the development of a new generation of high speed computers, orbital 
evolution of resonant and near resonant asteroids have been studied. These purely 
numerical experiments were based mainly on the four body model, i.e. Sun-Jupiter-
Saturn-Asteroid (see Froeschlé and Scholl 1989). The numerical experiments yiel-
ded new quantitative results and confirmed the qualitative behaviour of orbital 
evolution at secular resonances obtained previously by semi-analytical theories. 
Moreover they revealed the existence of chaotic motions. 

These numerical works revived the interest for the study of secular resonances 
and, as a consequence, new improved theories appeared such as the ones by Yo-
shikawa (1987) and Sidlichovsky (1989), for the g = g$ resonance, and by Nakai 
and Kinoshita (1985), for the s = SQ resonance (see Froeschlé and Scholl 1989 for 
a review of these works). The more recent theories were developed by Milani and 
Knezevic (1990), and also by Morbidelli and Henrard (1991a). 

Milani and Knezevic (1990) developed an analytical theory to compute proper 
elements, where only Jupiter and Saturn are considered. Their work is based on 
an explicit expansion of the hamiltonian of the model in powers of the eccentricity 
and inclination of both the asteroid and the planets; such expansion is truncated 
at degree 4 for what concerns the part which is linear in the masses of the planets, 
and degree 2 for what concerns the quadratic part. All the terms of order larger 
than 2 in the masses are also neglected. As a result they located in the proper 
element space not only the linear secular resonances but also the ones of degree 
4 in eccentricity and inclination. Retaining the quadratic terms in the perturbing 
masses they pointed out the strong effects imposed by mean motion resonances on 
the location of secular ones. Knezevic et al.(1991), generalizing the previous theory 
by considering the perturbation of the four major planets, determined the location 
of the linear secular resonances from 2 to 50 AU. Milani and Knezevic (1992) 
published an improved version of their theory, taking into account the secular 
perturbation of the four outer planets and part of the effect of the inner planets. 
They studied the effects of non linear secular resonances upon asteroid families. 
Finally, Milani and Knezevic (1994) analyzed in detail the dynamical behaviour of 
several asteroids close to some non linear secular resonances. 

Sidlichovsky (1990) extending his non linear theory developed in 1989 studied 
the problem of overlapping of secular resonances. The simple Chirikov overlapping 
criterion was applied to the hamiltonian where both terms corresponding to secular 
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resonances g = g 5 and g = g s are taken into account. The overlap criterion yields a 
critical value of the quantity Ρ = ^/(l — e 2 ) . ( l —cos i) depending on the semimajor 
axis of the asteroid. When Ρ is greater than the critical value, resonance overlap 
occurs and chaotic motion appears. A mapping of the hamiltonian is presented 
which allows to calculate rapidly trajectories. 

All these theories, based on the classical expansion of the perturbation in power 
series of the asteroid's eccentricity and inclination, have necessary a poor accuracy 
in determining the location and the dynamics of secular resonances at large ec-
centricity and inclination. Therefore, Morbidelli and Henrard (1991a) revisited the 
semi-numerical method first developed by Williams (1969), avoiding the expansion 
in power series of asteroid's e and i. Introducing suitable action-angle variables, 
they take completely into account the strongly non-linear dynamics related to the 
motion of the perihelion argument of the small body, which is dominant at high 
inclination, as shown by Kozai (1962). Furthermore they improved Williams' re-
sults on the location of resonances retaining the quadratic terms in the mass ratio 
(neglected by Williams). Moreover they studied in detail the dynamics of the three 
principal secular resonances g = ge (i-e. UQ in Williams' notations), g = #5 (i.e. 1/5) 
and s = SQ (i.e. V\Q) (Morbidelli and Henrard, 1991b). 

Recently Morbidelli (1993) developed an efficient algorithm for the computation 
of the dynamical evolution of asteroids which are inside or close to a secular reso-
nance. This algorithm is able to identify the dynamical nature of resonant objects. 
Since it requires a short CPU time for its execution, it is a powerful tool to study 
the dynamics of many fictitious objects in order to investigate the mechanisms 
of meteorite transport to the Earth. In addition, this work has pointed out the 
dynamical peculiarities of the g = g§ resonance. 

In the last years new numerical experiments have been performed (Scholl and 
Froeschlé 1991, Froeschlé and Scholl 1992, Farinella et al. 1993a) including not only 
Jupiter and Saturn but also Mars and the Earth. These new results show the role 
played by the secular resonances -linear and non linear ones- in the distribution 
of the asteroids in the inner belt and also the importance of the secular resonance 
g = ge for the delivery of meteorites to the Earth. 

In the following we review in Section 2 the new theories developed since 1990. 
Then we discuss the new results obtained by numerical experiments in section 3. 

2. Theo r i e s . 

The recent works on secular resonances can be classified in two groups : the ana-
lytical theory which consists in expanding the perturbation with respect to the 
eccentricity and the inclination of the small body, and the semi-numerical one 
which avoids any expansion in series of the small body's e and z, and therefore 
require the numerical evaluation of integrals. 

2. 1. MILANI- KNEZEVIC APPROACH (MK). 

In order to compute proper elements (i.e. quasi-integrals of motion) the MK theory 

was first developed in 1990, and improved in 1992 and 1993 by adding the new 
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perturbation terms; it is based on the Lie series formalism and uses an iterative 
algorithm. In the disturbing function which is averaged to eliminate short periodic 
terms, they include the first order term in the masses expanded up to the degree 
4 in eccentricity and inclination (both for the asteroid and the planets), and the 
quadratic term in the masses expanded up to the second degree. Their results on 
the location of secular resonances are a byproduct of their proper elements work. 

Indeed secular resonances enter the proper elements theory as small divisors 
which contain combinations of the fundamental frequencies g and s of the asteroid 
and the fixed frequencies gj and Sj of the planets. Therefore, in order to compute 
the location of secular resonances one has to compute the values of the frequencies g 
and s as functions of the proper orbital elements and search for those that satisfy a 
resonance condition; in particular linear secular resonances (the strongest ones) are 
given by the relations g = gj and s — Sj. As it is well known, classical linear theories 
provide two basic frequencies g = g0 and s = s 0 , with s0 = —go, functions of the 
semi-major axis only; g0 and s0 are also called "free oscillation frequencies". In 
Milani and Knezevic work, g and s are given by g0 and sQ corrected by considering 
the contribution of the quadratic term in the masses (which makes s0 φ —go) plus 
a correction coming from the terms of degree 4 in e and i; this makes the final 
frequencies to become functions also of the proper eccentricity and inclination. 

Milani and Knezevic work points out the effect of mean motion resonances on the 
location of secular ones. This is due to the fact that the frequencies are corrected by 
the quadratic term in the masses which contains small denominators corresponding 
to the main mean motion resonances. On the other hand, since the quadratic term 
in the masses is computed up to degree 2 only in e and only the effect of mean 
motion resonances of the form ρ + 1 : ρ and ρ + 2 : ρ is detected. 

An example of their results is reported in Figure 1 where the location of secular 
resonances is plotted in the proper elements space (a, i) for e = 0.1. 

This work has been generalized by Knezevic et al. (1991) who determined the 
location of the linear secular resonances up to the outer solar system. The basic 
result is that none of the considered secular resonances exist beyond 50 AU, so that 
one can conclude that these secular resonances are not effective for transporting 
inwards comets belonging to a possible Kuiper belt. 

For what concerns the study of the resonant dynamics, Milani and Knezevic 
(1992) have done a detailed study only on the effects of the resonances g+s = ge+se 
and g + s = # 5 + S 7 , which both cut the Eos family. Even if these resonances have 
a minor effect on the capability to identify the family members, they strongly 
influence the long term dynamics of Eos family. Also the small Lydia family is 
strongly perturbed by these resonances. As it is underlined by the authors, the 
effects of non linear secular resonances on a small family can result in the loss of 
some family members and even in the impossibility of identifying the family in a 
reliable way. 

More recently Milani and Knezevic (1994) analyzed the dynamical behaviour of 
several asteroids close to non-linear secular resonances, by numerical integrating 
their orbits for several million years and by computing adaptive proper elements 
(i.e. proper elements computed by dropping the resonant term) as function of time. 
The asteroids they have investigated are the following ones : 8 Flora ( 3 # + s = 3#6 + 
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Fig. 1. The location of the main linear secular resonances for proper e = 0.1 according 
to Milani and Knezevic (1990). The location of the resonances is strongly affected by the 
interaction with the mean motion resonances 3/1 and 2/1. The contour lines around the 
secular resonances correspond to a width of + /— l"/yr. 

s 6 ) ; 1047 Geisha and 244 Sita (2g + s = 2ge + s6y, 2649 Oongaq(s = tfs-tfe + ^e); 59 
Elpis, 244 Oceana and 214 Aschea (g = 2</e — <7s); 1809 Prometheus (g = 3g6—2gs). 

The main limit of Milani and Knezevic work is due to their perturbation expan-
sion. First of all, since the hamiltonian is expanded in power series of the asteroid's 
eccentricity and inclination, their results loose accuracy at large e or i. Moreover, 
since the term e 2i 2cos(2u>) is considered only as a "perturbation", the region at 
large inclination cannot be studied properly, since this term (as pointed out by Ko-
zai) becomes dominant, giving a strongly non-linear dynamics. Nevertheless their 
results have a good accuracy for the low to moderate e and i. 

2. 2. MORBIDELLI AND HENRARD APPROACH (MH). 

The MH theory -close to that of Williams (1969)- avoids any truncation of powers 
of the asteroid's eccentricity and inclination. The averaged hamiltonian -as in Wil-
hams' method- is expanded in power series of the planetary eccentricities and 
inclinations,(i.e. e' and i' are assumed implicitly to be smaller than whatever the 
asteroid's e and i). The quadratic terms in the perturbing masses (which were 
completely neglected in Williams' work) are taken into account. 

Introducing suitable angle-action variables their method can be applied all over 
the phase space, i.e. in regions of circulation and also libration of the perihelion 
argument. In order to study the dynamics of the secular resonances, Morbidelli 
and Henrard develop a local perturbation study in the neighbourhood of a resonant 
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orbit. Moreover, they deduce from the local study suitable integrable global models 
for the description of the dynamics of the three main secular resonances g = g5, 
g — g6 and s = s6. 

The main steps for what concerns the localization of secular resonances are the 
following (Morbidelli and Henrard, 1991a) : 
- The hamiltonian is split into an integrable part (hamiltonian of the 2-body 

problem) and a perturbation one. The perturbation part is globally of order 
Jupiter mass ~ 10~ 3 , and is time-dependent through the planetary elements 
which are considered as given functions of time with fixed proper frequencies gj 
and Sj. 

- the hamiltonian is averaged with respect to short periodic terms by applying the 
Lie algorithm and truncated at order two in the masses. The linear term in the 
masses is computed without any expansion in powers of e and z; conversely the 
quadratic term in the masses is computed up to degree 4 only. More recently, 
Lemaitre and Morbidelli (1994) computed the quadratic term in the masses in 
a semi-numerical way, i.e. avoiding expansions. 

- the averaged hamiltonian is expanded in power series of e' and which are 
assumed to be the new perturbation parameters, denoting Km the term of degree 
m in e', i'. Therefore, the main part of the averaged hamiltonian turns out to 
be the one given by the planets assumed on coplanar circular orbits, called AO; 
this part is integrable, although highly non-linear, and describes completely 
the dynamics related to the motion of the argument of perihelion, which is 
dominant at large inclination, as pointed out by Kozai (1962). In particular at 
large inclination, the argument of perihelion may librate, locked in the "Kozai 
resonance". 

- Suitable action-angle variables are introduced in order to eliminate the depen-
dence of Ko on the argument of perihelion. In the new variables, AO is charac-
terized by two fixed frequencies, which are the proper frequencies g and 5 of the 
system. The comparison of these frequencies with those of the planetary system 
gives the location of secular resonances. If the quadratic term in the masses is 
neglected, Morbidelli and Henrard recover completely the result of Williams and 
Faulkner (1981). The inclusion of the quadratic terms, confirms the results of 
Milani and Knezevic on the influence of mean motion resonances on the loca-
tion of secular ones. However, the authors pointed out that the results depend 
critically on the degree of truncation of the computation of the quadratic term, 
especially close to the 2/1 mean motion commensurability (3.0 - 3.2 A.U.) (see 
Figure 2.). Recently Morbidelli et al. (1993b), applying the method of successive 
elimination of harmonics, have computed the proper frequencies g and s in this 
region without passing through the computation of higher order terms in the 
masses, therefore obtaining much more reliable results (see Fig. 3). 

For what concerns the description of the resonant dynamics, Morbidelli and 
Henrard's work (1991b) provides a global description of the motion in the main 
linear resonances g = ge, s = s$, and partly also in g = # 5 . 

Basically, the linear term in e', i' (called ΑΊ) is written in the action-angle 
variables introduced in order to normalize AO; furthermore, assuming to be in 
presence of only one isolated resonance, only the corresponding resonant term is 
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a 

Fig. 2. The location of secular resonances for proper e=0.1 according to Morbidelli 
and Henrard (1991a). The semi major axis is expressed in units of Jupiter (aj = 5.2026 
A.U.) The enumeration of the resonances is the following : 1 g = g$; 2 g = ÇQ \ 3 s = s^; 

4 g = s = g5 + s 6 ; 5 g + s = g6 -h s6; 9 2g = g5 + g6; 10 g - s = g5 - .s6; 11 
g — s = ge — s^. In the picture above the quadratic term in the masses is truncated at 
order 2, in the picture below at order 4. The comparison shows how such a computation 
is sensitive to the truncation order, at least in the region at large inclination, in between 
2.9 and 3.2 AU. The dotted bands cover the mean motion commensurabilities 3/1, 5/2 
and 2/1 which are forbidden regions for the theory since the computation of the quadratic 
term of the masses is singular. 
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e=0.10 

3.0 3.1 3.2 
a ( A . U . ) 

Fig. 3. The location of secular resonances at proper e = 0.1 and a between 2.9 and 

3.3 AU according to the more sophisticated theory by Morbidelli et al. (1993b). The 

enumeration of the resonances is the same as in figure 2. The vertical line at 3.24 AU 

denotes the separatrix of the 2/1 mean motion commensurability. Secular resonances are 

bent to larger inclination approaching the 2/1 commensurability. This is confirmed by 

numerical integrations : the + denotes the initial conditions of test orbits which turn out 

to be below the g = g$ secular resonance (2); the — denotes those which are above the 

resonance; the ® denotes those which are inside the secular resonance. 
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retained in A~i, while the other terms are dropped. This gives an integrable model 
(similar to the one usually called "second fundamental model", see Henrard and 
Lemaitre, 1983) of the considered resonant dynamics. The main results can be 
shortly summarized as follows : 

• 9 = # 6 · the global pictures of the resonant phase space are only in partial agree-
ment with those of the previous work by Yoshikawa (1987), but are confirmed 
by numerical simulations; 

• s = SQ : the results confirm the previous ones by Nakai and Kinoshita (1985), 
in the region at moderate inclination where ω (perihelion argument) circulates. 
Moreover the resonance is found also in the region of ω-libration. In Froeschlé 
et al. (1991), the theory is applied in order to give a complete explanation of the 
orbital behaviour of the asteroid 2335 James; 

• g = g5 : this resonance is located near a critical threshold where the coefficient 
of the corresponding resonant term in ΑΊ changes the sign; therefore the uncer-
tainty on the global resonant picture is great, due mainly to the poor accuracy of 
the quadratic term in the masses computed, at this step, from truncated power 
series of e and i. 

2. 3. QUANTITATIVE RESONANT DYNAMICS. 

The MH theory on the dynamics in the main secular resonances has been recently 
improved from the quantitative point of view and implemented in the resonant pro-
per elements program by Morbidelli (1993). The basic approach is the following : 

1) the perturbation term K\ is expanded in Fourier series of the secular angles; 

2) all the non-resonant terms in ΑΊ are eliminated via a canonical transformation 
similar to that used for the computation of usual proper elements; this gives the 
usemi-proper elements" of the asteroid; 

3) in the semi-proper elements space, the hamiltonian is thus reduced to an inte-
grable resonant one of the kind A'o + &i cos σ, where σ is the critical angle of the 
secular resonance (for example w — g^t for the g = ge resonance), and k\ is the 
coefficient of the resonant term in the Fourier expansion of K\ ; 

4) the semi-proper elements of the asteroid are the initial conditions for the integra-
tion of such resonant hamiltonian : the solution gives the long term dynamical 
evolution of the considered body. In particular the resonant proper elements are 
defined as the values of e and i while σ = 0°, 180°. 
Figure 4 shows an example of application of the resonant proper elements algo-

rithm on a fictitious asteroid in the g = g6 resonance. On the left hand side the 
global picture of the resonant phase space is plotted, computed as level curves of 
A"o + k\ cosa; the dot marks the actual semi-proper elements of the asteroid, i.e. 
the present position of the asteroid on such a phase space. On the right hand side, 
the full numerical integration of the secular behaviour of the object is plotted, for 
a check. The coordinates are χ = ecosa and y = esina. As one sees, the resonant 
proper elements algorithm describes accurately the long term dynamical evolution 
of the object, averaging out all the "short" periodic oscillations due to the non-
resonant secular terms. Additional examples, referring also to the case where the 
eccentricity blows up, can be found in Morbidelli (1993). 
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fra^Mnt Httai 415 

Fig. 4. On the left, the phase space computed by the resonant proper element algorithm 
for a fictitious asteroid. The dot marks the present position of the body in the semi-proper 
elements space. On the right, the evolution of the orbit of the body as integrated numer-
ically. The coordinates are χ = e cos σ and y = esina, where σ is the critical angle of 
the g = gs secular resonance. 

asteroldi 945 

χ 

Fig. 5. The phase space of the g = g^ resonance for the asteroid 945 Barcelona. The 

dot marks the present position of the asteroid in the semi-proper elements space. 
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Fig. 6. The sets of the initial conditions in the g = g$ resonance with e = 0.15, which 

lead to e > 0.4. Figure a (top left) is made for ω = 0° and Ω = 124.19° (σ = 0°); figure 

b (top right) is for ω = 180° and Ω = 124.19° (σ = 180°); figure c (bottom left) is for 

ω = 180° and Ω = 304.19° (σ = 0°); figure d (bottom right) is for ω = 0° 

The quantitative improvement with respect to the original MH theory on secular 

resonant dynamics is due to two facts : 

a - instead of neglecting all non-resonant terms in K\, one eliminates them via the 

suitable variable transformation which gives the semi-proper elements; 

b - the quadratic term in the masses is taken into account and computed in a semi-

numerical way which allows to avoid expansion in powers of the asteroid's ec-

centricity and inclination. 

As a consequence, the resonant proper elements algorithm can be applied with 

reliability also to the g = g$ resonance (see fig. 5 for the asteroid 945 Barcelona). 

The relevant advantage of the resonant proper elements algorithm with respect 

to pure numerical integration is the CPU cost : to construct a global picture of the 

phase-space as in figures 4 and 5 (which corresponds to computing the dynamical 

evolution for millions of years) takes less than 1 minute of CPU time on a HP710. 

This allows, on the one hand, to study thousands of real/fictitious bodies, as in 

Morbidelli et al. (1993a) for the investigation of dynamical mechanism of meteorite 
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transport; on the other hand, a systematic exploration of the resonant dynamics, 
by analyzing hundreds of initial conditions chosen on a suitable grid. This allowed, 
for example, to point out the dynamical peculiarities of the g = </6 resonance, which 
is the only secular one able to pump up the asteroid's eccentricity up to extremely 
large values (e > 0.8). Figure 6 shows the sets of initial conditions in the (α ,ζ) 
mean elements space with e = 0.15 and different values of the angles, which lead 
to e > 0.4; in other words, the dangerous regions of the g = g§ resonance. 

The main limit of the resonant proper elements algorithm is that it does not take 
into account the inner planets; as a consequence close approaches, which are the 
relevant dynamical features of any orbit with large eccentricity, are not taken into 
account in the model. Therefore, one can apply the algorithm in order to study the 
dynamical evolution of an object only up to the time when the first close approach 
occurs. 

3. Numerical Experiments. 

As pointed out in the introduction, a lot of numerical experiments have been done 
since the 1980's. Most of them investigated the orbital evolution of fictitious and 
real asteroids located in or near the principal resonances. These quantitative experi-
ments gave a detailed picture of the dynamical properties of the secular resonances. 
Transitions between libration, inner and outer circulations have been found, indi-
cating the occurrence of chaotic motion. 

Froeschlé et al. (1991) have pointed out the complex dynamical behaviour of the 
asteroid 2335 James (first found located by Williams in the s = SQ resonance). A 
backwards integration showed that James was temporarily located in the g = gs and 
s = se resonances. In a Sun-Mars-Jupiter-Saturn model, the numerical integration 
showed close encounters of the asteroid with Mars, without ejecting James from 
the s = s β resonance. 

Numerical experiments on fictitious small bodies with initial eccentricities e=0.1 
have been performed in the overlapping region of the 3/1 mean motion resonance 
and of the g = g§ secular resonance (Froeschlé and Scholl 1993). The dynamics 
in this region is very complex as suggested by the recent theories. The analysis of 
the dynamical behaviour of orbits in the g = g§ secular resonance shows that the 
dynamical picture of the phase space changes approaching the 3/1 mean motion 
commensurability : for example, the libration motion is reversed. Inside the 3/1 
resonance region the secular resonance g = g$ is the dominant one, and some 
secondary secular resonances as g — s = g β — SQ and 2g = g$ + # 6 are present. 

Froeschlé and Scholl (1992) studied the effects of linear and non-linear secular 
resonances in the inner belt a < 2.4 AU, which appears to be depopulated at 
inclinations larger than 12°. This region is surrounded by the three main resonances 
g — gsi g = g§-> s = ^ 6 and is crossed by non-linear ones. Numerical experiments of 
fictitious bodies show that the inclinations are pumped up by successive crossings 
through the non linear resonances. Bodies located at the border of the g = g6 

resonance with semi major axis a < 2.4 AU become Earth-crossers on a time 
scales of 1 Myr. 

Many studies have shown the potential importance of secular resonances for the 
delivery of meteorites and Aten/Apol lo/Amor objects to planet-crossing orbits, 
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Fig. 7. An unpublished numerical simulation by Froeschlé and Scholl (see also Froeschlé 
and Scholl, 1992) which shows a fictitious body the inclination of which is pumped up 
from 16 to 34 degrees by chaotic diffusion through secular resonances. The orbit first 
crosses the secular resonances 2g = g$ + # 6 (critical argument ώ — ùj + ώ — as) and 
g — s = ge — (critical argument ώ — Cbs + Ω — Clj) and is finally captured in the 
resonance s = Se (critical argument Ω — and, temporary, in the g = g5 (critical 
argument ώ — ώ j). 
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often using Monte-Carlo techniques to model the chaotic orbital evolution of aste-
roid fragments (Wetherill 1977, 1979, 1988, Wetherill and Williams 1979). Milani 
et al. (1989) suggested, on the basis of a numerical investigation, that the region 
of secular resonances around 2 AU could be at least as important as the Kirkwood 
gaps as a route for Earth crossing. 

Scholl and Froeschlé (1991) showed that the proximity between the g = g6 

secular resonance and the 4/1 mean motion resonance broadens significantly the 
Earth-crossing region in the inner belt. In the Sun-Mars-Jupiter-Sat urn model, 
integrations of bodies with initial eccentricity equal to 0.05 and 0.1 have been 
performed for several semimajor axes a < 2.13 AU. Due to the proximity of the 
resonance g = g6 the eccentricity is pumped up inducing close encounters with 
Mars. At that time random walk of the semimajor axis starts and the body can be 
trapped either in the resonance 4 /1 , which makes the eccentricity to increase up 
to 0.5 after 10 4 years, or in the g = ge resonance; in the latter case the time scale 
to become Earth-crosser is at least 10 5 years. 

Farinella et al. 1993a have quantitatively modeled the chance insertion of col-
lisional fragments into the g = g6 and 3/1 resonances, through which they can 
achieve Earth-crossing orbits. They show that the two resonances are potentially 
effective channels for fragment collection and delivery. The efficiency of the g = ge 
is comparable to the efficiency of the 3/1 resonance. Moreover the g = g& resonance 
is found to be an efficient fragment collector not only near the inner edge of the 
asteroid belt, but also for several asteroids with semimajor axes about 2.4 and 2.7 
AU, see Farinella et al., this volume. 

Numerical integrations of 18 fictitious fragments ejected from the asteroid 6 Hebe 
located very close to the g — g& resonance at semimajor axe of 2.42 AU have been 
performed by Farinella et al. 1993b. For five of these fragments the authors found 
that the resonance g = g§ pumps up the eccentricity to value > 0.6 which result into 
Earth-crossing within a time scale of 1 Myr, several close encounters with our planet 
cause chaotic orbital evolution. Some more fragments become Mars-crossers albeit 
not Earth-crossers. Two bodies are injected into the 3/1 mean motion resonance 
with Jupiter, and display also chaotic behaviour leading to Earth-crossing. 

4 . T h e new frontiers 

The many numerical and theoretical works which have been done since the be-
ginning of this decade have thrown a new light onto the secular evolution of the 
orbits in the main asteroid belt pointing out the relevant dynamical role of secular 
resonances. 

However, some problems of non-negligible importance for a deeper comprehen-
sion of the features of the solar system, are still to be investigated. 

First of all, we stress that most of the works described above are devoted to iso-
lated secular resonances. Just few papers (Sidlichovsky, 1990; Froeschlé and Scholl, 
1992, Milani and Knezevic, 1994) point out the importance of interactions among 
secular resonances. In particular, overlapping among non-linear secular resonances 
could give rise to important phenomena of diffusion through the asteroid belt; this 
is the way by which faint resonances could induce macroscopic phenomena. Con-
versely, isolated secondary resonances could give rise to chaotic phenomena (with 
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positive Liapunov exponent) but with no importance on macroscopic stability, in 
the sense that the action variables do not show significant changes. 

Moreover, the secular theories and the numerical experiments should be extended 
to the outer solar system, following the road opened by Knezevic et al. (1991) who, 
on the other hand, did not provide any information on the strength of secular 
resonances and, consequently, on their dynamical role. 

A new subject of work is the role of secular resonances inside mean motion 
commensurabilities. A recent paper by Morbidelli and Moons (1993) shows that 
secular resonances exist and are responsible of the existence of large chaotic zones. 
This seems to be a promising way to explain the existence of Kirkwood gaps. 
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