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The electromagnetic state of vacuum is characterized by two vector 
quantities, namely E and B. They are related to current and charge 
density by the equations gj£ 

curlB//*0-e0-^- = i, (i) 
divE = p/e0, (2) 

curlE + -^- = o, (3) 

div B = o. (4) 
Sometimes it is suitable and possible to introduce two new quantities, H 
and D, so defined that the equations (1) and (2) appear in the new form 
(Strattonm) 3 D 

cur lH—^- = 0, (5) 
d ivD=p (6) 

and with a linear relation between E and D and also between B and H. 
This formalism is common when dealing with fluid and solid media, and 
has also been introduced to ionized media of zero temperature (Nichols and 
Schelleng[2], Alfven[3], p. 85, Astrom[4]). Here we shall say a few words 
about this matter for ionized media of non-zero temperature. In this 
connexion we also get an opportunity to discuss the meaning of the con
ception of diamagnetism. 

Let us assume a medium which initially is homogeneous in a homo
geneous magnetic field. Let us assume that we can neglect collisions. In 
this case it seems suitable to introduce fictitious particles situated at the 
guiding centres. Their motion shall be equal to the drift velocity. The 
magnetic moment due to the spiralling motion of the actual particle be
comes an intrinsic property of the fictitious particle. By introducing these 
particles we have established that the motion of these particles is a single 
valued function of the space co-ordinates. The random motion is taken into 
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account by introducing a temperature, and the corresponding electric 
current by introducing the magnetic moment (compare the alternative 
view discussed by Cowling [5] and Spitzer[6], p. 25). It may be necessary 
to keep the frequencies well below the gyro-frequency for the treatment to 
be valid, but we get simple relations for this case. 

In the first approximation the motion of charged particles is the drift in 
crossed electric and magnetic fields. The drift is independent of the sign 
of the charge and hence, in a neutral plasma, the corresponding electric 
current vanishes. Therefore we ought to use the second approximation 
(AlfVen[3], p. 18), E x B dE 

"drift~ —p- + o)-2(elm) -gp (7) 

where E is the perturbing electric field and (o is the gyro-angular frequency. 
If n is the density then the current is 

^ E x B v Ymm 3E 
ix = Y>nev» —jp- Xne + -^--^, (8) 

where the sum is to be extended over all types of particle present. Since we 
treat a macroscopically neutral medium the first term on the right-hand 
side vanishes. 

In a region where the magnetic field is inhomogeneous we also get a 
drift of charged particles. In contrast to the drift in crossed fields the 
direction does depend on the sign of the charge of the particles, and hence 
we do not get any cancellation of the corresponding current in a neutral 
plasma. This current is Ymev% 

Un-^BxVB*. (9) 

The current due to the spiralling motion is a multivalued function of 
the space co-ordinates and therefore ought to be introduced in another 
way. Let us compute the field at a point P i n a homogeneous plasma. 
Assume a cylinder generated by the magnetic-field lines through a circle 
with its centre at P and the radius equal to the Larmor radius R. The con
tribution from particles with their centres of circular motion outside is 
easily seen to be zero and the contribution from those inside is 

(1/2) fi0nev±R. 

This contribution has opposite direction to the magnetic field created by 
other sources. If therefore B is the field we actually have and B0 is the field 
from all sources but with the present one excluded we get 

B = B0-<zB; (10) 

a=jti0 2?-22 \nmv\. (11) 
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From what is said we find that B 0 and not B shall appear in Eq. ( i ) . Then 
Eqs. ( i ) , (7 ) - ( i i )g ive 

c u r l H = -^ -+(g rad t f ) x B , (12) 

ju,-1=i+2a, (13) 

e = 1 + /i0 B~2Ymmc2^ (14) 

H = / ^ - V 0
_ 1 B and D = ee0E. (15) 

These equations are of well-known form when the last term in (12) vanishes, 
i.e. when the ratio of the thermal to the magnetic-field energy is indepen
dent of the co-ordinates perpendicular to the magnetic-field lines. Let us 
for a moment keep to the case when this condition is fulfilled. We have thus 
defined the permeability of the medium. Since o<fi<i the medium is 
diamagnetic. 

That the magnetic moment \mv\\B is a constant for motion along a flux 
tube and for time variations in the magnetic field is well known for slow 
variations, but it seems to be true also for fast variations. If we accept the 
Minkowski notation this quantity is also constant for relativistic velocities 
(cp. Leverett Davis, J r . [7]). 

If we discuss only small disturbances from homogeneity along the 
magnetic-field lines n/B, also, where n is the particle density, is constant. 
From what is said follows that the permeability is also a constant, even for 
large disturbances. If we had kept the whole discussion relativistically 
correct we should have found that the permeability is not constant when 
account is taken of the relativistic effects. 

The dielectric constant is known before but we may add that it cannot 
be treated as a constant for large disturbances. 

By our procedure we have eliminated the mechanical quantities but we 
find that the magnetic-field energy of the medium, (1/2) BH, now is the 
sum of iB2/ju,0 and 2/3 of the thermal-energy density if the velocity dis
tribution is isotropic and (1/2) ED includes both \eQE2 and the kinetic-
energy density due to the drift in crossed fields. 

Let us discuss waves travelling perpendicular to the magnetic-field lines. 
The phase velocity is c(/ie)~^. After introducing the values of ji and e we 
find three cases of special interest. 

1. %B2l/i0^>nmc2. The magnetic field is so strong that the motion of the 
charged particles is greatly hindered. In the limit we get electromagnetic 
waves in vacuo. 

2. nmc2 > %B2l/i0 > nk T. The density of thermal energy can still be neg
lected compared with the density of magnetic energy but the kinetic 
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energy due to the drift in crossed fields exceeds the electric-field energy. 
The phase velocity is equal to the Alfven velocity. Looked upon in the 
present way they are transverse electromagnetic waves, but if we concentrate 
on the mechanical properties they are longitudinal compression waves. 

3. nkT^> %B2l/i0. The electromagnetic-energy densities can be neglected 
besides the corresponding mechanical energies. The electric and magnetic 
fields are nevertheless necessary for the transfer of momentum in the 
medium. In this case we get diamagnetic sound waves. They have a phase 
velocity which is almost the sound velocity in the same gas if it were not 
ionized. Again it has to be looked upon as a transverse wave viewed from 
the present treatment but it can as well be accepted as a longitudinal wave 
(cp. N. Herlofson[8i and van de Hulst[9i). 

Under the present assumptions the validity of the deduction is restricted 
to frequencies which are small compared to the gyro-frequency, but the 
collision frequency does not enter into consideration. 

When we keep to regions where /i is constant we encounter no trouble, 
but when this is no longer the case the extra term in Maxwell's equations 
becomes important. This for instance means that Hn is no longer continuous 
at a boundary. 

We have introduced H and /i in order to be able to use the results con
ventional electrodynamics offer. Since there exist other methods for solving 
the present problem it is perhaps suitable to restrict our present method to 
the case when fi is space-independent. 

(1/2) BH is actually a pressure. When we have a solid boundary this 
quantity is no longer treated as an entity since the wall discriminates between 
two components. The wall can take up the mechanical part but does not 
react with the magnetic part. In equilibrium then the magnetic field has 
the same value on both sides of the boundary (Bohr[io]). To take such an 
experiment as a definition of permeability, i.e. to say that the gas is not 
diamagnetic, seems to be unrealistic since permeability ought to be a 
property of a homogeneous medium (here plasma) and not something 
characterizing a specific boundary value problem (cp. H. Alfven [3], p. 57, 
Spitzer[ii], p. 27). 
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Discussion 

Cowling: I would like to ask about the term nmv\jB2\ where does it come 
from? Is it a term arising from the diamagnetism? 

Astrom: This term comes from two sources. One is the drift velocity perpen
dicular to the magnetic field caused by its inhomogeneity. The velocity is 
proportional to mv\ Further, the momentum of the rotational motion in the 
magnetic field also gives a term of this kind. 

Cowling: If the transverse pressure effect arises as I expect from diamag
netism, care is necessary, or the macroscopic approach may prove misleading. 
Care is, of course, necessary in a microscopic approach in defining the relation 
between B and H, as is evidenced by the lengthy discussions on Lorentz5 

polarization in the ionosphere. But I am not sure that the difficulties of a 
macroscopic approach are less than for a microscopic approach. 

Spitzer: Dr Astrom has made the point that in a hot ionized gas, where 
collisions are infrequent, one must go to the microscopic picture for a detailed 
solution. I should like to agree entirely with this result, subject to the proviso 
that this approach involves difficulties of its own. In particular, the velocity 
distribution in any particular situation is no longer Maxwellian and must be 
determined directly from the Boltzmann equation. Problems of this sort are 
sufficiently complicated to keep many theorists busy for a long time. 

There is one result in this area which I should like to report at this time. 
One may ask how constant is the diamagnetic moment of a gyrating particle. 
Professor Alfven showed that the quantity is constant to the first order in an 
expansion parameter, t, which is essentially the ratio of the Larmor radius to 
the distance over which the magnetic field changes substantially. Hellwig 
demonstrated that the diamagnetic moment is constant to the second order in t. 
Recently Kruskal and Kulsrud at Princeton demonstrated that this quantity is 
constant to all orders in t. This does not mean that the diamagnetic moment is 
rigorously constant, but rather that in the asymptotic expansion of the magnetic 
moment in powers of t, all the coefficients of t are zero. Thus we may conclude 
that the diamagnetic moment is very constant, indeed! 
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Swann: Starting from the basic equations in the microscopic form one can 
derive macroscopic relations by taking averages. It appears that the averaging 
of the pM-terms gives rise to a conduction current and a polarization term and 
a complicated term which has to be subtracted from B to give H. In order to 
realize the macroscopic equations one has to average over a macroscopic 
element of volume of space. One then hopes to be able to formulate simple 
relations between j and E, etc., to complete the equations in usable form. Only 
if this is the case is there any sense in introducing the macroscopic equations. 
If this is not possible it is better to proceed directly from the microscopic 
relations. 

Astrom: It is true that one has to be careful when treating these problems, 
but I also think that if one divides the motion of the individual particle into a 
circular motion and a drift motion one avoids trouble. This does not mean 
that I want to state that the solution I have presented here is necessarily the 
best one. This paper has been presented mainly to stress that before one uses 
some terms one has to define them. In this special case it is about diamagnetism 
and related quantities. 
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